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Abstract
Next Point-of-Interest (POI) recommendation is
of great value for both location-based service
providers and users. Recently Recurrent Neural
Networks (RNNs) have been proved to be effec-
tive on sequential recommendation tasks. How-
ever, existing RNN solutions rarely consider the
spatio-temporal intervals between neighbor check-
ins, which are essential for modeling user check-in
behaviors in next POI recommendation. In this pa-
per, we propose a new variant of LSTM, named ST-
LSTM, which implements time gates and distance
gates into LSTM to capture the spatio-temporal re-
lation between successive check-ins. Specifically,
one time gate and one distance gate are designed
to control short-term interest update, and another
time gate and distance gate are designed to control
long-term interest update. Furthermore, to reduce
the number of parameters and improve efficiency,
we further integrate coupled input and forget gates
with our proposed model. Finally, we evaluate
the proposed model using four real-world datasets
from various location-based social networks. Our
experimental results show that our model signifi-
cantly outperforms the state-of-the-art approaches
for next POI recommendation.

1 Introduction
Recent years have witnessed the rapid growth of location-
based social network services, such as Foursquare, Facebook
Places, Yelp and so on. These services have attracted many
users to share their locations and experiences with massive
amounts of geo-tagged data accumulated, e.g., 55 million
users generated more than 10 billion check-ins on Foursquare
until December 2017. These online footprints (or check-ins)
provide an excellent opportunity to understand users’ mobile
behaviors. For example, we can analyze and predict where
a user will go next based on historical footprints. Moreover,
such analysis can benefit POI holders to predict the customer
arrival in the next time period.

In the literature, approaches like latent factor model
and Markov chain have been widely applied for sequential
data analysis and recommendation. [Rendle et al., 2010]
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Figure 1: wi in (a) represents the i-th word. In (b), pi represents the
i-th item and 4t is time interval between two neighbor items. In
(c), 4d further represents distance interval between two successive
check-ins.

proposed Factorizing Personalized Markov Chain (FPMC),
which bridges matrix factorization and Markov chains to-
gether, for next-basket recommendation. [Cheng et al., 2013]
extended FPMC to embed personalized Markov chain and
user movement constraint for next POI recommendation. [He
et al., 2016] proposed a unified tensor-based latent model
to capture the successive check-in behavior by exploring the
latent pattern-level preference for each user. Recently, Re-
current Neural Networks (RNNs) have been successfully em-
ployed on modeling sequential data and become state-of-the-
art methods. [Hidasi et al., 2015] focused on RNN solu-
tions for session-based recommendation task, where no user
id exists, and recommendations are made only on short ses-
sion data. [Zhu et al., 2017] proposed a variant of Long-
Short Term Memory network (LSTM), called Time-LSTM,
to equip LSTM with time gates to model time intervals for
next item recommendation.

However, none of the above recommendation methods
considers both time intervals and geographical distances be-
tween neighbor items, which makes next POI recommenda-
tion different from other sequential tasks such as language
modeling and next-basket recommender system (RS). As
shown in Figure 1, there is no spatio-temporal interval be-
tween neighbor words in language modeling, and there is no
distance interval between neighbor items in next-basket RS,
while there are time and distance intervals between neigh-
bor check-ins in next POI recommendation. Traditional RNN
and its variants, e.g., LSTM and GRU, do well in model-
ing the order information of sequential data with constant in-
tervals, but cannot model dynamic time and distance inter-
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vals as shown in Figure 1(c). A recent work ST-RNN [Liu
et al., 2016a] tried to extend RNN to model the temporal
and spatial context for next location prediction. In order to
model temporal context, ST-RNN models multi-check-ins in
a time window in each RNN cell. Meanwhile, ST-RNN em-
ploys time-specific and distance-specific transition matrices
to characterize dynamic time intervals and geographical dis-
tances, respectively. Thus, ST-RNN can obtain improvement
in the spatio-temporal sequential recommendation. However,
there exist some challenges preventing ST-RNN from becom-
ing the best solution for next POI recommendation.

First of all, ST-RNN may fail to model spatial and tem-
poral relations of neighbor check-ins properly. ST-RNN
adopts time-specific and distance-specific transition matrices
between cell hidden states within RNN. Due to data sparsity,
ST-RNN cannot learn every possible continuous time inter-
vals and geographical distances but partition them into dis-
crete bins. Secondly, ST-RNN is designed for short-term in-
terests and not well designed for long-term interests. [Jan-
nach et al., 2015] reported that users’ short-term and long-
term interests are both significant on achieving the best per-
formance. The short-term interest here means that recom-
mended POIs should depend on recently visited POIs, and
the long-term interest means that recommended POIs should
depend on all historical visited POIs. Thirdly, it is hard to
select the proper width of the time window for different ap-
plications in ST-RNN since it models not one element in each
layer but multi-elements in a fixed time period.

To this end, in this paper, we propose a new recurrent neu-
ral network model, named ST-LSTM, to model users’ sequen-
tial visiting behaviors. Time intervals and distance intervals
of neighbor check-ins are modeled by time gate and distance
gate, respectively. Note that there are two time gates and two
distance gates in the ST-LSTM model. One pair of time gate
and distance gate is designed to exploit time and distance in-
tervals to capture the short-term interest, and the other is to
memorize time and distance intervals to model the long-term
interest. Furthermore, enlightened by [Greff et al., 2017], we
use the coupled input and forget gates to reduce the number
of parameters, making our model more efficient. Experimen-
tal results on four real-world datasets show ST-LSTM signif-
icantly improves next POI recommendation performance.

To summarize, our contributions are listed as follows.

• To the best of our knowledge, this is the first work that
models spatio-temporal intervals between check-ins un-
der LSTM architecture to learn user’s visiting behavior
for the next POI recommendation.

• A ST-LSTM model is proposed to incorporate carefully
designed time gates and distance gates to capture the
spatio-temporal interval information between check-ins.
As a result, ST-LSTM well models user’s short-term and
long-term interests simultaneously.

• Experiments on four large-scale real-world datasets are
conducted to evaluate the performance of our proposed
model. Our experimental results show that our method
outperforms state-of-the-art methods.

2 Related Work
In this section, we discuss related work from two aspects,
which are POI recommendation and leveraging neural net-
works for recommendation.

2.1 POI Recommendation
Different from traditional recommendations (e.g., movie rec-
ommendation, music recommendation), POI recommenda-
tion is characterized by geographic information and no ex-
plicit rating information [Ye et al., 2011; Lian et al., 2014].
Moreover, additional information, such as social influence,
temporal information, review information, and transition be-
tween POIs, has been leveraged for POI recommendation.
[Ye et al., 2011] integrated the social influence with a user-
based Collaborative Filtering (CF) model and modeled the
geographical influence by a Bayesian model. [Yuan et al.,
2013] utilized the temporal preference to enhance the effi-
ciency and effectiveness of the solution. [Kurashima et al.,
2013] proposed a topic model, in which a POI is sampled
based on its topics and the distance to historical visited POIs
of a target user. [Liu et al., 2016b] exploited users’ interests
and their evolving sequential preferences with temporal inter-
val assessment to recommend POI in a specified time period.

Next POI recommendation, as a natural extension of gen-
eral POI recommendation, is recently proposed and has at-
tracted great research interest. Research has shown that the
sequential influence between successive check-ins plays a
crucial role in next POI recommendation since human move-
ment exhibits sequential patterns. A tensor-based model,
named FPMC-LR, was proposed by integrating the first-order
Markov chain of POI transitions and distance constraints for
next POI recommendation [Cheng et al., 2013]. [He et al.,
2016] further proposed a tensor-based latent model consid-
ering the influence of user’s latent behavior patterns, which
are determined by the contextual temporal and categorical in-
formation. [Feng et al., 2015] proposed a personalized rank-
ing metric embedding method (PRME) to model personalized
check-in sequences for next POI recommendation. [Xie et al.,
2016] proposed a graph-based embedding learning approach,
named GE, which utilize bipartite graphs to model context
factors in a unified optimization framework.

2.2 Neural Networks for Recommendation
Neural networks are not only naturally used for feature learn-
ing to model various features of users or items, but also ex-
plored as a core recommendation model to simulate nonlin-
ear, complex interactions between users and items [Wang and
Wang, 2014; Zhang et al., 2016]. [Zheng et al., 2016] fur-
ther improved it with an autoregressive method. [Yang et al.,
2017a] proposed a deep neural architecture named PACE for
POI recommendation, which utilizes the smoothness of semi-
supervised learning to alleviate the sparsity of collaborative
filtering. [Yang et al., 2017b] jointly modeled a social net-
work structure and users’ trajectory behaviors with a neural
network model named JNTM. [Zhang et al., 2017] tried to
learn user’s next movement intention and incorporated differ-
ent contextual factors to improve next POI recommendation.
[Zhu et al., 2017] proposed a Time-LSTM model and two



variants, which equip LSTM with time gates to model time
intervals for next item recommendation.

A recent work proposed a model named ST-RNN, which
considers spatial and temporal contexts to model user behav-
ior for next location prediction, is closely related to our work
[Liu et al., 2016a]. However, our proposed ST-LSTM model
differs significantly from ST-RNN in two aspects. First, ST-
LSTM equips the LSTM model with time and distance gates
while ST-RNN adds spatio-temporal transition matrices to the
RNN model. Second, ST-LSTM well models time and dis-
tance intervals between neighbor check-ins to extract long-
term and short-term interests. However, ST-RNN recom-
mends next POI depending only on POIs in the nearest time
window which may be hard to distinguish short-term and
long-term interests.

3 Preliminaries
In this section, we first give the formal problem definition of
next POI recommendation, and then briefly introduce LSTM.

3.1 Problem Formulation
Let U = {u1, u2, . . . , uM} be the set of M users and V =
{v1, v2, . . . , vN} be the set of N POIs. For user u, she has a
sequence of historical POI visits up to time ti−1 represented
as Hu

i = {vut1 , v
u
t2 , · · ·, v

u
ti−1
}, where vuti means user u visit

POI v at time ti. The goal of next POI recommendation is to
recommend a list of unvisited POIs for a user to visit next at
time point ti. Specifically, a higher prediction score of a user
u to an unvisited POI vj indicates a higher probability that the
user u would like to visit the POI vj at time ti. According to
prediction scores, we can recommend top-k POIs to user u.

3.2 LSTM
LSTM [Hochreiter and Schmidhuber, 1997], a variant of
RNN, is capable of learning short and long-term dependen-
cies. LSTM has become an effective and scalable model
for sequential prediction problems, and many improvements
have been made to the original LSTM architecture. We use
the basic LSTM model in our approach for the concise and
general purpose, and it is easy to extend to other variants of
LSTM. The basic update equations of LSTM are as follows:

it = σ(Wi[ht−1, xt] + bi), (1)

ft = σ(Wf [ht−1, xt] + bf ), (2)

c̃t = tanh(Wc[ht−1, xt] + bc), (3)

ct = ft � ct−1 + it � c̃t, (4)

ot = σ(Wo[ht−1, xt] + bo), (5)

ht = ot � tanh(ct), (6)

where it, ft, ot represent the input, forget and output gates of
the t-th object, deciding what information to store, forget and
output, respectively. ct is the cell activation vector represent-
ing cell state, which is the key to LSTM. xt and ht represent

ht-1

ht

ot

ctct-1

ht

ft

T1t D1tit tc T2t D2t tcit

t̂c
tanh

σ 

xt Δtt Δdtxt

tanhσ σ σ 

Δtt Δdtxt

σ σ σ tanhσ 

Figure 2: ST-LSTM has two time gates and two distance gates, i.e.,
T1t, T2t, D1t and D2t. T1t and D1t are designed to model time
and distance intervals for short-term interests while T2t and D2t
are to model time and distance intervals for long-term interest.

the input feature vector and the hidden output vector, respec-
tively. σ represents a sigmoid layer to map the values between
0 to 1, where 1 represents “complete keep this” while 0 rep-
resents “completely get rid of this”. Wi, Wf , Wo and Wc

are the weights of gates. bi, bf , bo and bc are corresponding
biases. And � represents for the element-wise (Hadamard)
product. The update of cell state ct has two parts. The former
part is the previous cell state ct−1 that is controlled by forget
gate ft, and the latter part is the new candidate value scaled
by how much we decided to add state value.

4 Our Approach
In this section, we first propose a spatio-temporal LSTM
model, ST-LSTM, which utilizes time and distance intervals
to model user’s short-term interest and long-term interest si-
multaneously. Then, we improve ST-LSTM with coupled in-
put and output gates for efficiency.

4.1 Spatio-temporal LSTM
When using LSTM for next POI recommendation, xt repre-
sents user’s last visited POI, which can be exploited to learn
user’s short-term interest. While ct−1 contains the infor-
mation of user’s historical visited POIs, which reflect user’s
long-term interest. However, how much the short-term in-
terest determines where to go next heavily depends on the
time interval and the geographical distance between the last
POI and the next POI. Intuitively, a POI visited long time
ago and long distance away has little influence on next POI,
and vice versa. In our proposed ST-LSTM model, we use
time gate and distance gate to control the influence of the last
visited POI on next POI recommendation. Furthermore, the
time gate and the distance gate can also help to store time
and distance intervals in cell state ct, which memorizes user’s
long-term interest. In this way, we utilize time and distance
intervals to model user’s short-term interest and long-term in-
terest simultaneously.

As shown in two dotted red rectangles in Figure 2, we add
two time gates and two distance gates to LSTM, denoted as



T1t, T2t,D1t andD2t respectively. T1t andD1t are used to
control the influence of the latest visited POI on next POI, and
T2t and D2t are used to capture time and distance intervals
to model user’s long-term interest. Based on LSTM, we add
equations for time gates and distance gates as follows:

T1t =σ(xtWxt1 + σ(4ttWt1) + bt1),

s.t.Wxt1 ≤ 0
(7)

T2t = σ(xtWxt2 + σ(4ttWt2) + bt2), (8)

D1t =σ(xtWxd1
+ σ(4dtWd1

) + bd1
),

s.t.Wxd1
≤ 0

(9)

D2t = σ(xtWxd2
+ σ(4dtWd2

) + bd2
). (10)

We then modify Eq. (4)-(6) to:

ĉt = ft � ct−1 + it � T1t �D1t � c̃t, (11)

ct = ft � ct−1 + it � T2t �D2t � c̃t, (12)

ot = σ(Wo[ht−1, xt] +4ttWto +4dtWdo + bo), (13)

ht = ot � tanh(ĉt), (14)

where 4tt is the time interval and 4dt is the distance inter-
val. Besides input gate it, T1t can be regarded as an input
information filter considering time interval, and D1t can be
regarded as another input information filter considering dis-
tance interval. We add a new cell state ĉt to store the result,
then transfer to the hidden state ht and finally influences next
recommendation. Along this line, ĉt is filtered by time gate
T1t and distance gate D1t as well as input gate it on current
recommendations.

Cell state ct is used to memory users general interest, i.e.,
long-term interest. We designed a time gate and a distance
gate to control the cell state ct update. T2t first memorizes
4tt then transfers to ct, further to ct+1, ct+2, · · · . So T2t
helps store 4tt to model user long-term interest. In the sim-
ilar way, D2t memorizes4dt and transfers to cell state ct to
help model user long-term interest. In this way, ct captures
user long-term interest by memorizing not only the order of
user’s historical visited POIs, but also the time and distance
interval information between neighbor POIs. Modeling dis-
tance intervals can help capture user’s general spatial interest,
while modeling time intervals helps capture user’s periodical
visiting behavior.

Normally, a more recently visited POI with a shorter dis-
tance should have a larger influence on choosing next POI.
To incorporate this knowledge in the designed gates, we add
constraints Wxt1 ≤ 0 and Wxd1 ≤ 0 in Eq. (7) and Eq. (9).
Accordingly, if 4tt is smaller, T1t would be larger accord-
ing to Eq. (7). In the similar way, if 4dt is shorter, D1t
would be larger according to Eq. (9). For example, if time
and distance intervals are smaller between xt and next POI,
then xt better indicates the short-term interest, thus its influ-
ence should be increased. If 4tt or 4dt is larger, xt would

ht-1

ht

ot

ct

T1t

ct-1

D1t T2t D2tit

t̂c

tcittc

tanhσ σ σ σ σ σ 

1-

σ 

tanh

tanh

Δtt Δdt Δtt Δdtxt xt

ht

xt

1-

Figure 3: A variant of ST-LSTM using coupled input and forget
gates.

have a smaller influence on the new cell state ĉ. In this case,
the short-term interest is uncertain, so we should depend more
on the long-term interests. It is why we set two time gates and
two distance gates to distinguish the short-term and long-term
interests update.

4.2 Variation of coupled input and forget gates
Enlightened by [Greff et al., 2017], we propose another ver-
sion of ST-LSTM, named ST-CLSTM, to reduce the num-
ber of parameters and improve efficiency. ST-CLSTM uses
coupled input and forget gates instead of separately deciding
what to forget and what new information to add, as shown in
Figure 3. Specifically, we remove the forget gate, and modify
Eq. (11) and Eq. (12) to:

ĉt =(1− it � T1t �D1t)� ct−1

+ it � T1t �D1t � c̃t,
(15)

ct = (1− it)� ct−1 + it � T2t �D2t � c̃t. (16)

Since time gate T1t and distance gate D1t are regarded as
input filters, we replace the forget gate with (1− it � T1t �
D1t) in Eq. (15). T2t andD2t are used to store time intervals
and distance intervals respectively, thus we use (1 − it) in
Eq. (16).

4.3 Training
The way we adapt our model to next POI recommen-
dation is as follows. Firstly we transform Hu to
[(vu1 , t

u
2 − tu1 , d(l1, l2)), (vu2 , tu3 − tu2 , d(l2, l3)), · · · , (vun, tuq −

tun, d(ln, lq))]. Then xt in ST-LSTM is equivalent to vut , 4tt
is equivalent to tut+1−tut , and4dt is equivalent to d(lt+1, lt),
where d(· , · ) is the function computing the distance between
two geographical points. Moreover, we make use of all users’
behavioral histories for learning and recommendation. We
leverage the mini-batch learning method, and train the model
on users’ existing histories until convergence. The model out-
put is a probability distribution on all POIs calculated by ht
and vut . And then we take a gradient step to optimize the loss
based on the output and one-hot representations of vut+1.

We use Adam, a variant of Stochastic Gradient De-
scent(SGD), to optimize the parameters in ST-LSTM, which



Table 1: Statistics of the four datasets

Dataset #user #POI #Check-in Density
CA 49,005 206,097 425,691 0.004%
SIN 30,887 18,995 860,888 0.014%
Gowalla 18,737 32,510 1,278,274 0.209%
Brightkite 51,406 772,967 4,747,288 0.012%

adapts the learning rate for each parameter by performing
smaller updates for frequent parameters and larger updates
for infrequent parameters. We use the projection operator
described in [Rakhlin et al., 2012] to meet the constraints
Wt1 ≤ 0 in Eq. (7) and Wd1 ≤ 0 in Eq. (9). If we have
Wt1 > 0 during the training process, we set Wt1 = 0. And
parameter Wd1

is set in the same way.
The computational complexity of learning LSTM models

per weight and time step with the stochastic gradient descent
(SGD) optimization technique is O(1). Hence, the LSTM al-
gorithm is very efficient, with an excellent update complexity
of O(W ), where W is the number of weights and can be cal-
culated asW = nc∗nc∗4+ni∗nc∗4+nc∗no+nc∗3, where
nc is the number of memory cells, ni is the number of input
units, and no is the number of output units. Similarly, ST-
LSTM computational complexity is also O(W ) and can be
calculated as W = nc ∗nc ∗ 5+ni ∗nc ∗ 8+nc ∗no+nc ∗ 9
. The training time of our proposed model for 100 rounds of
training on four datasets after data cleaning is about 10 min-
utes on GPU M6000.

5 Experiments
In this section, we conduct experiments to evaluate the perfor-
mance of our proposed model ST-LSTM on four real-world
datasets. We first briefly depict the datasets, followed by
baseline methods. Finally, we present our experimental re-
sults and discussions.

5.1 Dataset
We use four public LBSNs datasets that have user-POI in-
teractions of users and locations of POIs. The statistics of
the four datasets are listed in Table 1. CA is a Foursquare
dataset from users whose homes are in California, collected
from January 2010 to February 2011 and used in [Gao et al.,
2012]. SIN is a Singapore dataset crawled from Foursquare
used by [Yuan et al., 2013]. Gowalla1 and Brightkite2 are two
widely used LBSN datasets, which have been used in many
related research papers. We eliminate users with fewer than
10 check-ins and POIs visited by fewer than 10 users in the
four datasets. Then, we sorted each user’s check-in records
according to timestamp order, taking the first 70% as training
set, the remaining 30% for the test set.

5.2 Baseline Methods
We compare our proposed model ST-LSTM with seven rep-
resentative methods for next POI recommendation.

• FPMC-LR [Cheng et al., 2013]: It combines the per-
sonalized Markov chains with the user movement con-

1http://snap.stanford.edu/data/loc-gowalla.html
2http://snap.stanford.edu/data/loc-brightkite.html

straints around a localized region. It factorizes the tran-
sition tensor matrices of all users and predicts next loca-
tion by computing the transition probability.
• PRME-G [Feng et al., 2015]: It utilizes the Metric Em-

bedding method to avoid drawbacks of the MF. Specif-
ically, it embeds users and POIs into the same latent
space to capture the user transition patterns.
• GE [Xie et al., 2016]: It embeds four relational graphs

(POI-POI, POI-Region, POI-Time, POI-Word) into a
shared low dimensional space. The recommendation
score is then calculated by a linear combination of in-
ner products for these contextual factors.
• RNN [Zhang et al., 2014]: This method leverages

the temporal dependency in user’s behavior sequence
through a standard recurrent structure.
• LSTM [Hochreiter and Schmidhuber, 1997] This is a

variant of RNN model, which contains a memory cell
and three multiplicative gates to allow long-term depen-
dency learning.
• GRU [Cho et al., 2014]: This is a variant of RNN model,

which is equipped with two gates to control the informa-
tion flow.
• ST-RNN [Liu et al., 2016a]: Based on the standard

RNN model, ST-RNN replaces the single transition ma-
trix in RNN with time-specific transition matrices and
distance-specific transition matrices to model spatial and
temporal contexts.

5.3 Evaluation Metrics
To evaluate the performance of our proposed model ST-
LSTM and compare with the seven baselines described
above, we use two standard metrics Acc@K and Mean Aver-
age Precision (MAP). These two metrics are popularly used
for evaluating recommendation results, such as [Liu et al.,
2016a; He et al., 2016; Xie et al., 2016]. Note that for an
instance in testing set, Acc@K is 1 if the visited POI appears
in the set of top-K recommendation POIs, and 0 otherwise.
The overall Acc@K is calculated as the average value of all
testing instances. In this paper, we choose K = {1, 5, 10, 15,
20} to illustrate different results of Acc@K.

5.4 Results and Discussions
Method Comparison. The performance of our proposed
model ST-LSTM and the seven baselines on four datasets
evaluated by Acc@K and MAP is shown in Table 2. The
cell size and the hidden state size are set as 128 in our ex-
periments. The number of Epochs is set as 100 and the batch
size is set as 10 for our proposed model. Other baseline pa-
rameters follow the best settings in their papers. From the ex-
perimental results, we can see following observations: RNN
performs better than Markov chain method FPMC-LR and
embedding method PRME-G, due to its capability in model-
ing sequential data and user interests using RNN cell. Both
LSTM and GRU slightly improve the performance compare
with RNN because of their advantages in modeling long-term
interests. The result of GE is not good for missing social and
textual information in our datasets. The performance of the
state-of-the-art method ST-RNN is close to the standard RNN
method, which may be caused by the difficulty of manually



Table 2: Evaluation of next POI recommendation in terms of Acc@K and MAP on four datasets

CA SIN
Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP

FPMC-LR 0.0378 0.0493 0.0784 0.1791 0.0395 0.0625 0.0826 0.1724
PRME-G 0.0422 0.065 0.0813 0.1868 0.0466 0.0723 0.0876 0.1715
GE 0.0294 0.0329 0.0714 0.1691 0.0062 0.0321 0.0607 0.1102
RNN 0.0475 0.0901 0.1138 0.1901 0.1321 0.1867 0.2043 0.2186
LSTM 0.0486 0.0937 0.1276 0.1975 0.1261 0.1881 0.2019 0.2123
GRU 0.0483 0.0915 0.1216 0.1934 0.1237 0.1921 0.1992 0.2101
ST-RNN 0.0505 0.0922 0.1232 0.2075 0.1379 0.1957 0.2091 0.2239
ST-LSTM 0.0716 0.1232 0.1508 0.2208 0.1978 0.2436 0.2651 0.3194
ST-CLSTM 0.0801 0.1308 0.1612 0.2556 0.2037 0.2542 0.2861 0.3433

Gowalla Brightkite
Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP

FPMC-LR 0.0293 0.0524 0.0849 0.1745 0.1634 0.2475 0.3164 0.33
PRME-G 0.0334 0.0652 0.0869 0.1916 0.1976 0.2993 0.3495 0.3115
GE 0.0174 0.06 0.0947 0.1973 0.0521 0.1376 0.2118 0.2602
RNN 0.0473 0.0892 0.1207 0.1998 0.3401 0.4087 0.432 0.413
LSTM 0.0503 0.0967 0.1241 0.2004 0.3575 0.4146 0.4489 0.4303
GRU 0.0498 0.0931 0.1289 0.2045 0.331 0.4007 0.4377 0.4042
ST-RNN 0.0519 0.09532 0.1304 0.2187 0.3672 0.4231 0.4477 0.4369
ST-LSTM 0.0713 0.1355 0.1669 0.2338 0.4389 0.4807 0.5035 0.5266
ST-CLSTM 0.0778 0.1492 0.1818 0.2557 0.4443 0.4953 0.5231 0.5626

setting the windows of time and distance intervals. Another
reason may be that the setting of the window does not well
model the relation of recently visited POIs and next POI.
Our model ST-LSTM outperforms all baselines on the four
datasets. The significant improvement of ST-LSTM indicates
that it can well model temporal and spatial contexts. This is
because we add time and distance gates to integrate time and
distance intervals into the model. Moreover, ST-CLSTM not
only reduces the number of parameters, but also marginally
improve the performance compared with ST-LSTM.

Effectiveness of Time and Distance Gates. There are two
time gates and two distance gates in our ST-CLSTM model.
We first investigate the effectiveness of time and distance
gates on modeling time and distance intervals. Specifically,
we setD1t = 1 andD2t = 1, in Eq. (9) and Eq. (10), respec-
tively. That is, we close two distance gates and only consider
the time intervals. Similarly, we set T1t = 1 and T2t = 1, in
Eq. (7) and Eq. (8), respectively. That is, we close two time
gates and only consider distance information. From Figure 4,
we can observe that the time gates and distance gates have
almost equal importance on the two datasets (i.e., Gowalla
and CA). Moreover, they both are critical for improving the
recommendation performances.

We also investigate the effectiveness of time and distance
gates on modeling short-term and long-term interests. We
set T2t = 1 and D2t = 1, in Eq. (8) and Eq. (10), which
means we close time and distance gates on long-term inter-
ests and only activate time and distance gates on short-term
interest. Similarly, we set T1t = 1 and D1t = 1, in Eq. (7)
and Eq. (9), which means we close time and distance gates
for short-term interest. As shown in Figure 4, we can observe
that they all perform worse than original ST-CLSTM, which
means that time and distance intervals are not only critical to
short-term interests but also important to long-term interests.
Distance intervals may help model user general spatial pref-
erence and time intervals may help to model user long-term
periodical behavior.

Performance of Cold Start. We also evaluate the perfor-
mance of ST-LSTM by comparing with other competitors for
cold-start users. If a user just visits a few POIs, we think
the user is cold. Specifically, we take users with less than 5
check-ins as a cold user in our experiments. We conduct the
experiments on two datasets (i.e., Gowalla and BrightKite)
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Figure 4: The performance with different time and distance gates in
ST-CLSTM

and use Acc@K as the measure metric. As shown in Figure
5, we can observe that ST-CLSTM performs the best among
all methods under cold start scenario. The reason is that ST-
CLSTM models long-term interests as well as short-term in-
terests with considering time and distance intervals.
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Figure 5: The performance of cold start on two datasets

Impact of Parameters. In the standard RNN, different cell
sizes and batch sizes may lead to different performances. We
investigate the impact of these two parameters for ST-LSTM
and ST-CLSTM. We vary cell sizes and batch sizes to ob-
serve the performance and the training time of our proposed
two models. We only show the impact of the two parame-
ters on Gowalla dataset due to space constraint. As shown in
Figure 6, increasing the cell size can improve our model in
terms of the Acc@10 metric, and a proper batch size can help
achieve the best performance. The cell size determines the
model complexity, and the cell with a larger size may fit the
data better. Moreover, a small batch size may lead to local
optimum, and a big one may lead to insufficient updating of
parameters in our two models.
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Figure 6: The performance with different cell sizes and batch sizes
on Gowalla

6 Conclusions
In this paper, a spatio-temporal recurrent neural network,
named ST-LSTM, was proposed for next POI recommenda-
tion. Time and distance intervals between neighbor check-ins
were modeled using time and distance gates in ST-LSTM.
Specifically, we added a new cell state, and so there are two
cell states to memorize users’ short-term and long-term inter-
ests respectively. We designed time and distance gates to con-
trol user’s short-term interest update and another pair of gates
to control long-term interest update, so as to improve next
POI recommendation performance. We further coupled time
and distance gates to improve ST-LSTM efficiency. Experi-
mental results on four large-scale real-world datasets demon-
strated the effectiveness of our model, which performed better
than the state-of-the-art methods. In future work, we would
incorporate more context information such as social network
and textual description content into the model to further im-
prove the next POI recommendation accuracy.
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