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1
Introduction

A . S t e w a r t F o t h e r i n g h a m
a n d P e t e r A . R o g e r s o n

1.1. WHAT IS SPATIAL ANALYSIS?

Spatial data contain locational information as
well as attribute information. That is, they
are data for which some attribute is recorded
at different locations and these locations are
coded as part of the data. Spatial analysis is
a general term to describe a technique that
uses this locational information in order to
better understand the processes generating
the observed attribute values.

Spatial analysis is important because it
is increasingly recognized that most data
are spatial. Examples of common types
of spatial data include census data, traffic
counts, patient records, the incidence of
a disease, the location of facilities and
services, the addresses of school pupils,
customer databases, and the distributions of
animal, insect or plant species. Along with
various attributes collected by hand or by

different types of sensors, location is also
being captured by an increasing variety of
technologies such as GPS, WiMAX, LiDAR,
and radio frequency identity (RFID) tags as
well as by more traditional means such as
surveys and censuses. Some of the resulting
data sets can be extremely large. Satellites,
for example, regularly record terrabytes of
spatial data; LiDAR scanners can capture
millions of geocoded data points in minutes;
and GPS-encoded spatial video generally
produces 24 frames per second each of
which may have around a million geocoded
pixels. The world is rapidly becoming
one large spatial sensor with RFID tags,
CCTV cameras and GPS linked devices
recording the location of objects, animals and
people.

Spatial data and the processes gener-
ating such data have several properties
that distinguish them from their aspatial
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equivalents. Firstly, the data are typically
not independent of each other. Attribute
values in nearby places tend to be more
similar than are attribute values drawn
from locations far away from each other.
This is a useful property when it comes
to predicting unknown values because we
can use the information that an unknown
attribute value is likely to be similar to
neighbouring, known values. The subfield
of geostatistics has grown up based on this
premise. However, if data values do exhibit
spatial autocorrelation, this causes problems
for statistical techniques that assume data are
drawn from independent random samples.
Special statistical methods, such as spatial
regression models, have been developed
to overcome this problem. Equally, it is
often hard to defend the assumption of
stationarity in spatial processes. That is, it
is often assumed that the process generating
the observed data is the same everywhere.
Spatial non-stationarity exists where the
process varies across space. Again, special
statistics, such as Geographically Weighted
Regression, have been developed to handle
this problem.

1.2. TYPES OF SPATIAL ANALYSIS

While there are many different techniques of
spatial analysis, they can be categorized into
four main types:

1 Those spatial analytical techniques aimed at

reducing large data sets to a smaller amount of

more meaningful information. Summary statis-

tics, various means of visualizing data and a

wide body of data reduction techniques are often

needed to make sense of what can be extremely

large, multidimensional data sets.

2 Those techniques collectively known as

exploratory data analysis which consist of

methods to explore data (and also model

outputs) in order to suggest hypotheses or to

examine the presence of unusual values in

the data set. Often, exploratory data analysis

involves the visual display of spatial data

generally linked to a map.

3 Those techniques that examine the role of

randomness in generating observed spatial

patterns of data and testing hypotheses about

such patterns. These include the vast majority

of statistical models used to infer the process

or processes generating the data and also to

provide quantitative information on the likelihood

that our inferences are incorrect.

4 Those techniques that involve the mathematical

modelling and prediction of spatial processes.

This book will cover examples of all four
types of spatial analysis.

1.3. SPATIAL ANALYSIS IN
PERSPECTIVE

It is difficult to say exactly when spatial
analysis began in earnest but the beginnings
are generally cited in the late 1950s and
early 1960s, although much earlier examples
of individual pioneering work can be found
(e.g, Spottiswoode, 1861). Certainly, the
decades of the 1960s and 1970s were
periods when quantitative methodologies
diffused rapidly within disciplines such as
geography and regional science and when
much pioneering and fundamental research
was carried out. There then followed a
period of relative decline for various reasons
as outlined by Fotheringham (2006) when
many of the newer paradigms in human
geography were starkly anti-quantitative.
Perhaps also many of the early examples
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of spatial analysis were overly concerned
with form rather than with process and
were rightly criticized for this focus. In
addition, it is possible that expectations
for quantitative methods may have initially
been too high. For example, many believed
that spatial modelling, when coupled with
adequate data and rapidly increasing com-
puting power, would lead society to ‘solve’
many of the pressing issues in urban and
regional areas.

Significant advances in spatial analysis
during the past two decades have brought
about a new era of interest in the field.
The period of relative decline has now been
replaced by one of great enthusiasm for the
potential of spatial analysis. This potential
has been recognized and embraced by
researchers from many fields, ranging from
public health and criminal justice, to ecology
and environmental studies, as evidenced by
various contributions to this volume.

It is now widely recognized in a broad
range of disciplines that spatial analysis has
an important role to play in making sense
of the large volumes of spatial data we now
have available and the demand for spatial
analysis has never been stronger. It thus is
an important time to produce this Handbook

of Spatial Analysis describing many of the
major areas of spatial analysis.

1.4. OVERVIEW OF THE
HANDBOOK

The book is designed to capture the state-
of-the-art in a broad spectrum of spatial
analytical techniques that can be applied to
spatial data across a very wide range of
disciplinary areas.

Our intent has been to provide a retrospec-
tive and prospective view of spatial analysis
that covers:

• the reasons why the analysis of spatial data

needs separate treatment;

• the main areas of spatial analysis;

• the key debates within spatial analysis;

• examples of the application of various spatial

analytical techniques;

• problems in spatial analysis; and

• areas for future research.

Although there is inevitable (and desir-
able) variability in the structure and nature
of the individual chapters, in a broad
sense the contributions have the following
aims:

• describe the current situation within the

field, highlighting the main advances

that have taken place, as well as current

debates;

• describe the problems that still exist, indicating

where future research may be best directed;

• indicate key works in the field and provide an

extensive bibliography for the area;

• describe the use of the technique in several

disciplines; and

• maintain a balance between concepts, theories

and methods.

Rapid improvements in the development
and availability of high-quality datasets,
along with the power and features of
geographic information systems that
now increasingly provide capabilities for
advanced forms of spatial analysis, have
propelled the field forward. Consequently,
the field of spatial analysis is currently in
the midst of an exciting growth period,
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where many new tools and methods for
analyzing spatial data are being developed,
and where applications are being made
in an increasing number of fields. This
Handbook represents a summary of these
developments and applications, as well as
a sense of the intense interest that the field
now enjoys.

REFERENCES

Spottiswoode, W. (1861). ‘On typical mountain ranges:
an application of the calculus of probabilities
to physical geography’. Journal of the Royal
Geographical Society of London, 31: 149–154.



2
The Special Nature of

Spatial Data

R o b e r t H a i n i n g

This chapter describes some of the special
or distinguishing features of spatial data
opening the way to methodological issues
that will be treated in more depth in later
chapters. The use of the term ‘special’
should not be taken to imply that no other
types of data possess these features. Spatial
data analysis is a sub-branch of the more
general field of quantitative data analysis
and has sometimes suffered from not paying
sufficient attention to that fact. Many of the
data properties that will be encountered are
found in other types of (non-spatial) data but
when found in spatial data, may possess a
particular structure or properties may arise in
particular combinations.

The chapter will first define what is meant
by spatial data and then identify properties.
It will be helpful, in order to put structure on
this discussion, to distinguish ‘fundamental’

properties of spatial data from properties
that are due to the chosen representation of
geographical space and from properties that
are a consequence of measurement processes
by which data are collected for the purpose
of storage in the spatial data matrix (SDM).
The SDM is what the analyst works with.
We conclude by considering the implications
of these properties for the methodology of
spatial data analysis.

Geographic Information Science (GISc) is
the generic label that is frequently used, par-
ticularly by geographers, to define the area of
science that involves the analysis of spatially
referenced data – that is data where each
case has some form of locational co-ordinate
attached to it. Data is the lynch pin in the
process of ‘doing science’ and it is essential
that methodologies for spatial data analysis
are tuned to the properties of spatial data.
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The science undertaken with spatial data
is usually ‘observational’ rather than ‘experi-
mental’. This is important. Much spatial data
are not collected under controlled situations.
We often cannot choose the values of
independent variables in order to generate a
satisfactory experimental design. There is no
replication (in order, for example, to assess
the effects of measurement error) and the
analyst must take the world as he or she
finds it. There may be further problems in
specifying what the appropriate locational
co-ordinate is when studying certain types
of processes and outcomes. All this has
implications for the quality of spatial data and
for the methodologies that can be employed.
We worry not only about the quality of our
data but exactly what it is we are observing
in any given situation. A consequence of this
is that much of the data collected may be
used to build a model of the situation under
study which can then be used to estimate
parameters and test hypotheses. We shall
see that some of the fundamental properties
of spatial data raise major problems in
this regard.

2.1. SPATIAL DATA AND THEIR
PROPERTIES

A spatial datum comprises a triple of
measurements. One or more attributes (X)
are measured at a set of locations (i) at time t,
where t may be a point or interval of time.
So, if k attributes are measured at n locations
at time t, we can present the spatial data in
the form:

{xj (i; t) ; j = 1, . . ., k; i = 1, . . ., n}. (2.1)

Equation (2.1) expresses in shorthand much
of the content of the SDM. The record of
when the observation was taken (t) may be

suppressed if analysis is concerned with only
a single time period but may be retained
if there are to be a series of comparative
studies through time or if different attributes
were recorded at different times and the
analyst needs to be aware of this. Such
data may come from a variety of different
sources including national censuses; public
or private agency records (e.g., national
health services, police force areas, consumer
surveys); satellite imagery; environmental
surveys; and primary surveys. The data may
be collected from a census or from a sampling
process. For the purposes of analysis data
from different sources may be required. Stud-
ies in environmental epidemiology utilise
health, demographic, socio-economic and
environmental data. These data may come
with differing degrees of quality and may not
all be collected on the same areal framework
(Brindley et al., 2005).

To understand the properties of spatial
data we need to understand the relationship
between equation (2.1) and the ‘real world’
from which the data are taken. In order to
undertake data analysis the complexity of the
real world must be captured in finite form
through the processes of conceptualization
and representation (Goodchild, 1989; Guptill
and Morrison, 1995; Longley et al., 2001).
We shall focus here only on the issues
associated with capturing spatial variation,
but the reader should note that there are
conceptualization and representation issues
associated with the way attributes and time
are captured as well.

The first step in this process, which
ultimately leads to the construction of
the SDM, involves conceptualizing the
geography of the real world. There are
two views of the geographical world in
GISc – the field and the object views.
The field view conceptualizes space as
covered by surfaces with the attribute
varying continuously across the space. This
is particularly appropriate for many types
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of environmental and physical attributes.
The object view conceptualizes space as
populated by well-defined indivisible objects,
a view that is particularly appropriate for
many types of social, economic and other
types of data that refer to populations.
Objects are conceptualized as points, lines or
polygons.

These two views constitute models of the
real world. In order to reduce a field to a finite
number of bits of data then the surface may be
represented using a finite number of sample
points at which the attribute is recorded or
it may be represented using a raster grid.
Pixels are laid down independently of the
underlying field and its surface variation.
Alternatively, the surface may be represented
by polygons that partition the space into areas
with uniform characteristics (e.g., vegetation
zones). How well any field is captured by
these different representations will depend
on the density of the points or the size of
the raster in relation to surface variability.
There is a large theoretical and empirical
literature on the efficiencies of different
spatial sampling designs – for example
the properties of random, systematic and
stratified random sampling given the nature
of variation in the surface to be sampled
(see, e.g., Cressie, 1991; Ripley, 1981). The
process of discretizing in this way involves a
loss of information on surface variability.

This loss of detail on variability also arises
when selecting a representation based on
the object view. A city may comprise many
households (points) but for confidentiality
reasons information about households is
aggregated into spatially defined groups
(polygons) – output areas in the case of the
2001 UK census, enumeration districts prior
to 2001 (Martin, 1998). Again aggregation
into polygons involves a loss of information.
There may be a further loss of information in
capturing the polygon itself in the database.
It may be captured using a representative
point (such as its centroid) and its spatial

relationship to other polygons captured using
a neighbourhood weights matrix.

The conceptualization of a geographic
space as a field or as an object is
largely dictated by the attribute. However,
representation – the process by which
information about the geography of the
real world is made finite using geomet-
ric constructs – involves making choices
(Martin, 1999). These choices include the
size and configuration of polygons, the
location and density of sample points.

2.1.1. Fundamental properties

Fundamental properties are inherent to the
nature of attributes as they are distributed
across the earth’s surface. There is a
fundamental continuity (structure) to
attributes in space that derives from the
underlying processes that shape the human
and physical geographical world. We shall
discuss examples of these processes in
section 2.2.2. The geographical world would
be a strange place if levels of attributes
changed suddenly and randomly as we
moved from one point in space to another
close by. Continuity is also a fundamental
property of attributes observed in time. If we
know the level of an attribute at one position
in space (time) we can make an informed
estimate of its level at adjacent locations
(points in time). The information that is
carried in a piece of data about an attribute
at a given location provides information on
what the level of the attribute is at nearby
locations. However as distance increases then
the similarity of attribute values weakens and
in the GISc literature this is often referred
to as Tobler’s First Law of Geography (‘
. . . near things are more related than distant
things’). Although Tobler’s First Law is
clearly an oversimplification, and in relation
to some types of spatial variation just plain
wrong, it is nonetheless a useful aphorism.
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Testing for spatial autocorrelation was
one of the high-profile research agendas in
geography during the quantitative revolution.
Geographers adapted spatial autocorrelation
statistics based on the join-count statistic,
the cross product statistic and the squared
difference statistic that had been developed
for quantifying spatial structure on regular
areal frameworks (grids). These statistics
were developed to test for statistically signifi-
cant spatial autocorrelation on irregular areal
frameworks (Cliff and Ord, 1973). The
null hypothesis (no spatial autocorrelation)
was assessed against a non-specific alter-
native hypothesis (spatial autocorrelation is
present). We shall see how this argument was
developed in later years with the introduction
and use by geographers of models for spatial
variation.

In the earth sciences, dealing principally
with point data from surfaces, the quan-
tification of structure was based on the
use of the empirical semi-variogram which
uses a squared difference statistic (Isaaks
and Srivastava, 1989). The advantage of
the latter route was that it led naturally to
model specification and model fitting using
theoretical semi-variograms. Of course these
quantitative measures and tests of hypothesis
depend on the scale of analysis. That is, they
depend on the size of the polygons in terms
of which data are reported, the inter-point
distance between samples on a continuous
surface. Thus the chosen representation has
an important influence on the quantification
of this fundamental property and hence
its presence within any spatial dataset. If
samples are taken at sufficient distances apart
the level of spatial autocorrelation is likely to
be much reduced relative to the case where
samples are taken close together.

Autocorrelation statistics are also used
to capture temporal structure in attribute
values but there are important differences
with the spatial situation. Time has a natural
uni-directional flow (from past to present)

whereas space has no such order. The two
dimensional nature of space means that
dependency structures might vary not just
with distance but direction too giving rise
to anisotropic dependency structures with
structure along the north–south axis differing
from the east–west axis. The presence of
spatial autocorrelation, that attribute values
are not statistically independent, has funda-
mental implications for the conduct of spatial
analysis.

Spatial autocorrelation, in statistical terms,
is a second order property of an attribute
distributed in geographic space. In addition
there may be a mean or first-order component
of variation represented by a linear, quadratic,
cubic (etc.) trend. We can think of these
as two different scales of spatial variation
although the distinction may be hard to make
and quantify in practice. As Cressie (1991)
remarks: ‘What is one person’s (spatial)
covariance may be another persons mean
structure’ (p. 25). It has often been remarked
that spatial variation is heterogeneous. This
type of decomposition (plus a white noise
element to capture highly localized hetero-
geneity) is one way of formally capturing that
heterogeneity using what are termed ‘global’
models. Another approach is to only analyze
spatial subsets, that is allow model structure
to vary locally.

2.1.2. Properties due to the
chosen representation

We have already noted that the extent to
which our data retains fundamental properties
depends on the chosen representation. We
now turn to look at other properties that
stem directly or indirectly from the chosen
representation.

Representing spatial variation using poly-
gons is employed in many branches of
science that handle spatially referenced
data. Two of the generic consequences of
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working with data aggregates are: intra-
areal unit heterogeneity and inter-areal unit
heteroscedasticity.

Whether the data refer to a continu-
ously varying phenomenon (field view) or
aggregations of individuals like households
(object view) the effect of bundling data into
spatial aggregates has the effect of smoothing
variation. In the case of environmental data
and the use of pixels then the degree of
smoothing will clearly depend on the size of
the pixels. The larger the pixels the greater
the degree of smoothing. A non-intrinsic
partition, where the polygons are defined in
terms of attribute variability with the aim
of maximizing within unit homogeneity and
maximizing between-unit heterogeneity will
not produce this effect to the same extent.
This second process shares common ground
with the process of regionalization – to which
it is sometimes compared.

Intra-unit heterogeneity is a particular
problem for many types of social science
data particularly in those cases where area
boundaries are chosen arbitrarily as was the
case with the UK census for example prior
to 2001. Attributes reported for an area may
represent percentages or means of attribute
values associated with the individuals (people
or households) that have been aggregated and
the analyst may have no information on the
variability around the mean. If an ecological
or contextual attribute is calculated for an
area (social capital say, or area deprivation)
again the calculation is conditional on the
chosen representation and the scale of the
partition.

One of the conclusions that might be drawn
from this is that it is better to have small areal
aggregates rather than large ones. Assuming
spatial structure, a reasonable supposition
given the discussion in section 2.1.1, then
smaller areas should be more homogeneous
than larger areas and their mean values
should be more representative of their area’s
population. But such spatial precision comes

at the cost of statistical precision. Data errors
or small random fluctuations in numbers
of events (household burglaries; disease
outcomes) will have a big effect on the
calculation of rates when populations are
small. Take the case of a standardized
mortality ratio. If the expected count is
small, for example 2.0, then the ratio itself
(observed count divided by the expected
count) rises or falls by 0.5 with each
addition or subtraction of a single case. This
will have implications for determining the
statistical significance of counts – whether
there are significantly more cases than would
be expected on the basis of chance alone. It
will also have implications for determining
the statistical significance of differences in
counts between areas which in turn raises
problems for the detection of significant
crime hotspots or disease clusters.

In summary, there is a trade-off that is
linked to the number of individual elements
in a polygon. A polygon containing few
individuals will tend to be more homo-
geneous but statistical quantities, such as
rates and ratios, tend to be unreliable in
the sense that small errors and random
fluctuations can impact severely on the
calculated values. Polygons containing many
individuals will generate robust rates and
ratios but often conceal much higher levels
of internal heterogeneity.

In practice an area is sometimes partitioned
into polygons of varying size and this can
yield a secondary effect on data properties.
A rate calculated for a polygon where
the denominator attribute is small has a
larger variance than a rate computed for a
polygon where the denominator attribute is
large. Moreover there is a mean-variance
dependence in the rate statistics. Take the
case where the denominator is the number of
households (n(i)). Rates are observed counts
of some attribute (number of burglaries) in
polygon i (O(i)) divided by the number of
households. It follows from the binomial
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model for O(i) that:

E[O(i)/n(i)] = (1/n (i)) E[O(i)] = p (i) ;

Var[O(i)/n (i)] = (1/n (i))2 Var[O(i)]

= p(i)(1 − p(i))/n(i)
(2.2)

where E[ . . . ] and Var[ . . . ] denote mean
and variance and p(i) is the probability
that any individual in area i (e.g., number
of households) has the characteristic (e.g.,
been burgled) that is being counted. The
mean and the variance in equation (2.2) are
clearly not independent. It also follows from
equation (2.2) that the standard error of the
estimate of the rate p(i) which is:

[ p(i) (1 − p(i)) /n(i)]1/2

is inversely related to the number of
households. It follows that any real spatial
variation in rates could be confounded by
variation in n(i) (the number of households)
or alternatively spatial variation in rates could
be an artifact of any spatial structure in
n(i) (see Gelman and Price, 1999, who give
examples from disease mapping in the USA).

Standardized ratios provide an estimate of
the true but unknown area-specific relative
risk of the selected disease under the
assumption of an independent Poisson model
for the observed counts. It follows from the
properties of the Poisson distribution that
the standard error of the standardized ratio
is O(i)1/2/E(i). Using a normal approxima-
tion for the sampling distribution of the
standardized ratio, SR(i), approximate 95%
confidence intervals can be computed:

SR (i) ± 1.96
[
O(i)1/2/E(i)

]
.

However there are problems here when
making comparisons. The standard error
tends to be large for areas with small
populations and small for areas with large
populations because of the effect of popu-
lation size on E(i). So extreme ratios tend
to be associated with small populations but
ratios that are significantly different from 1.0
tend to be associated with areas with large
populations (Mollie, 1996).

These examples are intended to illustrate
the way in which data properties can
be induced by the chosen representation.
In certain circumstances the geographical
structure of the representation (for example
the geography of which areas have large
and which have small denominator values)
could induce a geographical structure on the
statistics which when mapped could then give
rise to a misleading impression about trends
or patterns in the data.

2.1.3. Properties due to
measurement processes

The final step in the creation of the
SDM involves obtaining measurements on
the attributes of interest given the chosen
representation.

Data quality can be assessed in terms of
four characteristics: accuracy, completeness,
consistency and resolution. As noted above,
a spatial datum comprises a triple of
measurements: the attributes, location and
time. Thus the quality of each of these three
measurements needs to be assessed against
the four characteristics. What is of interest
here, however, is how measurement problems
might introduce certain properties into the
data (Guptill and Morrison, 1995).

A common assumption in error analysis
is that attribute errors are independent. This
is likely to hold less often in the case
of spatial data. Location error may lead
to overcounts in one area and undercounts
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in adjacent areas because the source of
the overcount is the set of nearby areas
that have lost cases as a result of the
location error. So, count errors in adjacent
areas may be negatively correlated (Haining,
2003, pp. 67–70). Location error can be
introduced into a spatial data set as a result
of having to put data, collected on different
spatial frameworks, onto a common spatial
framework. Areal interpolation methods are
used but these are based on assumptions
about how attributes are distributed within
areal units and these assumptions often
cannot be tested. The consequence is that
further levels and patterns of error are
introduced into the database (Cockings et al.,
1997).

In the case of remotely sensed data,
the values recorded for any pixel are not
in one-to-one relationship with an area of
land on the ground because of the effects
of light scattering. The form of this error
depends on the type and age of the hardware
and natural conditions such as sun angle,
geographic location and season. The point
spread function quantifies how adjacent pixel
values record overlapping segments of the
ground so that the errors in adjacent pixel
values will be positively correlated (Forster,
1980). The form of the error is analogous to
a weak spatial filter passed over the surface
so that the structure of surface variation, in
relation to the size of the pixel unit, will
influence the spatial structure of error cor-
relation. Linear error structures also arise in
remotely sensed data (Short, 1999). Finally,
we note that the effects of error propagation
may further complicate error properties when
arithmetic or cartographic operations are
carried out on the data and source errors
are compounded and transformed via these
operations (Haining and Arbia, 1993).

Data incompleteness may induce false
patterns in spatial data. Data incompleteness
refers to the situation where there are
missing data points or values or where

there are under or overcounts arising from
the reporting process. ‘Spatially uniform’
data incompleteness raises problems for
analysis but spatial variation in the level
of data incompleteness with, for example,
undercounting, more serious in some parts of
the study area than others, can seriously affect
comparative work and the interpretation of
spatial variation. Missing or inaccurately
located cases in a point pattern of events may
result in failure to detect a local cluster of
cases (Kulldorff, 1998).

Incompleteness in cancer data leads to
forms of under or overcounting which give
rise to spatial variation that is an artifact of
how the data were collected. In the case of
official crime statistics geographical differ-
ences between large counties in England may
be due to differences in police investigative
and reporting practices. On the intra-urban
scale, burglaries in suburban areas will, on
the whole, be well reported for insurance
purposes, but in some inner-city areas there
may be under reporting either because there
is no ‘incentive’ or because of fear of
reprisals. The Census provides essential
denominator data for computing small area
rates. However refusals to cooperate can lead
to undercounting and the 1991 Census in the
UK was thought to have undercounted the
population by as much as 2% because of
fears that its data would be used to enforce
the new local ‘poll tax’. Inner city areas
show higher levels of undercounting than
suburban areas where populations are easier
to track. Finally, since there are 10-year gaps
between successive censuses, population in-
and out-flows in many areas may be such as
to preserve the essential socio-economic and
demographic characteristics of the areas. On
the other hand some areas of a city, especially
inner-city areas, may experience population
mobility and redevelopment which result in
marked shifts that have implications for the
reliability of the data in the years following
the Census.
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Figure 2.1 Processes involved in constructing the spatial data matrix and the data
properties that are present or introduced at each stage.

Finally, in the case of some imagery, some
areas of the image may be obscured because
of cloud cover. A distinction should be drawn
between data that are ‘missing at random’
from data that are missing because of some
reason linked to the nature of the population
or the area. Weather stations temporarily
out of action because of equipment failure
produce data missing at random. On the
other hand, mountainous areas will tend
to suffer from cloud cover more than
adjacent plains and there will be systematic
differences in land use between such areas.
This distinction has implications for how
successfully missing values can be estimated
and whether the results of data analysis will
be biased because some component of spatial
variation is unobservable.

Figure 2.1 provides a summary of the
points raised in this section.

2.2. IMPLICATIONS OF DATA
PROPERTIES FOR THE
ANALYSIS OF SPATIAL DATA

In this section we turn to a consideration of
the implications of the properties of spatial
data for the conduct of spatial analysis. Again
we shall simply introduce ideas which will
be taken up in more detail in later chapters.

We divide this section into situations where
spatial properties can be exploited to help
solve problems and situations where spatial
properties introduce complications for the
conduct of data analysis.

2.2.1. Taking advantage of spatial
data properties to tackle
problems

Consider the following problems:

• Samples of attribute values have been taken

across an area. The analyst would like to

construct a map to describe surface variation

using the information contained in the sample.

Perhaps instead the analyst just wishes to

estimate the surface at a point, or set of points,

where no sample has been taken and estimate

the prediction error.

• A spatial database has been assembled but

the database contains data that are ‘missing at

random’ in the sense that there are no underlying

reasons (such as suppression or confidentiality)

why the particular values are missing. The analyst

wants to estimate these missing values.

In both these cases we might expect to
exploit some formalized version of the notion
that data points near together in space carry
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information about each other. Both of these
examples constitute a form of the spatial
interpolation problem and solutions such as
kriging exploit the spatial structure inherent
in the surface as well as the configuration of
the sample points to provide an estimate of
surface values together with an estimate of
the prediction error (Isaak and Srivastava,
1989). It is intuitive that any solution that
did not use the information contained in the
location co-ordinates of sample data values
would be considered an inefficient solution.

Consider another group of problems:

• Aggregated data are obtained on race

(black/white) and voting behaviour (did vote/did

not vote). Counts in the 2 × 2 table are known

but the real interest lies in the voting behaviour

at the constituency level.

• Unemployment estimates have been obtained

from a survey for each of a number of small

areas in a region. The small area estimators

are unbiased but, because of small sample

sizes have low precision. Conversely the region

wide estimator has high precision, but as an

estimate for any of the small area levels of

unemployment is biased. A similar situation

arises when estimating relative risk levels across

the small areas of a larger region using the

standardized mortality ratio.

In both these cases there is again an oppor-
tunity to exploit some formalized version of
the notion that data points nearby in space
carry information about each other. One
solution is to ‘borrow information’or ‘borrow
strength’ so that the low precision of small
area estimates are raised by using data from
nearby areas (Mollie, 1996; King, 1997).
These nearby areas provide additional data
(helping to improve precision) and because
they are nearby should reflect an underlying
situation that is close to the small area in
question so will not introduce a serious level
of bias.

2.2.2. Where spatial data
properties introduce
complications for
data analysis

Spatial analysis is often called upon to
address scientific questions relating to out-
comes (numbers of cases of a disease, dis-
tribution of house prices, regional economic
growth rates) that are a consequence of
processes that by their nature are spatial.
Haining (2003) identifies four generic groups
of spatial processes. A diffusion process is
one where some attribute is taken up by
a population so that at any point in time
some individuals have the attribute (e.g., an
infectious disease) and some do not. If the
diffusion process operates in ways that are
constrained by distance then there is likely
to be spatial structure in the geography of
those who do and those who do not have
the attribute in question. An exchange and

transfer or mixing process is one where
places become similar in attribute values
(per capita income; employment) as a result
of flows of goods or services that bind
their economic fortunes together or where
patterns of movement and mixing perhaps at
different scales introduce a measure of spatial
homogeneity into structures. A third type of
spatial process is an interaction process in
which outcomes at one location (e.g., the
price of a commodity) are observed and as
a result of the competition effect influence
outcomes (prices) at another location. Finally,
there is a dispersal process in which
individuals spread across space (such as the
dispersal of seeds around a parent plant)
so that counts reflect the geography of the
dispersal mechanism.

These generic spatial processes – processes
that operate in geographic space – generate
data where spatial structure emerges as a fun-
damental property of the data. Process shapes
or at least influences attribute variation and
the resulting data that are collected possess
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dependency structures that reflect the way the
process plays out across geographic space.

Not all processes of interest are ‘spatial’
in the sense described above. Many of the
processes of interest to geographers play
out across geographic space in response to
the place-based characteristics of areas (the
particular mix of attributes they possess)
and the spatial relationships between those
areas. Outcomes in places (whether for
example economic, social, epidemiological
or criminological) are not necessarily merely
the consequence of the properties of those
places – as places – but may also be the
consequence of relational and contextual
influences. The distance between places;
the difference between adjacent places in
terms of relevant attributes; the overall
configuration of places across a region, are
all facets of relation and context that may
impact on outcomes and modify the role of
‘place’ in influencing outcomes. Two places
may be identical in terms of their place-
based characteristics but differ significantly
in terms of their relational and contextual
attributes with neighbouring areas and these
differences may explain why (for exam-
ple) two similarly affluent neighbourhoods
experience quite different levels of assault
and robbery; why two similarly deprived
neighbourhoods experience quite different
levels of health outcomes.

We now examine briefly how these fea-
tures of how attribute values are generated
impact on the choice of methodology for
the purpose of data analysis. We distinguish
between exploratory spatial data analysis and
model-based forms of analysis that allow
hypothesis testing and parameter estimation.

Exploratory spatial data analysis
Exploratory data analysis (EDA) comprises a
collection of visual and numerically resistant
techniques for summarizing data properties,
detecting patterns in data, identifying unusual

or interesting features in data including pos-
sible data errors and formulating hypotheses.
Exploratory spatial data analysis (ESDA)
undertakes these activities with respect to
spatial data so that cases can be located on
a map and the spatial relationships between
cases assumes importance because they carry
information that is likely to be relevant to
the analysis (Cressie, 1984; Haining et al.,
1998; Fotheringham and Charlton, 1994). It
is important to be able to answer questions
such as: ‘where does that subset of cases on
the scatterplot or that subset of cases on the
boxplot, occur on the map?’ ‘What are the
spatial patterns and spatial associations in this
geographically defined subset of the map?’ In
the case of regression modelling do the large
positive residuals, for example, cluster in one
area of the map?

ESDA and the software that supports
ESDA needs to be able to handle the spa-
tial index and be able to handle the special
queries that arise because of the spatial refer-
encing of the data. Thus the map becomes an
essential visualization tool (Dorling, 1992).
The linkage between a map window and
other graphics windows, so that cases can
be simultaneously highlighted in more than
one window, becomes an essential part of the
conduct of ESDA (Andrienko and Andrienko,
1999; Monmonier, 1989).

Visualizing spatial data raises particular
problems, in part because of some of the
properties discussed in earlier parts of this
chapter. We highlight two here. First, it has
been noted that data values, particularly rates
and ratios, may not be strictly comparable
because standard errors are population size
dependent. So if areas vary substantially
in terms of population counts (used as
the denominators for a rate) then extreme
values and even patterns detected by visual
inspection might be associated with that
effect rather than real differences between
areas. Second, areas that partition a region
might be very different in physical size.
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This may mean that the viewer of a map
has their attention drawn to certain areas of
the cartographic display (those areas with
physically large spatial units) whilst other
areas are ignored. This may be particularly
important if in fact it is the small areas
that have the larger populations so that it
is their rates and ratios (rather than the
rates and ratios associated with the physically
larger but less densely populated areas) that
are the more robust. One solution to this
problem is to use cartograms so that areas are
transformed in physical extent to reflect some
underlying attribute such as population size
(Dorling, 1994). This comes at a cost because
the individual areas in the resulting cartogram
may be hard for the analyst to place. There
may be a need for a second, conventional,
map linked to the cartogram, so the analyst
can highlight areas on the cartogram and see
where they are on the conventional map.

Conventional visualization technology is
often based on the assumption that all
data values are of equal status so that
the viewer can extract information from
visual displays without worrying about the
statistical comparability of the data values
that are displayed. This assumption may
break down when dealing with spatially
aggregated data (Haining, 2003).

Model fitting and hypothesis testing
If n data values are spatially autocorrelated
then one of the consequences of this for the
application of standard statistical inference
procedures is that the information content
of the data set is less than would be the
case if the n values were independent. This
means that the degrees of freedom available
for testing hypotheses is not a simple function
of n. We shall take the example of testing for
significant bivariate correlation between two
variables to illustrate this point.

Suppose n pairs of observations,
{(x(i), y(i))}i are drawn from a bivariate

normal distribution. Pearson’s product
moment correlation coefficient (r) is the
statistic used to measure the association
between X and Y . If the observations on the
two variables are independent (there is no
spatial autocorrelation in either X or Y ), then
if the null hypothesis is of no association
between X and Y then a test statistic
is given by:

(n − 2)1/2 |r|
(

1 − r2
)−1/2

(2.3)

which is t distributed with (n − 2) degrees of
freedom.

These distributional results do not hold if
X and Y are spatially correlated. The problem
is that when spatial autocorrelation is present
the variance of the sampling distribution of r,
which is a function of the number of pairs
of observations n, is underestimated by the
conventional formula which treats the pairs
of observations as if they were independent.
The effect of spatial autocorrelation on tests
of significance have been extensively studied
(for reviews see Haining, 1990, 2003) and
shown to be very severe when both X and Y

have high levels of spatial autocorrelation.
Clifford and Richardson (1985) obtain an

adjusted value for n (n′) which they call the
‘effective sample size’. This value, n′, can
be interpreted as measuring the equivalent
number of independent observations so that
the solution to the problem lies in choosing
the conventional null distribution based on n′

rather than n. An approximate expression for
this quantity is:

n′ = 1 + n2 (trace
(
RxRy

))−1 (2.4)

where Rx and Ry are the estimated spatial
correlation matrices for X and Y respectively.
(For a discussion of estimators see Haining,
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1990, pp.118–120.) The null hypothesis of no
association between X and Y is rejected if:

(
n′ − 2

)1/2 |r|
(

1 − r2
)−1/2

(2.5)

exceeds the critical value of the t distribution
with (n′ − 2) degrees of freedom.

This illustrates a general problem. Since
the n observations are positively spatially
autocorrelated, the information content of
the sample is over-estimated if n is used – it
needs to be deflated. The sampling variance
of statistics are underestimated leading the
analyst to reject the null hypothesis when no
such conclusion is warranted at the chosen
significance level. For the effects of spatial
dependency on the analysis of contingency
tables see, for example, Upton and Fingleton
(1989) and Cerioli (1997).

To make further progress in understanding
the importance of spatial data properties and
the complications they introduce we need
to introduce models for spatial variation –
or data generators for spatial variation.
Such models are important. By specifying a
model to represent the variation in the data
(including the spatial variation), the analyst
is able to construct tests of hypothesis with
greater statistical power than is possible if
testing is against a non-specific alternative.
There are a number of possible formal
models for spatial variation of which the
simultaneous spatial autoregressive (SAR),
the conditional spatial autoregressive (CAR)
and the moving average (MA) models are
probably the best known. We will briefly look
at the first two but the interested reader will
need to follow up the literature to gain a
fuller understanding of these models and their
properties (Whittle, 1954; Besag, 1974, 1975,
1978; Ripley, 1981; Cressie, 1991; Haining,
1978, 1990, 2003).

A multivariate normal CAR model which
satisfies the first order (spatial) Markov

property and thus might be thought of as the
simplest departure from spatial independence
can be written as follows (Besag, 1974;
Cressie, 1991, p. 407):

E
[
X(i) = x(i)

∣∣ {X( j) = x( j)
}

j∈N(i)

]

= µ +
∑

j∈N(i)

τ w(i, j) [X( j) − µ] ,

i = 1, . . ., n (2.6)

and:

Var
[
X(i) = x(i)

∣∣ {X( j) = x( j)
}

j∈N(i)

]
= σ 2,

i = 1, . . ., n

where E[ . . . | .] and Var[ . . . | .] denote
conditional expectation and variance respec-
tively, µ is a first-order parameter and τ

is the spatial interaction parameter. The
Markov property means observations are
conditionally independent given the values
at neighbouring sites. {w(i, j)} denotes
the neighbourhood structure of the system
of areas and w(i, j) = 1 if i and j are
neighbours ( j ∈ N(i)) and w(i, i) = 0 for
all i. W is the n × n matrix of {w(i, j)}
and is sometimes called the connectivity
matrix. It is a requirement that τ lies between
(1/ωmin) and (1/ωmax) where ωmin and ωmax

are the smallest and largest eigenvalues
of W. For a fuller introduction to the
Markov property for spatial data including
how to construct higher-order spatial Markov
models see, for example, Haining (2003,
pp. 297–299). This approach allows the
construction of a hierarchy of models of
increasing complexity. As noted in Haining
(2003), however, the Markov property does
not have the natural appeal it has in the case
of time series, because space has no natural
ordering. So the neighbourhood structure can
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often seem rather arbitrary especially in the
case of the non-regular areal frameworks
used to report Census and other social and
economic data.

If the analyst of regional data does not
attach importance to satisfying a Markov
property another option is available called
the SAR model specification. A form of this
model was first introduced into statistics by
Whittle (1954). Let e be independent normal
IN(0, σ 2I) where I is the identity matrix
and e(i) is the variable associated with site
i (i = 1, . . ., n). Define the expression:

X (i) = µ +
∑

j∈N(i)

ρw (i, j) [X( j) − µ]

+ e(i), i = 1, . . ., n. (2.7)

where ρ is a parameter. The bounds on ρ are
set by the largest and smallest eigenvalues
of W just as in the case of the CAR model.
This is the model most often seen in the
spatial analysis and regional science literature
although the reason for its hegemony is far
from clear and seems to be largely based
on a combination of historical accident (in
the sense that time series modelling preceded
spatial data modelling and methods were
transferred across) and subsequent ‘lock-in’.

These models can be embedded into,
for example, regression models either as
additional covariates (as in the case of equa-
tion (2.7)) or as models for the error structure
where the errors (in practice the residuals)
are tested and found to show evidence of
spatial autocorrelation (Anselin, 1988; Ord,
1975). It is well known that fitting regression
models by ordinary least squares when errors
are spatially (positively) autocorrelated gives
rise to some damaging consequences. First,
although we shall obtain consistent estimates
of the regression parameters (there may
be some small sample bias), the sampling
variance of these estimates may be inflated

compared with methods that take account
of the spatial autocorrelation in the errors.
Second, if the usual least squares formula for
the sampling variances of these regression
estimates is applied, the variances will be
seriously underestimated. The formulae are
no longer valid and conventional F and t

tests of hypothesis are also not valid. We shall
take a very simple example to illustrate these
points, where the parameter to be estimated
and tests of hypothesis relate to a constant
mean µ.

Suppose n independent observations {x(i)}
are drawn from a N (µ, σ 2) distribution. The
sample mean, x̄, is an unbiased estimator for
µ, and the variance of the sample mean is:

Var (x̄) = σ 2/n. (2.8)

If σ 2 is unknown then it is estimated by:

s2 = (1/ (n − 1))
∑

i=1, ..., n

(x(i) − x̄)2 (2.9)

so that:

Var (x̄) = (1/n (n − 1))
∑

i=1, ..., n

(x(i) − x̄)2 .

(2.10)

If the n observations are not independent
then although the sample mean is still
unbiased as an estimator of µ, assuming each
x(i) has the same variance (σ 2), the variance
of the sample mean is (see, for example,
Haining, 1988, p. 575):

Var (x̄) = σ 2/n +
(

2/n2
)

×
∑

i

∑

j(i<j)

Cov (x(i), x( j))

(2.11)
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where Cov(x(i), x( j)) denotes the spatial
autocovariance between x(i) and x( j). So, if
there is positive spatial dependence and σ 2

is known then σ 2/n underestimates the true
sampling variance of the sample mean. If σ 2

is unknown and is estimated by equation (2.9)
then if there is positive spatial dependence
the expected value of s2 is (see, for example,
Haining, 1988, p. 579):

E
[
s2
]

= σ 2 − [(2/n(n − 1))

×
∑

i

∑

j(i< j)

Cov (x(i), x( j))]

(2.12)

so that equation (2.9) is a downward biased
estimate of σ 2. This further compounds the
underestimation of the sampling variance.

Modified methods to take account
of spatial dependence are often based
on the following argument (see, for
example, Haining, 1988). Assume the data
xT = (x(1), . . ., x(n)), where T denotes the
transpose, are drawn from a multivariate
normal spatial model with mean vector
given by µ1 and n by n variance–covariance
matrix " = σ 2V given, say, by one of the
models described above. (In the case of
the CAR model (2.6), V = (I− τW)−1.) The
log likelihood for the data is:

−(n/2) ln 2πσ 2 − (1/2) ln |V|−
(

1/2σ 2
)

× (x − µ1)T V−1 (x − µ1) (2.13)

where 1 is a column vector of 1’s and |V|
denotes the determinant of V. For simplicity
we assume V is known. The maximum
likelihood estimator of µ is:

µ̃ =
(

1TV−11
)−1 (

1TV−1x
)
. (2.14)

The estimator (2.14) is the best linear
unbiased estimator (BLUE) of µ. Note that
in the case of independence V = I (the
identity matrix with 1’s down the diagonal
and zeros elsewhere) and equation (2.14)
reduces to the sample mean. In the case
V %= I two modifications to the sample
mean are occurring. First, the denominator
for positive spatial dependence will be less
than n. Second, the presence of V−1 in the
numerator of equation (2.14) downweights
the contribution of any attribute x(i) which is
highly correlated with other attribute values
{x( j)} – that is, where x(i) is part of a cluster
of observations.

The variance of µ̃ is:

Var[µ̃] = σ 2(1TV−11)−1 (2.15)

which reduces to σ 2/n if V = I.
Since the sample mean is an unbiased

estimator of µ, one modification is to replace
equation (2.8) with equation (2.15). The term
(1T V−1 1) is proportional to Fisher’s infor-
mation measure (Haining, 1988, p. 586). It
identifies the information about µ contained
in an observation. Now equation (2.9) is not
the maximum likelihood estimator for σ 2.
This is given by:

σ̃ 2 = n−1(x − µ1)T V−1(x − µ1). (2.16)

A further refinement is to replace equa-
tion (2.9) with equation (2.16) substituting
the sample mean for µ in equation (2.16)
where V−1 plays a role equivalent to the
second term in the right-hand side of
equation (2.11).

The general results given by equations
(2.11) and (2.12) are why adjustments
to conventional methods are needed. The
evidence suggests that it is the effect of
the second term on the right-hand side of
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equation (2.11) that is the more serious,
at least in the usual situation of positive
spatial dependence, and that one way to deal
with this is to adjust n in equation (2.8)
thereby increasing the sampling variance of
the sample mean. The size of the adjustment
to n will be sensitive to the estimates of the
spatial autocorrelation in the data or, if a
spatial model is fitted to the data, the choice
of model. The problem is further complicated
if, as is usually the case, V is not known and
so must be estimated from the data.

Before leaving the normal model it is
important to note that aggregated spatial
data may violate another of the statistical
assumptions of least squares regression. It
was remarked in section 2.1 how rates and
ratios based on areas with very different
population counts will have different stan-
dard errors. It follows that the assumption of
homoscedasticity (or constant error variance)
is likely to be violated when developing
models to explain how rates or ratios
vary over a region. Data transformations or
weighted least squares estimators are used
to address these problems (Haining, 1990,
pp. 49–50) but such adjustments may need
to be implemented whilst also addressing
the problems created by residual spatial
autocorrelation (Haining, 1991). In addition
to the problems created by failure to satisfy
statistical assumptions, spatial data often
create ‘data-related’ problems in regression
modelling (Haining, 1990, pp. 332–333). For
example, the fit of a trend surface model
can be influenced by the configuration of
the sample data points on the surface where,
as a result of the particular distribution,
certain values have high leverage (Unwin and
Wrigley, 1987); the particular shape of the
study region may also influence the trend
surface model fit (Haining, 1990, p. 372).
These and other issues are reviewed in
Haining (1990, pp. 40–50).

We conclude this section by remarking on
the implications of intra-area and inter-area

spatial dependency and intra-area hetero-
geneity when modelling a discrete valued
response variable such as the count of the
number of cases of a disease across a region
using the Poisson model. Spatial dependency
and heterogeneity are important causes of
overdispersion. For example consider a local
diffusion process in which individuals are
more likely to be infected if they are close
to someone already infected. The result is
that counts of the number of cases will
reveal Poisson overdispersion because there
will be areas with large counts (due to the
local infection process) and areas with zero
counts where the process has not yet started.
These considerations require the analyst both
to carry out tests for overdispersion and
where necessary take appropriate action.
The effects of overdispersion in generalized
linear modelling are rather similar to those
described for the normal model when spatial
autocorrelation is detected. If overdispersion
is present, ignoring it tends to have little
impact on point estimates of the regression
parameters (the maximum likelihood estima-
tor is consistent, although some small sample
bias might be present). However, standard
error estimates for regression parameters are
underestimated. Type I errors associated with
the model are underestimated which is par-
ticularly problematic in relation to predictors
that are close to the significance threshold.
If the objective is to build a parsimonious
model, the presence of overdispersion may
result in an analyst constructing a model
more complicated than necessary, and that
overestimates the variance explained.

Ways of tackling this problem may depend
on the reasons for the overdispersion.
A conventional approach is through the
use of a variance inflation factor (Dobson,
1999). Where the cause is inter-area spa-
tial autocorrelation then a discrete valued
‘auto-model’ may be used which is analogous
to equation (2.6) (see Besag, 1974). More
recently attention has focused on the use
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of spatial random effects models using
CAR models fitted using WinBUGS (Law
et al., 2006). These models allow for
overdispersion through the random effects
term. This is an area of current research
in spatial modelling since the development
of good modelling tools for discrete val-
ued response variables has rather taken a
back seat whilst attention for many years
has focused – perhaps disproportionately –
on the normal model (Law and Haining,
2004).

2.3. DRAWING INFERENCES

One of the main purposes of undertaking spa-
tial statistical analysis is to make population
inferences on the basis of the data collected.
In concluding this chapter we consider some
of the inference pitfalls associated with the
analysis of spatial data.

What is the population about which
inferences are made in an observational
science? If data are point samples from a
continuous surface then the population might
be the surface itself. Of course the realized
surface may be thought of as only one
of many possible realizations (the rest not
having been observed). However, with or
without the concept of a ‘superpopulation’
of surfaces, making inferences from point
samples to the (realized) surface population
does represent a legitimate target. This
argument is less convincing when the data
represent a complete census – for example the
data refer to areas and a complete (or nearly
complete) enumeration has been carried
out. What is the population about which
inferences are being made now? A frequent
answer to this is that the underlying process
is stochastic (chance is an inherent part of the
process) so that inferences are directed at the
process (its parameters and covariates) rather
than the map. The problem with this is that

we have access to only one realization of the
process and in order to give our inferences
some broader validity other assumptions need
to be invoked such as that this realization
is representative of the underlying process.
There may be no way to test such an
assumption.

The modifiable areal units problem
(MAUP) reminds us that results obtained
from analyzing aggregate data are dependent
on the particular scale of the partition, and,
at the given scale, the particular boundaries
used. In general, statistical relationships
between attributes are stronger the larger
the spatial aggregates because variances
are reduced. Boundary shifts can influence
whether or not disease clusters or crime hot
spots are detected at any scale because if
boundaries happen to cut through the middle
of a cluster this may dilute the effect over
two or more areas.

The analysis of aggregated data is par-
ticularly problematic and not just because
of the MAUP. It is important to remember
that conclusions drawn from aggregate data
can only be transferred to the individual
level under certain conditions. The ecological
fallacy is the uncritical transfer of findings
at the group level to the individual level. As
the famous example cites, the suicide rate
in Germany in the 17th century may have
been larger in areas with higher percentages
of Catholics but that does not mean Catholics
were more prone to commit suicide than
Protestants. Quite the reverse as individual
level data revealed. Aggregation bias raises
serious problems for epidemiological studies
based on aggregate data and is one reason
why it is considered the weakest of the
different methodologies for assessing dose–
response relationships – even though this
may be the only realistic way of obtaining
reasonably sound measures of exposure to an
environmental risk factor. The problem is that
it is not difficult to construct examples where
there are complete sign reversals when going
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Figure 2.2 Spatial data properties and how they impact at different stages of analysis.

from the ecological to the individual level
study (Richardson, 1992).

The converse of the ecological fallacy
is the atomistic (or individualistic) fallacy
which assumes relationships identified at the
individual level apply at the group level.
There may be group level or contextual
effects that need to be taken into account –
as for example in the study of youth
offending, where the risk of becoming an
offender may not depend only on personal
and household level risk factors but also
neighbourhood and peer group effects. This
then raises the problem of defining what the
‘neighbourhood’ is.

Figure 2.2 provides a summary of the
points raised in sections 2.2 and 2.3.

2.4. CONCLUSIONS

Spatial data possess a number of dis-
tinctive properties that derive from the
fundamental nature of geographic space and
the way processes unfold in geographic
space, the way that spatial variation is
represented for the purpose of storage in a

finite digital database and the way spatial
data are collected and attributes measured.
Many of these properties were recognized
early in geography’s ‘quantitative revolution’
most notably the lack of independence
in data values collected close together in
space. Geographers then and since have
made important contributions to the devel-
opment of relevant statistical theory and
practice.

Geographers continue to develop new
methods for describing spatial variation and
new methods for modelling processes that
operate across geographical space. At present
there are two strong traditions which provide
focuses for research. On the one hand there
are methodologies based on ‘whole map’ or
global statistics that seek to capture data
properties through models that are fitted to
all the data. On the other hand there are
methodologies based on ‘local’ statistics that
process geographically defined subsets of the
data and do not seek to impose a single
statistic or model on the whole data set
(Anselin, 1995, 1996; Getis and Ord, 1996;
Fotheringham and Brunsdon, 2000). They
represent different ways of responding to the
need to develop methodologies to meet the
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analytical challenges posed by the special
nature of spatial data.
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3
The Role of GIS

D a v i d M a r t i n

3.1. INTRODUCTION

The role of geographical information systems
(GIS) in spatial analysis has for the most
part been indirect, and less obvious than
might at first be expected. It is probably
true to say that throughout the history of
GIS, researchers concerned with specific sub-
fields of spatial analysis have bemoaned
the fact that proprietary GIS software has
been an inadequate tool for their work.
Certainly Goodchild et al. (1992) were
able to identify an extensive research and
development agenda for the incorporation of
spatial analytical tools within GIS, yet more
recent reviews such as those by Longley
and Batty (1996a, 2003a) have been equally
able to identify the discrepancies between
the requirements of the spatial analyst and
the functionality provided by mainstream
GIS software. This is not to say that
there have not been many steps taken in
the development of spatial analysis tools.
Ungerer and Goodchild (2002) note that

although progress has been made towards
some level of integration between spatial
analytical tools and GIS, few analytical
functions are actually available as commands
from within GIS. Goodchild (2000) fears
that despite the many interconnections, the
gap between GIS and spatial analysis may
actually be widening. It is suggested that
in the early years of development, GIS
practitioners were more likely to possess
some measure of technical expertise and
be interested in spatial analytical methods,
although the available tools were limited.
The spatial analytical functionality of GIS
has increased over time, but this has been
overshadowed by the massive increase in the
number and range of GIS implementations,
such that the ‘average’ GIS user is now
in command of a more powerful analytical
toolkit, but has little increased ability to
make use of it. In other words, the most
typical GIS use has moved from a more
analytical role to a more operational one,
alongside a huge growth in the number of
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software systems and users which comprise
the GIS community. Nevertheless, GIS has
contributed to the development of spatial
analytical methods more indirectly through a
huge growth in the data resources, structures
and basic tools available. It is worth noting
here that sometimes in the relevant literature
it is not entirely clear whether authors are
referring to GIS in the narrower sense of geo-
graphical information systems or the broader
field of geographical information science
(Goodchild, 1992). GIScience incorporates
both GISystems and spatial analysis, and
the discussion in this chapter focuses on the
relationship between these two components.

The remainder of this chapter seeks to
explore the complex and much-contested
relationship between GIS and spatial anal-
ysis. Section 3.2 considers the definitions
of each and reviews the extent to which
they have become integrated. We then turn,
in sections 3.3 and 3.4, to examine some
different models whereby spatial analysis
and GIS software tools have been connected
and consider a selection of more detailed
examples. The principal barriers and opportu-
nities for closer integration between GIS and
spatial analysis are presented in section 3.5
and the chapter concludes by attempting to
assess the likely convergence or divergence
between these families of spatial processing
techniques in future. By its nature, this
chapter inevitably touches on many areas that
are discussed in more detail elsewhere in this
volume, but the focus here is to explore the
interaction between GIS and spatial analysis,
and more specifically the contributory role
of GIS.

3.2. GIS AND SPATIAL ANALYSIS:
MADE FOR EACH OTHER?

There are very many GIS textbooks available
(for example Burrough and McDonnell,

1998; Heywood et al., 2006; DeMers, 2002a;
Longley et al., 2001) and it is not the purpose
of this chapter to cover again the basic
principles of GIS. It is, however, necessary
to offer working definitions of GIS and
spatial analysis so that their relationship can
be effectively reviewed. What has probably
become the ‘classic’ GIS definition is restated
by Goodchild (2000), for example, as a
system for creating, storing, manipulating,
visualizing and analyzing geographical infor-
mation. Although slightly different terms
are used, the concept of GIS as a toolbox
containing these core functions has become
nearly universal. Whereas specialist database
or visualization software may exist in isola-
tion, the combination of these elements in an
integrated software environment is generally
considered necessary in order to justify the
claim that a software tool is actually a GIS.

Fotheringham and Rogerson (1993) spec-
ify that spatial analysis is not just aspatial
analysis applied to spatial data: it is inherent
in the analytical procedures with which
we are concerned here that they aim to
reveal and characterize explicitly spatial
patterns and processes. More subtly, there is
something of a distinction between spatial
data manipulation and analysis, although
the exact dividing line is dependent on the
commentator’s view of spatial analysis itself.
Techniques for spatial data manipulation,
perhaps most extensively developed in the
language of cartographic modelling (Berry,
1987; DeMers, 2002b), offer an extensive
suite of functions for reclassification, overlay,
mathematical, distance and neighbourhood
operations on map layers which can be
assembled into sophisticated scenarios, of
which perhaps the most frequently cited
example is site suitability analysis. Although
it is possible for the spatial data manipulation
tools within a GIS to be assembled in such a
way as to carry out spatial analysis tasks, they
are generally not considered to constitute
spatial analysis per se. There is thus a sense
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in which spatial analysis requires spatial data
manipulation, but manipulation is not in itself
analysis.

A distinction can be found between those
who adopt a relatively narrow definition of
spatial analysis as the extension of statistical
analysis into the spatial domain, such as
Bailey (1988) and those who would offer a
much broader view, including visualization,
cartographic modelling and computationally
intensive geographical analyses. Bailey and
Gatrell (1995) choose to distinguish between
spatial analysis and spatial data analysis,
the latter describing the situation in which
methods are applied to the description and
explanation of processes operating in space
through the use of observational data within
a conventional statistical framework. This
narrower definition has strong roots in
quantitative geography (see Fotheringham
et al., 2000), but tends to marginalize
specialized analytical operations within GIS
such as hydrological modelling using grid-
based functions or network-based modelling
for route-finding applications. These tools do
not contribute to the more narrowly defined
statistical spatial analysis but nevertheless
make an important contribution to analytical
GIS use.

A further area of development is that
which has been termed geocomputation
(Longley et al., 1998), in which highly
computationally-intensive techniques have
been applied to categories of spatial analyt-
ical problems which simply could not have
been tackled by conventional means. The
critical reader may find few fundamentals to
distinguish geocomputation from a broadly-
defined spatial analysis, except for the use
of new data types and computing environ-
ments. This work is also characterized by
a concentration on some of the areas in
which traditional analytical methods have
been weak: particularly the application of
high-powered computing to the study of
spatio-temporal dynamics, perhaps again

indicating that geocomputational approaches
may serve to fill gaps in the spatial analysis
toolkit rather than represent an entirely new
development. In the following discussion, we
adopt a broad definition, which encompasses
a wide range of specialist GIS functions
whose purposes are primarily analytical
rather than operational. This approach is
helpful in understanding the extent to
which GIS has contributed to the contextual
environment of a wide variety of spatial
thinking and analysis tasks, but has had rather
less obvious impact on the generation of
tools for narrowly defined statistical spatial
analysis.

The early development of GIS and spatial
analysis techniques were rather separate,
with GIS growing from extensive inventory
applications such as the Canada GIS (CGIS)
(Tomlinson et al., 1976) concerned with the
practical management of natural resources,
while most spatial analytical techniques can
trace their roots to the quantitative revolution
in academic geography of the 1960s and
1970s. Typically, spatial analytical methods
were developed in the context of limited
spatial data and software tools, frequently
being programmed in isolation by the
researcher to take advantage of the research
potential of specific datasets. Widespread
adoption of such methods was impossible
due to the absence of suitably structured
data and widely available software tools.
The need for a large body of transferable
and well-structured spatial data, for example
incorporating the topological relationships
required for many types of analysis involving
adjacency or contiguity, was a precondition
for any broad adoption of spatial analysis
methods and it is in this development of
spatial data infrastructure that GIS can be
seen to have played a critical role. GIS pro-
vides the essential tools for manipulation and
pre-processing of spatial data that are likely
to be required by the spatial analyst. There
is thus great attraction to the prospect of
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Figure 3.1 Development influences between GIS and spatial analysis.

somehow embedding a wide variety of spatial
analysis tools in an existing GIS environment
and thereby creating a rich integrated spatial
analysis environment, although the achieve-
ment of such integration has been elusive.
Figure 3.1 illustrates the principal cycle of
interaction, whereby GIS use has promoted
data production, standardization of formats
and the availability of general purpose tools,
which have in turn fostered the development
of spatial analysis techniques. Relatively few
of these analytical techniques have gone on
to influence the functions and algorithms
available in mainstream GIS. A relatively
weak effect is observable in the opposite
direction, whereby GIS development per se

has led to new forms of spatial analysis.
The direct impact of spatial analysis on
the broader spatial data infrastructure has
been very small and is not shown in the
figure.

Over time, several books have addressed
the theme of spatial analysis in GIS, for
example, Fotheringham and Rogerson
(1993), Longley and Batty (1996b),
Fotheringham and Wegener (2000) and
Longley and Batty (2003b). Each of these is
characterized by a series of detailed chapters
addressing aspects of spatial analysis that
have been implemented at the edge of
existing GIS technology. Interestingly, the

majority of these contributions do not
actually use standard GIS software in order
to undertake their core spatial analysis
functions, while many employ general
purpose statistical packages or even develop
separate spatial analysis software with
various levels and types of connection to
GIS. Miller and Wentz (2003) argue that
in fact the use of GIS may actually be
limiting the types of spatial analysis which
is undertaken by many users due to the
restrictions that the GIS model places on
thinking about spatial relationships and
interactions. Their contention is that GIS
offers a much richer universe of spatial
data representation strategies than are
commonly adopted. Certainly, representation
and analysis are closely linked. Martin
(1999a) shows how different representations
of a disease phenomenon can lead to quite
different ways of thinking and analyzing
its spatial form according to whether the
disease process is seen as a point pattern,
line vector, areal prevalence or continuous
density surface. Miller and Wentz’s (2003)
particular concern is that the assumptions and
alternatives of the conventional Euclidean
conception of space go unquestioned by
most GIS users. Marble (2000) also identifies
overly simplistic representational models
as one of the obstacles to demonstrating
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the real applicability of spatial analysis,
citing the prevalence of simple distance
and the absence of direction from most
spatial analytical work, despite its relevance
to practical decision-making. This view
that the contribution of GIS to spatial
analysis is strongly tied to its provision
of the underlying representational models
is consistent with Goodchild’s (1987)
suggestion that an ‘ideal’ GIS would be
one which incorporated a data model
finely tuned to the needs of spatial analysis.
At that relatively early stage in GIS take-up,
he was able to observe that no contemporary
commercial product met the ideal and that
there would be little economic incentive
for the development of a GIS incorporating
such a spatial analytical model, while
applications rather than abstract concepts
are the drivers of proprietary software
development.

Very many GIS users are not actually
concerned with statistical spatial analysis, but
have entirely valid requirements involving
the management, query and reporting of
spatially referenced data. For example, the
UK census agency, the Office for National
Statistics (ONS), implemented a GIS for
the design of the 2001 census of pop-
ulation, starting with a prototype system
in the mid-1990s (Martin, 1999b). The
initial objective was the simple replacement
of the existing labour-intensive process of
creating maps for the guidance of census
enumerators. A significant multi-user GIS
involving sophisticated data management of
multiple data sources, including a national
address-level database, was established with
no spatial analytical ambitions, the primary
objective being to deliver printed maps
and address listings for 175,000 census
enumeration districts. Although aspects of
this system could clearly have been devel-
oped with spatial analytical purposes in
mind, it shared its principal objectives with
perhaps the majority of commercial GIS

implementations whose objectives are facil-
ity management and inventory applications.
The ONS example is a useful one to
illustrate the GIS-spatial analysis relationship
because it subsequently evolved to become
the basis of a spatial referencing system for
census outputs that provide a rich source
of socio-economic data for spatial analysis.
Importantly, the contribution of the GIS
application was not in the provision of
analysis tools per se but as the means
of contributing to the wider spatial data
infrastructure, including user awareness and
debate. In many ways this is a microcosm
of the historical role of GIS in spatial
analysis.

Couclelis (1998) makes some observa-
tions about the contrast between GIS and
geocomputation which are also illustrative
of the GIS-spatial analysis relationship.
GIS has been characterized by large scale,
high-visibility practical applications, result-
ing in great commercial and organizational
interest, combined with the intuitive and
visual appeal of map-based manipulation
by computer. Geocomputation, and spatial
analysis more generally, does not enjoy these
advantages: the more sophisticated analytical
methods are often lacking in immediate or
obvious commercial application, are often
hard to visualize and are far from intuitive to
novice users. We can conclude that, although
related, GIS software is not the principal
driver of spatial analytical tool development.
Almost always, advanced spatial analysis
methods are developed separately from
GIS, but in an environment in which data
availability, especially in standard formats,
is due to the wider adoption of GIS.
Widespread use of GIS has brought about
spatial data infrastructures and exchange
mechanisms that make possible the practical
implementation of spatial analyses that would
otherwise have been quite intractable. GIS
have thus come to provide the environment
rather than the tools for innovative spatial
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analysis, with explicit software connections
between the two coming much later, if at all.

3.3. CLOSE COUPLED, LOOSE
COUPLED, UNCOUPLED?

Ungerer and Goodchild (2002) provide a tab-
ular representation of strategies for coupling
GIS and spatial analysis, which is itself based
on a classification by Goodchild et al. (1992).
The coupling strategies are further illustrated
in Figure 3.2 and range from isolated, through
loose and close coupled to integrated: only in
the case of full integration are spatial analysis
functions actually performed within the GIS
software itself. The extent of integration
possible will to some extent be determined
by the software architecture of specific GIS
employed. While it is clearly possible to
write stand-alone software to perform spatial

analysis tasks, it is hard to identify strong
advantages to this approach. Indeed the
isolation from the data layers available in
GIS and the obvious risk of ‘reinventing the
wheel’ in the authoring of such tools serve
to make such a strategy unattractive. At the
opposite extreme, where spatial analysis
functions are fully integrated within GIS
software, there is a risk of promoting ‘naïve’
or inappropriate use of complex techniques
due to a lack of specialist insight in spatial
analysis. Openshaw (1996) identifies one
element of this in what he terms the ‘user
modifiable areal unit problem’ in which
the well-recognized modifiable areal unit
problem (Openshaw, 1984) is compounded
by the availability of software that allows
users extensive opportunities for creating
their own spatial aggregation schemes with-
out any necessary understanding of the
impacts on spatial analysis of the resulting
data. Of the intermediate positions, loose
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Figure 3.2 Models of relationship between spatial analysis and GIS software (after Ungerer
and Goodchild, 2002 and Goodchild et al. 1992).
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coupling generally involves file import and
export at each analysis stage but little new
programming, whereas close coupling seeks
to overcome this necessity by investing in
programming that more smoothly moves data
between the two software applications, for
example by developing software routines that
directly access the GIS database as shown in
Figure 3.2.

3.4. CASE STUDIES

In this section we briefly review a range
of case studies in which spatial analysis
software is more or less closely coupled
to GIS. Examples are provided of each
of the situations illustrated in Figure 3.2.
Some of these examples will be encountered
elsewhere in this book, but the objective in
considering them here is not to provide an
overview of the analysis methods, but to
review the role of GIS in the implementation
of these spatial analysis tools.

3.4.1. Isolated

Some isolated spatial analysis tools have
very specific and limited applications while
others are well-developed spatial analysis
toolkits. These programs rarely justify the
term of GIS in their own right, as one or
more of the basic GIS operations (often
in the data creation, storage and manipula-
tion domains) are entirely missing or very
elementary.

GWR, the software produced by
Fotheringham et al. (2002) for geogra-
phically weighted regression (http://ncg.
nuim.ie/GWR), serves as an example of an
explicitly spatial analysis method which has
been implemented entirely separately from
GIS software. In this case, although the input
data are conventional spatial coordinates

with associated attributes, generic input
and output file formats are used and the
software operates independently of any
GIS. An editing tool has been developed in
Microsoft Visual Basic (VB) which provides
a user interface to the developers’ Fortran
regression program and produces outputs
which are intended for further analysis in
other software, including GIS. It is in the
very nature of geographically weighted
regression that the results are themselves
spatial data, comprising parameter estimates
and other statistics relating either to every
sample location or every point on a regular
spatial grid. Interpretation of these results
requires cartographic visualization, but it is
expected that the user will undertake this
using other software, for which purpose two
GIS output file formats are offered. Code is
also available for running GWR within the
statistical package R, although this provides
no direct data management or mapping
functions.

A second example is GeoDa (http://
www.csiss.org/clearinghouse/GeoDa/) which
incorporates limited data manipulation, but
has a range of spatial analysis functions
and visualization tools and works with the
less sophisticated GIS data structures such
as Shapefiles. Anselin (1999) explains how
this type of exploratory spatial data analysis
can bridge the gap between cartographic
visualization and statistical analysis. GeoDa
is a tool for exploratory spatial data analysis
(ESDA), and allows the user to work with
linked plots and interactive visualizations,
a distinctive characteristic of ESDA tools
(Brunsdon and Charlton, 1996). The spatial
analysis methods present in GeoDa focus
on measures of spatial association, partic-
ularly the calculation of local indicators
and weights. Spatial data manipulation func-
tions are limited, but do allow for point
and polygon data through tools for the
creation of centroids and Thiessen polygons.
The software can thus be used to provide
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additional spatial analysis functions to the
GIS user through file export, or to provide
stand-alone analysis of suitably structured
point or polygon data (Anselin, 2005).

Accession (http://www.accessiongis.com/)
provides another interesting example,
whereby a software tool has been
produced specifically for the calculation
of geographical accessibility. Higgs (2005)
provides an extensive review of health
accessibility modelling in GIS, but notes
that attempts to incorporate public transport
accessibility are underdeveloped. This tool
has been designed to undertake precisely
that task, and thereby illustrates an approach
to the concerns of Miller and Wentz (2003)
by combining conventional spatial network
analysis with the very unconventional spaces
of public transport timetables. The software
offers a wider range of conventional GIS
functions than GWR or GeoDa but is still
not a fully developed general-purpose GIS,
its unique functionality being the spatial
analysis of accessibility using a combination
of timetable and network data.

3.4.2. Loose coupled

AZM (http://www2.geog.soton.ac.uk/users/
martindj/davehome/software.htm) is a loose-
coupled tool because it does not undertake
any data management or display itself, but
requires data import and export from a GIS.
In this case, the software is intended for
automated zone design and best-matching of
incompatible zonal systems (Martin, 2003a)
and is dependent on an external GIS to
provide the topological data structure which
is a central requirement of zone design.
More recently, the software has been re-
engineered, again to take direct advantage of
widely-used Shapefiles, with the additional
topological structuring being undertaken
within the software. This is an interesting
example because its purpose is not to be used

as a stand-alone tool but to supply a spatial
analysis function to the GIS user that is not
otherwise available within the GIS software
environment. In this sense it provides addi-
tional external functionality to the GIS user,
who must manually export and transfer the
necessary data.

The history of AZM demonstrates some-
thing of the separate origins of GIS and
spatial analysis tools noted above. Openshaw
(1977) describes an automated zoning proce-
dure (AZP) initially developed to run on an
exemplar dataset comprising a limited set of
regular cells, which could be aggregated into
clusters according to a variety of objective
functions. Although the method was of
demonstrable practical utility, the absence
of widely available topologically structured
census or administrative area boundaries
and the small problem size that could
be handled by available computing power
meant that the method was hardly applied
until Openshaw and Rao (1995) returned
to the problem, using 1991 census data
and mid-1990s computing to demonstrate its
practical large-scale application. Effectively,
the practical application of the method had
to wait until GIS development had fostered
the general availability of the necessary
data in a suitable topological structure.
AZM is based around Openshaw’s AZP and
is closely related to the system used to
create output areas for the 2001 census
of population in England and Wales, itself
a loose-coupled configuration with zone
design software processing topologically
structured data exported from an ArcInfo GIS
application.

3.4.3. Close coupled

SAGE (Spatial Analysis in a GIS Environ-
ment) is another example of a system devel-
oped as a spatial analysis toolkit (Haining
et al., 2001) but this time calling software
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routines within the ArcInfo GIS. Although
SAGE consisted of external custom-written
code, data were held within the GIS, whose
functionality was also called for specific
data manipulation functions and cartographic
visualization. The software was developed
specifically to overcome perceived analytical
shortcomings in the GIS, yet with a desire
not to reinvent those important functions
which were already well provided for.
Specifically, SAGE attempted to enhance the
GIS functionality in the areas of visual-
ization and statistical techniques. Although
cartographic visualization is one of the
central functional elements of GIS, scientific
visualization, particularly that involving real-
time interaction with datasets, is generally
absent from GIS software. SAGE incor-
porated exploratory analyses through the
use of linked windows common to many
ESDA applications. The specific motivation
for creation of SAGE was the analysis
of health events. Haining et al. (2001)
explain the rationale for creating a spatial
analysis software suite integrated with a
proprietary GIS, citing the inconvenience
of having to transfer data between two
software tools, but also the unnecessary
duplication of effort when external tools
need to provide their own basic mapping
and spatial manipulation functions which are
already well-provided for by GIS. At the
core of the spatial analysis tool were two
separate programs, one providing the spatial
analysis and the other a linkage tool, both
running in client/server mode with the GIS.
SAGE provided a range of classification
and regionalization functions in addition to
spatial statistical analyses.

The fate of systems such as SAGE
is typical of many such attempts in that
although a great deal was achieved, the
lack of true integration between the two
software systems and the academically driven
motivation for the analysis program resulted
in divergence. Subsequent releases of the

ArcInfo and ArcGIS software have moved
to different operating systems and hardware
architectures, and eventually the adoption
of different scripting languages, making
SAGE unusable with more modern versions.
External, non-commercial tools such as
SAGE cannot realistically hope to track
the relatively rapid software redesign cycle
of leading GIS software. The analytical
functions embedded in SAGE were not
absorbed into the GIS software, so there
has actually been a decrease in the range
of tools available to the spatial analyst.
Isolated and loose-coupled tools, relying only
on generic spatial data transfer formats,
will probably survive several GIS software
versions without the need for significant
reprogramming. Similarly, fully integrated
tools have the potential to evolve with the
GIS itself if they are actually adopted as part
of the core product. Close-coupling however
is perhaps the most problematic software
architecture, carrying a high risk of being left
behind by developments in the GIS and the
greatest maintenance burden for the spatial
analysis programmer if they are to ensure the
continued utility of their tool.

Ungerer and Goodchild (2002) describe
a close-coupled component object model
(COM) approach to linking GIS and spatial
analysis software. Their tool is an extension
written for ArcInfo which undertakes spatial
interpolation by creating an instance of a
statistics package, using it to run an analysis
on the GIS data and then placing the results
within the GIS. This is just one step short
of writing spatial analysis functions that are
fully integrated with the host GIS. Their
implementation uses Microsoft Visual Basic
for Applications (VBA) which has become
common as a macro language across multiple
software packages, overcoming some of the
restrictions of software-specific macro pro-
gramming languages found, for example, in
earlier GIS versions. Clearly a programming
language of this type could be used to
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develop entirely integrated spatial analysis
tools but this example demonstrates its power
as a means for finding a ‘common lan-
guage’ for close-coupling GIS with external
statistical software.

3.4.4. Integrated

In addition to those analytical functions
which are actually included as part of
the core software, examples of customized
spatial analysis operations fully integrated
within GIS may be found at all periods
in GIS development. These are generally
the result of spatial analysts being able to
directly access macro programming func-
tions. Early instances involved languages
such as ArcInfo’s Arc Macro Language
(AML), while more recent examples are
likely to use Microsoft VBA, perhaps inter-
facing directly with components of the GIS
software such as ArcObjects.

Ding and Fotheringham (1991) describe
an application called STACAS (SpaTial
AutoCorrelation and ASsociation analysis)
that was completely embedded within the
GIS software, being assembled from ArcInfo
functions and custom-written programs. As
with GeoDa described above, analysis of
spatial association requires knowledge of the
spatial relationships between GIS objects, for
example the adjacencies between polygons
and distances between points or polygon
centroids. It is also necessary to link attribute
values with these locations and of value to
display the resulting measures of association
in cartographic form. For all of these
reasons there is a considerable attraction to
embedding the analytical functions within
the GIS environment where the spatial rela-
tionships and support functions are already
available. Ding and Fotheringham’s solution
was to construct their analysis routines using
ArcInfo’s own macro programming language,
AML. Calculations that could not be readily

assembled using AML were programmed in
C and called from within the AML routines
so that the resulting analysis functions were
presented to the user as additional commands
within the GIS. Embedding of this type is
generally robust against incremental updating
of GIS software but becomes obsolete when
major changes to software architecture take
place, affecting the spatial database and
macro programming language on which it
is based.

Evans and Steadman (2003) describe a
more modern application, interfacing a land
use transport model known as TRANUS with
a desktop GIS. The objectives are to quickly
visualize the results of the transport model
and to provide a means of exporting data
for further analysis in additional software
environments. The TRANUS GIS module
has been built using ArcObjects technol-
ogy from ESRI’s ArcGIS which effectively
allows Microsoft VB to be used to customize
interfaces and develop further software.
Automated procedures handle the transfer
of results between the transport modelling
and GIS tools. In this instance visualization
in the GIS is not the final objective, with
model outputs being passed on from the GIS
to other external analysis tools. Effectively
the GIS provides the visualization and post-
processing of specialized model results. The
GIS environment is additionally relevant as
the context for the creation and manipulation
of many of the data layers that contribute
to the original transport modelling. Interest-
ingly, the authors note that a question mark
hangs over the demand for such integrated or
closely coupled solutions.

3.5. BARRIERS AND
OPPORTUNITIES

Brown (2000) argues strongly that after
so many years of discussion, not enough
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progress has been made towards the genuine
integration of spatial analysis and GIS,
especially when considered from the per-
spective of the substantive researcher who
has practical analysis requirements but is
not able to engage in the development of
software tools. He notes that the growth
of GIS has been propelled by the spread of
less sophisticated GIS (such as ArcView) that
are less readily turned to spatial analytical
applications. The result is that while there
is widespread use of GIS, this is often
naïve or at least goes little further than
cartographic visualization. It follows from
this reasoning that it is the spatial analytical
tools embedded within the simplest GIS
software, not the most sophisticated, that
will actually determine the future uptake
and development of spatial analysis methods.
Given the enormous contextual influence of
GIS on the practical use of spatial analysis,
prevalent standards of GIS training can be
seen to have a significant impact on the
overall level of spatial analytical methods
demanded and employed.

Public awareness of spatial data continues
to increase massively through the popularity
of web-based mapping tools, of which
Multimap (http://www.multimap.com/), the
Neighbourhood Statistics Service (http://
www.neighbourhood.statistics.gov.uk/), Win-
dows Live Local (http://local.live.com/) and
Google Earth (http://earth.google.com/)
provide just a few examples. These
developments bring spatial data and
concepts onto the desktops of millions who
will remain unaware that there has even been
a debate about the role of GIS in spatial
analysis. Such tools embody various simple
GIS analysis functions such as route-finding
(Multimap, Windows Live Local), tagging
and grouping of spatial objects (Google
Earth) and interactive choropleth mapping
(Neighbourhood Statistics). While it seems
unlikely that these ‘populist’ tools will
develop a need for much more sophisticated

spatial statistical functions, there is every
possibility that they find increasing use in
the presentation of results and visualizations
from complex analyses run externally, for
example of climate change, environmental
sensitivity or neighbourhood property
prices. The increasing pool of low-level
users remains at the same time one of the
greatest opportunities for spatial analytical
development, yet a barrier to the emergence
of a well-skilled user base.

Goodchild (2000) sees four tensions
in the popularization of spatial analy-
sis through incorporation of tools within
GIS software: (a) populism and elitism,
(b) visual and numeric, (c) open and closed,
and (d) local and global. The first of
these, populism and elitism, is very much
concerned with the difficulty noted above:
although GIS use is becoming massively
more widespread, this does not directly
increase the ability of users to appropriately
engage with sophisticated spatial analysis
methods. There is in reality no organization
with the authority to either ‘restrict’ or
‘educate’ GIS users in this respect, so the
spatial analysis community must address
itself to the challenge of awareness-raising
among an ever-multiplying community of
low-level GIS users. The incorporation of
visualization functions in spatial analysis
tools, for example in GeoDa described
above, goes some way towards the enhanced
communication of spatial analysis concepts
to more advanced GIS users who might
otherwise be unlikely to engage with purely
statistical aspects. An increasing tendency
towards open-source software development
may eventually assist in exposing underlying
algorithms but it is inevitably the case that
only a small proportion of users will concern
themselves with such a level of technical
detail. The fourth tension between local and
global analysis represents a continuum, with
a need for analytical techniques appropriate
for each scale of analysis.
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Two of the outstanding technical bar-
riers facing spatial analysis and GIS are
the (related) development of methods and
techniques that begin to seriously tackle
both space and time, a dimension whose
importance is considered critical to the future
integration of GIS and spatial analysis by
Marble (2000), and the availability of large
computational models to the ordinary user.
Batty (2003) suggests that the inability to
adequately handle temporal dynamics has
‘long been the Achilles heel of geography
and GIS’ (p. 83) and when considering
many of the current ‘grand challenges’
of spatial analysis this certainly remains
the case. Real world problems frequently
demand answers with temporal dimensions,
for example ‘how might this neighbourhood
change over time?’, ‘what will happen here
in an extreme flood event?’ or ‘how will the
best route change as congestion increases?’
The GIS industry has never developed a
consensus model for temporal representa-
tion (Langran, 1992; Peuquet, 2002) and
many spatio-temporal analyses based on
GIS technology have for the most part
continued to use inadequate data models.
While this may have been sufficient when
data originated from pre-digital sources such
as land surveys and population censuses,
it is inadequate to high-frequency satellite
imagery or real time monitoring of traffic
flows or mobile telephony operations. These
data volumes not only offer the potential for
genuinely temporal analysis, requiring new
data architectures and analytical techniques,
but also demand massively greater com-
putational power. Spatio-temporal dynam-
ics was an important element of the
geocomputational techniques noted above
(Longley et al., 1998), and contemporary
developments in pervasive and grid-enabled
computing (Martin, 2003b) seem set to offer
the data access and computational power
required for a new generation of spatio-
temporal analysis.

3.6. CONCLUSION: CONVERGENCE
OR DIVERGENCE?

Marble (2000) sees it as essential that
developments in both GIS and spatial
analysis achieve closer integration. In this
context, he specifically cites the role of both
spatial and temporal aspects. His argument
is that researchers in both domains must
more seriously get to grips with modern
computational approaches. An obstacle to
this is seen as the conservative (actually
‘myopic’ Marble, 2000, p. 32) definition
of spatial analysis as only that which is
strictly statistical spatial analysis (a dis-
tinction certainly made by Bailey (1998)
and endorsed by Ungerer and Goodchild
(2002)) resulting in the exclusion of some
of the more modelling-oriented approaches
described above. The lack of integration is
primarily due to the characterization of user
demand in determining what functionality is
incorporated into commercial GIS software.
Key to further integration is therefore the
unambiguous demonstration of the utility
of spatial analytical approaches which have
the capability of stirring up user demand
to see different types of tools within their
GIS environments. Operationally, Marble
sees the adoption of object-oriented data
models as one of the keys to advancing
integration. Moves in this direction in the
data architectures of major software such
as the most recent versions of ArcGIS
certainly provide far richer environments
for the customization of the GIS and the
writing of new spatial analysis tools using
languages such as VBA, as used by Ungerer
and Goodchild (2002). Longley and Batty
(2003a) trace the historical development
of GIS and its extension to incorporate
contemporary spatial analysis, specifically
drawing out the three themes of temporal and
spatial representation, agent and institutional
communications and geographical networks.
These are major areas in which both GIS and
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stand-alone spatial analysis software have a
long way to go. Again, it is the need for much
more sophisticated handling of space and
time and the incorporation of different types
of spatial computation that are the underlying
themes.

In the preceding sections we have
reviewed various examples of the relation-
ships between GIS and spatial analysis
which, despite differences of detail, display
remarkably little change over the last two
decades. It seems improbable that GIS
software intended for an increasingly wide
user base will ever incorporate a high level
of spatial analytical functionality as the use of
complex and advanced methods will never be
a concern of the ordinary GIS user. Although
the absolute levels of spatial analytical
functionality in GIS continues to increase, the
gap between populist software and research-
oriented analytical tools cannot be closed in
relative terms. More realistically, a ground-
swell of open software standards and, poten-
tially, grid-based computing applications may
make practical communication between GIS
software and the more sophisticated analysis
tools much easier. There is thus no greater
prospect of true convergence between GIS
and spatial analysis than at any previous time,
yet the two fields will continue to grow and
feed off one another. What we still need are
more realistic expectations of what drives
the design of commercial software and a
concerted effort on more sustainable ways of
embedding spatial analytical tools within the
broader GIS landscape.
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4
Geovisualization and

Geovisual Analytics

U r š k a D e m š a r

Geographic information science has
encountered a new challenge in the recent
explosion of availability of spatial data sets.
Current spatial data sets tend to be very
large – examples are the terabytes of data
generated by Earth Observation Satellites,
census databases and large databases of
climate and environmental data. The data
are recorded via sensors and monitoring
systems that capture many parameters, which
makes the data highly multidimensional.
Another trend which follows current
developments in spatial data interoperability
and management is that data from different
and until recently incompatible sources are
nowadays commonly integrated into larger
and even more multidimensional collections
(Miller and Han, 2001).

These data are regarded as a source of
potentially valuable knowledge, which exists
in the form of patterns and relationships

in the data. Uncovering such knowledge is
sometimes a difficult task, which current
computational methods are not always able
to perform, especially in large and highly
multidimensional data sets. This is where
visual exploratory data analysis becomes
useful, since multivariate visualization is one
way in which humans can deal with complex
data. Its purpose is to reveal knowledge in
the data which is not detectable by current
computational methods, but which can easily
be identified by the human visual system. The
value of visualization is in the fact that it
can force us to notice something in the data
that we never expected to see. As Plaisant
(2004) puts it, ‘Information visualization is
sometimes described as a way to answer
questions you didn’t know you had’.

This chapter discusses visualization as
means for exploring spatial data with the
aim to create new knowledge and provide
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new scientific insight. Visual data exploration
implies generation of new ideas through
creation, inspection and interpretation of
visual representations and can be considered
a part of Exploratory Data Analysis (EDA)
(Tukey, 1977). When looking at spatial data,
we are talking about Exploratory Spatial
Data Analysis (ESDA) (Unwin and Unwin,
1998). Visual exploration is essential as
the first step of data analysis and serves
to uncover any indications of what there
actually is in the data, to prompt ideas and
generate hypotheses. It is usually followed
by confirmatory data analysis and as the last
step by visual communication where results
are presented and disseminated in visual form
(DiBiase, 1990). This last step is the focus of
traditional cartography, which is beyond the
scope of this chapter.

The rest of this chapter is structured as
follows: the following section introduces
the general visualization terminology,
describes what role visualization plays in
data exploration, presents one of the many
possible classifications of visualization
methods and lists some examples of general
(not necessarily spatial) visualization
methods. The rest of the chapter focuses on
geospatial data, presents the state-of-the-art
in geovisualization research, lists a brief
selection of geovisualization software and
shows several examples. Finally, a new
emerging discipline of Geovisual Analytics
is introduced together with some of the future
challenges in geovisualization research.

4.1. INFORMATION VISUALIZATION
AND VISUAL DATA
EXPLORATION

Visualization is the graphical (as opposed
to textual or verbal) presentation of data.
It translates complex data into visual displays
where a human can look for structure,

patterns, trends and relationships that make
it easier to quickly perceive the signif-
icant aspects and characteristics of the
data. The main purpose of visualization
is to provide insight into data, which
is usually done by displaying them with
reduced complexity, while at the same
time preserving the interesting structure
characteristics and minimizing the loss of
information. ‘Scientific visualization’ was
first defined 20 years ago (McCormick
et al., 1987) as the use of computing
technology to create visual displays with
the goal to facilitate thinking and problem
solving. The term ‘data visualization’ some-
times stands as a synonym for scientific
visualization and is usually defined as
visualization of data that have a natural
geometric structure. A more general term
‘information visualization’ refers to graphical
representations of any type of data, including
abstract structures, such as trees, networks
or graphs. Even though borders between
these different terms are sometimes blurred,
in all cases the emphasis is on supporting
knowledge construction from visual displays
of data (Card et al., 1999; Fayyad et al.,
2002).

Knowledge construction from data is
the process of actively manipulating data
in order to discover patterns, relationships
or other abstract knowledge representations
that facilitate the understanding of the
phenomenon under investigation. All knowl-
edge construction is therefore a form of
pattern recognition. The most formidable
pattern recognition apparatus known to the
human race is the human brain, which can
analyze complex events in a short time
interval, recognize important patterns and
make decisions much more effectively than
any computer can do. The question is how
to enable this formidable apparatus to work
in the knowledge construction process. Given
that vision is the predominant sense and that
computers have been created to communicate
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with humans visually, computerized data
visualization provides an efficient connection
between data and mind to support the
data exploration process (Keim and Ward,
2003).

The main goal of visual data exploration
is to get an idea of what the data contain,
or what the data look like. This process
does not provide a complete understanding
of the phenomenon behind the data – that
is not the point. Visual data exploration is
intended to provide ideas about the general
characteristics of the data which are to serve
as a basis for new hypotheses. These can
then be further tested using confirmatory
data analysis methods (for example, statistics
or other mathematical methods). The obser-
vations can also be used to choose an
appropriate method for further scientific in-
depth analysis (Keim and Ward, 2003).

Visual data exploration is usually per-
formed in three steps according to the Visual
Information Seeking Mantra (Shneiderman,
1996): overview first, zoom and filter, then
details-on-demand. One of the fundamental
concepts in this process is interaction.
The user can typically interact with the
visualization in a number of different ways,
such as browsing, selecting, querying and
manipulating the graphical parameters or
displaying other available information about
the data – all with the goal to discover
interesting patterns which are valid, novel,
useful and comprehensible. A valid pattern
is general enough to apply to new data.
Novel means that the pattern is non-
trivial and unexpected. Usefulness refers
to the property that the pattern can be
used for either decision-making or further
scientific investigation. Comprehensibility
means that the pattern is simple enough
to be interpretable by humans, which is
important because the analyst’s trust in
the exploration result depends on how
comprehensible it is to him/her (Miller and
Han, 2001).

There are many ways to represent data
graphically. There are also many ways of
grouping these displays according to some
orderly fashion, such as for example if
their focus is geometric or symbolic, if the
display is static or dynamic, according to
the amount of structure the visualization
method requires, etc. One of the more
comprehensive classifications is presented by
Keim and Ward (2003), who construct a
three-dimensional space of visualizations by
classifying the methods according to three
orthogonal criteria: the data type, the type of
the visualization method and the interaction
method (Figure 4.1). Table 4.1 names some
examples of each type of visualization
methods according to Keim and Ward’s
classification – to give the reader some
idea what kind of methods we are talking
about. A more comprehensive coverage of
information visualization techniques can be
found for example in Card et al., (1999),
Ware (2000) or other recent books on
information visualization.

4.2. GEOVISUALIZATION AND
SPATIAL DATA EXPLORATION

Geovisualization or visualization of geospa-
tial data (any data with a given geographic
location) is defined as the use of visual
representations in order to employ the vision
to solve spatial problems (MacEachren et al.,
1999). It can be considered as a perceptual-
cognitive process of interpreting and under-
standing georeferenced visual displays and
‘provides theory, methods and tools for
visual exploration, analysis, synthesis and
presentation of geospatial data’ (MacEachren
and Kraak, 2001). While its roots lie in
cartography and geographic techniques for
representing spatial data, geovisualization
integrates these traditions with scientific
and information visualization principles and
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Figure 4.1 The three-dimensional space of visualizations (redrawn after Keim and Ward
(2003)).

developments in exploratory data analysis.
Research in this discipline dates several
decades back, starting with Bertin’s work
on cartographic design (Bertin, 1967/1983)
and followed by the establishment of
the Commission on GeoVisualization of
the International Cartographic Association
(ICA) in 1995 (ICA, 2008), which has
ever since played a major role in the
development of the discipline. For those
interested, a more detailed description of
the history of geovisualization can be found
in MacEachren et al., (2004). Let it suf-
fice to say that the area has advanced
from the first attempts of analyzing how
maps facilitate scientific thinking into a
broad multidisciplinary research discipline
that converges theory, methods and ideas
from information visualization, cartogra-
phy, graphic design, image analysis, per-
ception and cognition, computer science,
statistics, exploratory data analysis (EDA),

knowledge discovery in databases (KDD)
and geographic information science.

In addition to the challenges of ordi-
nary information visualization, namely the
volume and multidimensionality of data,
geovisualization faces a task of preserving
the richness and particular characteristics of
geospatial data (such as for example spatial
dependency and spatial heterogeneity). With
the display possibilities restricted to the
usual two or three dimensions plus perhaps
the additional dimension given by time and
animation, geovisualization provides a clear
linkage to the geographic space, so that the
user can relate the observed patterns to a
particular geographic location (Fotheringham
et al., 2000; Miller and Han, 2001). Most
current geovisualization systems attempt to
solve this problem by displaying data in
a number of linked displays – sometimes
called multiple linked views. These displays
typically include geographic visualizations,
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Table 4.1 Examples of visualization
methods, classified according to Keim and
Ward (2003)

Visualization type Examples of visualization

methods

Standard 2D/3D

displays

Line graphs and surfaces

(Figure 4.3)

A histogram

A kernel plot

A box-and-whiskers plot

A scatterplot

A contour plot

A pie chart

Geometrically

transformed

visualizations

Scatterplot matrix

Multiform bivariate matrix

(Figure 4.4) (MacEachren

et al., 2003)

Parallel coordinates plot

(Figure 4.4) (Inselberg,

2002)

Icon-based display

methods

Star icons (Fayyad et al.,

2002)

Chernoff faces (Chernoff,

1973)

Dense pixel

visualizations

Recursive pattern visualization

(Keim, 2002)

Circle segment view (Keim,

2002)

Spacefills (Figure 4.4)

(Gahegan et al., 2002)

Hierarchical

displays

Dendrogram as a top-down

rooted tree

(Müller-Hannemann, 2001),

combined with a scatterplot

(Seo and Shneiderman,

2002) or mapped on a

sphere – The Magic Eye

View (Kreuseler and

Schumann, 2002)

A treemap (Bederson et al.,

2002)

A sunburst (Stasko and Zhang,

2000)

such as maps or cartograms, as well as other
multivariate visualizations, for example any
of the visualization methods described in the
previous section or even constructs consisting
of several of those visualizations, such as

bivariate matrices or similar multi-displays
(see, for example, systems in Gahegan
et al., (2002), Takatsuka and Gahegan (2002),
G. Andrienko et al., (2003a), Dykes and
Mountain (2003), etc.). Roberts (2005) has
a more comprehensive list of examples.
All these displays are usually interactively
connected by the concept of brushing and
linking, which means that data elements
which are in some way interactively selected
in one display (usually either through mouse-
over operation, direct selection or by some
other interaction method) are simultaneously
highlighted or selected everywhere. This
provides a better visual impression and
facilitates pattern recognition across multiple
displays. The key word here is interaction:
high levels of interaction are necessary for
any kind of data exploration task (Dykes,
2005).

Sometimes the sheer volume and complex-
ity of the geospatial data makes it impossible
to rely solely on human vision for knowledge
discovery. Successful knowledge construc-
tion is therefore more likely if the advan-
tages of visual exploration are combined
with computational exploration methods. The
goal then becomes to construct visually
enabled knowledge discovery systems that
can facilitate the automatic process of pattern
and relationship recognition in complex
data and the subsequent interpretation of
the discovered patterns and relationships.
The data could, for example, first be
visually explored with direct manipulation
of the visual displays and then when some-
thing interesting appears, computational tools
could be applied. Alternatively computational
data mining can be used as a first pass and
the results can then be examined visually only
to reiterate the process with another pass of
computational mining and/or visual explo-
ration if required. By merging automatic and
visual exploration the flexibility, creativity
and knowledge of a person are combined with
the storage capacity and computational power
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of the computer which results in a faster
and more effective knowledge discovery.
In practice, however, how to enable such
synergy is not yet fully understood and the
problem of integrating combined and visual
exploration tools in the best manner is not
trivial to solve (MacEachren et al., 1999;
Shneiderman, 2001; MacEachren and Kraak,
2001).

Visual data exploration of spatial data has
several advantages: it is intuitive and does
not require understanding of complex math-
ematical and computational methodology. It
is also effective when little is known about
the data, when the exploration goals are
vague or when the data are noisy and/or
heterogeneous (Keim, 2002). On the other
hand, during visual exploration the analyst
typically looks at data from various perspec-
tives, at various scales and combines use
of multiple techniques and approaches. No
single visualization is capable of providing
all the required views of the data, from
the general overview to indicating various
anomalies and patterns. It is therefore often
necessary for the analyst to simultaneously
use several techniques for various purposes.
Different exploration tasks might also require
different visualizations. The fundamental
questions to address prior to any exploration
is what is the current task, what way of
thinking does it require and which tools best
support the task and way of thinking at hand
(Gahegan, 2005). Additionally, it is of course
also important to find out which visualization
methods are available and what type of data
and phenomena they are suitable for. This
is not the only complexity issue: during the
actual exploration, the analyst is required
to decompose the exploration problem into
smaller subproblems in a proper and efficient
manner which might be different for each
exploration task. In the last exploration step,
the fragmentary knowledge resulting from
each of the subproblem explorations needs to
be merged into a consistent interpretation for

the entire data set in order to obtain proper
understanding of the underlying phenomenon
and form appropriate hypotheses. Visual
exploration is therefore a complex process
which requires training and expertise to be
performed properly (G. Andrienko et al.,
2006).

An important issue to consider when devel-
oping new geovisualization tools is therefore
how users use these tools and how the tools
support particular exploration tasks. These
questions can be answered by investigating
the usability properties of the tools. Usability
is defined as ‘the extent to which a computer
system supports users to achieve specified
goals and does so effectively, efficiently, and
in a satisfactory way’ (Nielsen, 1993). The
idea behind usability is that information sys-
tems designed with their users’ psychology
and physiology in mind are easier to learn
and more efficient and satisfying to use.
The principle of usability originates from
user-centred design in Human–Computer
Interaction (HCI), which is a discipline that
explores the quality of interaction between
the users and information systems. One of the
basic requirements for developing a usable
and useful information system is knowledge
about users and how they use the system.
This is the basic principle of the user-centred
design, which is a philosophy where the
needs, wants, and limitations of the users
of an information system are given attention
at every stage of the design process (Preece
et al., 2002).

Design of exploratory geovisualization
tools has been technology driven for many
years. Tools and systems were developed
from a purely technical point of view,
where knowledge about users did not play
a major role. In recent years, however, the
approach has shifted towards user-centred
design with the aim of providing useful and
usable geovisualization tools which support
analytical reasoning (Fuhrmann et al., 2005).
While the importance of geovisualization
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tools for exploration of spatial data has
been generally recognized, the issues of
usability testing for geovisualization are
not exactly the same as those in human–
computer interaction and how the visual
tools support human analytical reasoning is
still not fully explained. Traditional usability
methods borrowed from human–computer
interaction therefore need to be adapted
accordingly. The key issue in visual data
exploration is the intuitive search process
in a visualized environment. It is therefore
necessary to incorporate physiological and
psychological findings about the process
of human vision as well as knowledge
of the relation between geospatial objects
and their representation in the process of
system engineering (Fuhrmann et al., 2005;
N. Andrienko and G. Andrienko 2006a).
The potentials and limitations of information
visualization tools have been explored in
numerous recent experiments focusing on
some aspect of the usability of geovisualiza-
tion tools (for example, N. Andrienko et al.,
2002; Suchan, 2002; Tobón, 2002; Edsall,
2003; Haklay and Tobón, 2003; Slocum et al.,
2003; Griffin, 2004; van Elzakker, 2004;
Ahonen-Rainio, 2005; Koua, 2005; Robinson
et al., 2005; Tobón, 2005; G. Andrienko et al.,
2006; Demšar, 2006, 2007a), but much still
remains to be investigated.

4.3. GEOGRAPHIC INFORMATION
SYSTEMS AND
GEOVISUALIZATION SOFTWARE

Today’s geovisualization is much more than
just map design, even though it is firmly
rooted in cartographic traditions of map
design and display. Most of the contemporary
commercial Geographic Information Systems
(GIS) provide a set of mapping tools, with
appropriate symbology, graphical represen-
tation, classification and so on; nevertheless

they differ from the information visualization
systems in several ways. For example,
data representation in GIS packages is
limited to predefined object- (point, line,
area) or field-based representations, while
information visualization software does not
usually have this assumption and treats
all data types as equal, regardless if this
makes sense geographically or not. This can
be beneficial to reveal patterns that would
otherwise remain obscured in traditional
geographic representations. Most of the GIS
also offer only limited support for dynamics,
animation, interactivity between a number
of different visualizations and any integrated
computational methods (although there are
some attempts to implement data mining
methods in the context of GIS, see for
example, Lacayo and Skupin, 2007).

On the other side of the story, there
exist numerous information visualization
environments that support development of
visual exploration systems for multivariate
data. Examples of well-known information
visualization environments are XGobi, R
and SPSS, but for this chapter, those that
focus on spatial data are more relevant.
Three that deserve a description here are
GeoVISTA Studio, CommonGIS and GeoDa,
but this selection is far from exhaustive and
new tools and environments are developed
continuously.

GeoVISTA Studio is a java-based
collection of various geographic and other
visualizations and computational data
mining methods (MacEachren et al., 1999;
Gahegan et al., 2000; Takatsuka, 2001; Dai
and Hardisty, 2002; Gahegan et al., 2002;
Gahegan and Brodaric, 2002; Takatsuka and
Gahegan, 2002; Guo, 2003; MacEachren
et al., 2003; Edsall, 2003; Guo et al., 2004;
Guo et al., 2005; Robinson et al., 2005).
Its components are implemented as Java
Beans, which are self-contained software
components that can be easily connected
into a customized data exploration system
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by visual programming. Furthermore, using
Java Beans technology makes it possible
to integrate external methods and bespoke
components in the system. Visualizations
include a parallel coordinates plot,
various bivariate visualizations (scatterplots,
spacefills, bivariate maps, etc.) that can be
either independent or elements in different
types of multiform matrices, as well as time
series visualizations and visual classifiers.
Computational methods include a statistics
package and several types of classification
methods (k-means, ISODATA, maximum
likelihood and a Self-Organising Map) with
respective visualizations. Studio is free
and can be downloaded from its website
http://www.geovistastudio.psu.edu. Two of
the figures in this chapter were produced
using GeoVISTA-based exploration systems
(Figures 4.4 and 4.5). A selection of
GeoVISTA components has recently been
assembled in an application version called the
GeoVizToolkit, which is freely available at
http://www.geovista.psu.edu/geoviztoolkit/.
This application has a user-friendly interface
and represents a good starting point for
learning how to explore multidimensional
spatial data. It is a lot easier to learn and
use than original GeoVISTA Studio, but it
does not provide the full functionality and
all computational capabilities of the Studio.

CommonGIS consists of various methods
for cartographic visualization, non-spatial
graphs, tools for querying, search and clas-
sification and computation-enhanced visual
techniques for exploration of spatio-temporal
data. Main features are interactive thematic
mapping techniques, statistical computa-
tions and displays, animated maps, dynamic
queries, table lenses, parallel coordinate plots
and time-aware geovisualization techniques.
All the tools have a high level of interaction
and are dynamically linked via highlighting,
selection and brushing. The system has
been gradually developed over a number
of years and was used by the authors

for exploration problems in such various
disciplines as social geography, forestry,
meteorology, seismology, crime and environ-
ment (G. Andrienko et al., 2003a, 2003b;
N. Andrienko et al., 2003; N. Andrienko and
G. Andrienko, 2006b). More information is
available from the authors’ homepage, http://
www.ais.fraunhofer.de/and.

GeoDa or Geodata analysis software
(Anselin et al., 2004) is an interactive
environment that provides a user-friendly
and graphical introduction to spatial analysis
for non-experts, from simple mapping to
more advanced exploratory data analysis.
The functionality ranges from spatial data
manipulation, data transformation, mapping –
including choropleth maps, cartograms and
map animation, to statistical graphic tools
for exploratory data analysis and the
visualization of various spatial statistical
characteristics, such as spatial autocorrelation
and spatial regression. GeoDa is also free
and is downloadable from http://www.geoda.
uiuc.edu.

4.4. SOME GEOVISUALIZATION
EXAMPLES

This section attempts to introduce the reader
to several examples of geovisualization. Due
to the constraints of this publishing medium
(a printed book) we are unfortunately limited
to present examples of these visualizations as
black and white images. Colour, animation
and interactivity, which are all integral parts
of geovisualization, are not supported. The
reader is therefore encouraged to follow up
the references in this section for a more
realistic illustration of what geovisualization
can do.

An alternative visualization to traditional
maps are cartograms, which distort the
display space according to a specific attribute
(Tobler, 2004). The objective of the distortion
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(a) (b)

Figure 4.2 An example of (a) a choropleth map of the proportion of residents in Social
Class 1 in the Electoral Divisions (EDs) of the Republic of Ireland and (b) an area cartogram
of the same phenomenon where the areas of EDs are scaled according to the population
size. Dark colour indicates a high proportion and light colour a low proportion of residents
of Social Class 1 (i.e., ‘rich’ residents) in a particular ED. On the cartogram in (b), the pattern
in Dublin can be clearly seen: the South side has the largest proportion of rich people, and
there are three areas in the north-east, north-west and south-west of the city where the
proportion of the rich is the lowest. This pattern can be barely recognized in the choropleth
map in (a), but the cartogram distortion makes it very eye-catching.

is to reveal patterns that are not apparent in
the conventional map. Typical examples are
linear cartograms, where the space (usually
represented as a spatial network) is distorted
according to some distance other than the
geometric one, for example travel time. Such
cartograms are commonly used to represent
public transit systems in larger cities –
any subway map or a map of commuter
rail services is typically a linear cartogram.
Another principle is to stretch the space
continuously according to the distribution of
values of some attribute, but to preserve the
general shape and adjacency of polygons to
produce an area cartogram (Tobler, 2004).
Figure 4.2 shows an example of a choropleth
map (Figure 4.2a) versus the area cartogram

of the same phenomenon (Figure 4.2b). The
figure shows two displays of the spatial
variation in the proportion of residents in
Social Class 1 in the Electoral Divisions
(EDs) of the Republic of Ireland in 2002.
Residents in Social Class 1 are the most
affluent. The map on the left (Figure 4.2a)
is drawn using the Irish National Grid
projection in which the polygons are scaled
in proportion to their land area. It is difficult
to see what spatial variations there are in
the main urban centres, and the boundaries
are visually intrusive. The areas in the
cartogram on the right (Figure 4.2b) have
been redrawn so that their areas are in
proportion to their population – this is an area
cartogram or a density equalized projection.
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The urban centres (starting from Dublin as
the largest distorted area located on the
east coast, followed by Waterford, Cork,
Limerick, Galway and Sligo in clockwise-
order along the coastline) become dominant
in the display, and we can easily see
the spatial variation in the proportions of
affluent residents across the country – a
spatial pattern which was not obvious in the
traditional choropleth map (Figure 4.2a). The
cartogram in this figure was produced using
the algorithm and software by Gastner and
Newman (2004).

Another example of a fairly common
geovisualization are 3D displays. These
project the three locational dimensions onto
a 2D display using a set of perceptual
depth cues to reinforce this projection,
such as perspective, occlusion and parallax
motion (Ware and Plumlee, 2005). Here
we present some examples of 3D geovi-
sualizations, but only in the context of
visual knowledge discovery from spatial
data. The reader can explore other issues,
such as the use of 3D georepresentations
in Virtual Reality and Virtual Environments,
elsewhere (two starting points for that would
be Fisher and Unwin (2002) and Bodum
(2005)).

One of the most common methods of
representing multivariate geospatial data in
three-dimensions for knowledge discovery
are surfaces, which are sometimes also
referred to as 2.5D representations when
displayed on the screen, as they are not liter-
ally three dimensional. A general approach
to produce a surface is to map the two
basic geographic dimensions, longitude and
latitude, to the x and y-axis respectively
and show the variable of interest on the
z-axis. Over this surface some other type
of geographic information can be draped to
provide texture: a thematic map or a satellite
image. Traditionally the attribute mapped
to the z-axis represents the third dimension
in the real world, such as the elevation

above the sea level or the depth of the sea
bottom (Kreuseler, 2000). In some cases, the
attribute mapped to the z-axis represents time
and instead of the surfaces, trajectories of
movements of objects are projected through
the display space. This type of geovisual-
ization is very common in time-geography
(Kraak and Koussoulakou, 2004) and in
transportation studies (Kwan, 2000, 2004).
In the third type of the surfaces the z-axis
attribute represents neither a real geographic
dimension nor time, but some other variable
of interest, such as the population density, the
temperature, the density of human activity or
travel (Kwan, 2000), or in geosciences the
magnetic variation or the kriging variance
(Carr, 2002). Figure 4.3 shows a surface
where the z-axis represents the concentration
of radon in the groundwater. The surface
is covered with two maps of the area,
one showing the bedrock and another one
showing locations of fractures (Demšar and
Skeppström, 2005). Visual exploration of
this representation clearly indicates that high
values of radon in this area (the highest peaks
of the surface) occur only on a particular type
of bedrock, which is shown with medium
grey shade.

Figure 4.4 shows a screenshot of a visual
exploratory system built using GeoVISTA
Studio. The system consists of a multiform
bivariate matrix, a geoMap and a parallel
coordinates plot (PCP), which all share the
same colour scheme (except the spaceFills
in the matrix). This principle of colouring
the graphical entities belonging to the same
data element with the same colour in
all visualizations is called visual brushing.
All visualizations are also connected by
interactive selection and brushing through
mouse-over operation – interaction, which
unfortunately cannot be adequately presented
through a simple screenshot image, but is
essential for successful data exploration.

The parallel coordinates plot (PCP) maps
the n dimensional space onto the two display
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Figure 4.3 A bedrock-fractures-radon visualization as a 2.5D surface. The height of the
surface represents the concentration of radon in the groundwater. Most of the peaks which
indicate high radon values are located on a certain type of bedrock, shown in medium grey
shade on the geological map, which is draped over the radon surface.

Figure 4.4 A GeoVISTA-based system displaying a synthetic spatial dataset (Demšar, 2006)
based on the famous iris data (Fisher, 1936).
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dimensions by using n equidistant parallel
vertical axes produced (Inselberg, 2002).
The axes correspond to the dimensions and
are linearly scaled from the minimum to
the maximum value of the corresponding
dimension. Each data item is then drawn as
a polygonal line intersecting each of the axes
at the point which corresponds to the data
value. Figure 4.4 shows an example.

A multiform bivariate matrix in Figure 4.4
is a generalization of a scatterplot matrix
and consists of univariate visualizations –
histograms on the diagonal and bivariate
visualizations at other positions in the
matrix (MacEachren et al., 2003). In the
matrix in Figure 4.4, scatterplots of each
corresponding pair of variables are located
above the diagonal and spacefills below the
diagonal. Spacefills are dense pixel bivariate
visualizations, where each data element is
represented by a grid square. The first of
the two variables defines the colour of each
square, ranging from light for low values
to dark for high values of the variable.
The second variable defines the order of the
squares inside the rectangular display: the
cell with the lowest value of this variable
is situated in the bottom-left corner, from
where the cells then proceed along a scan
line towards the cell with the highest value in
the top-right corner. If the attribute defining
the colour of the cells is correlated with the
attribute defining the order of the cells, there
is a relatively smooth transition from the
lightest to the darkest colour from bottom
to top (or from top to bottom). If the
correlation is weaker, the pattern appears
more scattered and if there’s no correlation,
all that can be seen is a random distribution
of the cells in the display (Gahegan et al.,
2002).

The geographic visualization in Figure 4.4
is the GeoVISTA’s geoMap, which is a
bivariate choropleth map, whose colour
scheme is defined by a cross-tabulation of the
two display attributes (Gahegan et al., 2002)

or can alternatively be inherited from other
visualizations through visual brushing as
mentioned above.

Notice the linear separability of the three
clusters in several scatterplots in the matrix:
the dark grey cluster can be linearly separated
from the light grey and the black one,
which are mixed in several displays. The
same clusters are clearly separated in the
petal length and petal width variables in
the PCP, but not in other dimensions. There
is also a distinct spatial pattern of the
three clusters in the map, where the black
cluster is separated from the other two. The
spacefills in the matrix indicate correlations
between several pairs of variables – the
strongest one seems to be between petal
length and petal width, where the pattern in
the relevant spacefill proceeds from white
to black in a relatively smooth manner.
Other spacefills display a completely random
distribution of cells, such as for example
the one in the row belonging to the leaf
length variable and the column belonging
to the sepal width variable – this indicates
that there is probably no correlation between
the corresponding two variables (which can
be confirmed by looking at the appropriate
scatterplot).

The visualization in Figure 4.5 shows
another type of GeoVISTA matrix – a
so-called fixed-row matrix (MacEachren
et al., 2003), where a selected row variable
(in this case sepal length) is mapped against
each of the column variables using a different
bivariate visualization for each row. In this
particular example the first row contains
bivariate choropleth maps of sepal length
vs. all other five variables, while the second
row shows scatterplots of the same pairs
of variables. Such matrices can either be
used separately or form a part of a larger
exploratory system as one of the multiple
linked views.

A popular recent approach to combine
visual and computational data exploration
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Figure 4.5 A fixed row matrix of bivariate visualizations, again a component from
GeoVISTA Studio and displaying the same data as in the previous figure.

is to use a Self-Organizing Map (SOM)
as the computational method together with
other spatial or non-spatial visualizations.
The SOM is an unsupervised neural network
which projects multidimensional data onto
a two-dimensional lattice of cells while
preserving the topology and the probability
density of the input data space. This means
that similar data vectors are mapped to the
same neuron cell or to the neighbour cells
in the two-dimensional output map, which
makes it useful as a knowledge discovery
tool (Kohonen, 1997; Silipo, 2003). The
SOM has been recently used for knowl-
edge discovery in a number of spatial
and spatio-temporal applications (Takatsuka,
2001; Gahegan et al., 2002; Jiang and
Harrie, 2004; Koua and Kraak, 2004; Guo
et al., 2005; Skupin and Hagelman, 2005;
Demšar, 2007b; Lacayo and Skupin, 2007;
Špatenková et al., 2007).

One reason for its popularity for inte-
gration into a visual system is that SOM
produces a very visualizable result due
to its two-dimensionality. Vesanto (1999)
lists a number of possible visualizations.
An example that we present here are the
component planes (Figure 4.6), where each

plane is a SOM lattice. In the D-matrix
the grey shade represents how similar each
cell is to its neighbours. Dark areas in the
D-matrix consist of very similar cells and
therefore represent clusters. Light areas in
contrast indicate borders between clusters. In
each other plane (except in the D-matrix) the
grey shade of each cell indicates the average
value of a particular attribute calculated from
values of all data elements assigned to that
cell. Relationships between attributes are
discovered by comparing the values in the
same area of the SOM lattice in different
planes.

While geographic location is the core
concept of geographic information science,
the visual models and methods that geog-
raphers and cartographers have been using
for a long time can also be applied to
the representation of objects, phenomena
or processes with spatial characteristics and
behaviour in abstract spaces. The use of
geographic and cartographic concepts to
represent data which are not inherently
spatial is called spatialization (Skupin and
Fabrikant, 2003). The aim is to systematically
transform highly multidimensional data into
spatial representations in lower-dimensional
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D-matrix

TYPE

NEAR_TYPE1 NEAR_TYPE2

NEAR_TYPE4 NEAR_TYPE5 AGE_DEN POP_DEN

NEAR_TYPE3

NORTH EAST NEAR_BUILD_DIST

NEAR_BUILD_TYPE

DAY_365 WEEKDAY HOUR

Figure 4.6 Visually discovering relationships between the spatio-temporal attributes from
the SOM component planes visualization. The image was produced using a spatio-temporal
data set of emergency response data (Špatenková et al., 2007) and the SOM toolbox for
Matlab.

abstract spaces with the goal to facilitate
data exploration and knowledge construc-
tion (Fabrikant et al., 2002). Examples of
spatializations are spatial representations of
scientific co-authorship networks (Newman,
2004), protein–receptor interaction networks
in medicine, genealogies and citation net-
works (Batagelj and Mrvar, 2003).

Figure 4.7 shows an example of a spa-
tialization: two different visualization of a
citation network of the GeoVISTA Studio
related papers from the reference list of this
chapter. In Figure 4.7(a), arrows indicate
citations, i.e., the paper that the arrow points
from cites the paper which the arrow points
to. The size of the vertices in Figure 4.7(a)

shows the in-degree of each publication,
i.e., how many other publications cite it.
The direction of the arrows is ignored in
Figure 4.7(b) and the size of vertices in this
picture represents the betweenness centrality
(from social network analysis (Freeman,
1979)) which measures the importance of
each vertex. Note that vertex representing the
paper by MacEachren et al., (1999) has a
high in-degree as well as high betweenness
because many other papers cite it, while the
relatively large betweenness of Guo et al.,
(2005) is a result of the fact that this paper
cites many other papers (even though it’s
never cited itself and has a low in-degree –
compare with Figure 4.7(a).
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(a)

(b)

Guo et al. 2005
Guo et al. 2004

MacEachren et al. 2003

MacEachren et al. 1999

MacEachren et al. 1999

MacEachren et al. 2003
Edsall 2003

Gahegan and Brodaric 2002

Gahegan et al. 2002

Gahegan et al. 2000

Edsall 2003

Gahegan 2000

Dai and Hardisty 2002

Takatsuka and Gahegan 2002

Takatsuka 2001

Takatsuka 2001

Guo 2003

Dai and Hardisty 2002

Gahegan and Brodaric 2002

Takatsuka and Gahegan 2002
Guo et al. 2005

Guo et al. 2004
Gahegan et al. 2000

Gahegan et al. 2002

Gahegan 2000

Guo 2003

Figure 4.7 A spatialization of a non-spatial phenomenon: the citation network of GeoVISTA
publications from the reference list of this chapter as (a) a directed and (b) an undirected
graph. The size of the vertices in (a) indicates the in-degree of each vertex and in (b) the
relative importance of the vertex in the network, measured by the betweenness centrality
(Freeman 1979). Spatial positions of the vertices were calculated according to their
in-degree in (a) and betweenness in (b). First the vertex with the highest in-degree/
betweenness was placed in a central position. Then the vertices with every lower
in-degree/betweenness value were iteratively placed in the nearest proximity while at the
same time minimizing the energy of the edges according to an energy-preserving
graph-drawing algorithm. The spatialization was produced using the Pajek software for
analysis and visualization of large networks (Batagelj and Mrvar, 2007).
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4.5. THE FUTURE: FROM
GEOVISUALIZATION TO
GEOVISUAL ANALYTICS

A recent new research area that has
emerged in information visualization is
Visual Analytics, which is defined as ‘the
science of analytical reasoning supported by
highly interactive visual interfaces’ (NVAC,
2005). Visual Analytics tools are used for
synthesizing information into knowledge,
derive insight from massive, dynamic and
conflicting data, discover the unexpected, and
provide and communicate timely and under-
standable assessments. The recent research
agenda (NVAC, 2005) for Visual Analytics
identifies four major research areas:

• the science of analytical reasoning, which

provides the reasoning framework to serve as the

basis for visual technologies for data analysis;

• visual representations and interaction techniques,

which provide the mechanism to see and

understand large volumes of data;

• data representations and transformations appro-

priate to the analytical task that correctly convey

the important content of large, complex and

dynamic data sets; and

• production, presentation and dissemination of

results, where the goal is to reduce the time to

present the results to the audience in a more

effective communication manner.

While the primary goal of developing
the Visual Analytics research agenda was
for US security purposes, the challenges
listed above will have impact on any field
of scientific research where understanding
complex and dynamic data is important.
Geovisualization is no exception. In this
context, a subfield of Visual Analytics
relevant for geovisualization is Geovisual
Analytics, which integrates perspectives from

Visual Analytics and geographic information
science for analysis of spatio-temporal
data. Geovisual Analytics is defined as
‘the science of analytical reasoning and
decision-making with geospatial information,
facilitated by interactive visual interfaces,
computational methods, and knowledge con-
struction, representation, and management
strategies’ (G. Andrienko et al., 2007). The
four research areas defined in the research
agenda of Visual Analytics are also appli-
cable for Geovisual Analytics and the tools
developed in the Geovisual Analytics context
are starting to be of increasing importance
for various applications fields, such as crisis
management (Tomaszewski et al., 2007) and
spatial decision support (G. Andrienko et al.,
2007).

Apart from the above-mentioned research
areas which are common to Geovisual and
Visual Analytics, there are many questions
in geovisualization which are related to the
particularities of geospatial data and phe-
nomena and thereby inherently characteristic
to our discipline. Here we present a short
selection of topics, although the list is far
from exhaustive – the reader is encouraged
to turn to the following sources for a more
comprehensive review and a research agenda
(MacEachren and Kraak, 2001; Dykes et al.,
2005; Andrienko et al., 2007; ICA, 2008).

Support for collaborative group work and

distributed geovisualization: with the advent
of ubiquitous computing, many potential
application areas for Geovisual Analytics will
require actions distributed over geographic
space and time. Such tasks will include
exploration of various spatio-temporal dis-
tributions of complex data and events, and
will be physically performed in more than
one location. Geovisual Analytics tools of
the future should be able to support such
exploration. This is particularly important in
situations where the users do not have time
to consider all possible solutions to their
problems or cannot afford to search for an
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optimal one, such as in, for example, crisis
management. In order to deal efficiently with
time pressure and stress in such situations,
Geovisual Analytics tools need to provide
support for a shared collaborative work
during a process where key parameters
change quickly, such as, for example, for spa-
tial decision support in emergencies. Open
issues here range from developing distributed
system architectures to intelligent solutions
that support fast knowledge capture, rational
reasoning and time-critical spatial decision
making.

A related topic is mobile geovisualization

and location-based visual exploration.
Present technological advances in mobile
communications and the ubiquity of various
mobile devices (mobile phones, PDAs,
BlackBerries, etc.) are likely to change the
way people use information systems – and
this includes tools for geovisualization and
Geovisual Analytics. The emerging location-
based personalization raises not only
technical questions such as how to perform
on-the-fly location-based computation or
how to display as much information as
possible without losing the clarity on a small
display of most of today’s mobile devices,
but also conceptual issues, for example the
use of individually personalized dynamic
egocentric maps (Meng, 2004; Meng,
2005) instead of the traditional geocentric
visualizations that remain static for a longer
period and aim to communicate geographic
information to a variety of users.

Finally, one of the recurrent topics in
visualization research are cognitive and

perceptual questions and evaluation of the

tools. Not only are visualization tools difficult
to evaluate objectively, the results of such
evaluations might not be replicable nor
generalizable and are in general difficult
to interpret (Plaisant, 2004). Additionally,
there exist some evidence that there may
be fundamental differences between infor-
mation visualization and geovisualization

(Tobón, 2005), which implies that the
cognitive processes that must be supported
in geovisualization are different and possibly
more complex than when non-spatial data are
investigated. Experiments have also shown
that there exist significant interpersonal
differences in the way people visually explore
spatial data, how they interpret what they
see and what exploration strategies they form
(G. Andrienko et al., 2006; Demšar, 2006,
2007a). All this suggests that visual data
exploration is inherently complex. What can
be done to alleviate the complexity? How
is the ability to use the tools related to
users’ background and experience? These are
just some questions to be considered. In
order to resolve them, work on technological
advances should be combined with work on
human spatial cognition to fully reveal the
potential of visual representations to support
spatial analytical reasoning, spatial problem
solving and spatial decision making.
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5.1. INTRODUCTION

The explosive growth of spatial data and
widespread use of spatial databases empha-
size the need for the automated discov-
ery of spatial knowledge. Spatial data
mining (Roddick and Spiliopoulou, 1999;
Shekhar and Chawla, 2003) is the process
of discovering interesting and previously
unknown, but potentially useful patterns
from spatial databases. The complexity of
spatial data and intrinsic spatial relationships
limit the usefulness of conventional data
mining techniques for extracting spatial
patterns. Efficient tools for extracting infor-
mation from geo-spatial data are crucial to
organizations which make decisions based
on large spatial datasets, including NASA,
the National Imagery and Mapping Agency,

the National Cancer Institute, and the
United States Department of Transportation.
These organizations are spread across many
application domains including ecology and
environmental management, public safety,
transportation, Earth science, epidemiology,
and climatology.

Extracting interesting and useful pat-
terns from spatial datasets is more diffi-
cult than extracting corresponding patterns
from traditional numeric and categorical
data. Specific features of spatial data that
preclude the use of general purpose data
mining algorithms are: (a) rich data types
(e.g., extended spatial objects) (b) implicit
spatial relationships among the variables,
(c) observations that are not independent,
and (d) spatial autocorrelation among the
features.
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This chapter is organized as follows. In
section 5.2, we provide an overview of spatial
data. Section 5.3 presents important statis-
tical concepts used in spatial data mining.
Spatial Data Mining techniques, the main
focus of this chapter, are explained in
section 5.4. Specifically, we present major
accomplishments in mining output patterns
known as predictive models, semi-supervised
approaches, outliers, co-location rules, and
clustering. In section 5.5, we briefly review
the computational processes for spatial data
mining techniques. Finally, in section 5.6, we
identify areas of spatial data mining where
further research is needed. This chapter does
not discuss spatial statistics or algorithm-
level computational processes in depth as
these topics are beyond the scope of this
chapter.

5.2. DATA INPUT

The data inputs of spatial data mining are
more complex than the inputs of classical
data mining because they include extended
objects such as points, lines, and polygons.
The data inputs of spatial data mining
have two distinct types of attributes: non-
spatial attribute and spatial attribute. Non-
spatial attributes are used to characterize
non-spatial features of objects, such as name,
population, and unemployment rate for a city.
They are the same as the attributes used
in the data inputs of classical data mining.
Spatial attributes are used to define the
spatial location and extent of spatial objects
(Bolstad, 2002). The spatial attributes of a
spatial object most often include information
related to spatial locations, e.g., longitude,
latitude and elevation, as well as shape.

Relationships among non-spatial objects
are explicit in data inputs, e.g., arithmetic
relation, ordering, is instance of, subclass of,
and membership of. In contrast, relationships

among spatial objects, such as overlap, inter-
sect, and behind are often implicit. Table 5.1
lists non-spatial relationships and their cor-
responding spatial relationship. One possible
way to deal with implicit spatial relationships
is to materialize the relationships into tra-
ditional data input columns and then apply
classical data mining techniques (Agrawal
and Srikant, 1994; Jain and Dubes, 1988;
Quinlan, 1993). However, the materialization
can result in loss of information. Another way
to capture implicit spatial relationships is to
develop models or techniques to incorporate
spatial information into the spatial data
mining process. We discuss a few case studies
of such techniques in section 5.4.

The representation of spatial data and use
of spatial operators has been standardized
by the Open GIS (OGIS) consortium for
interoperability of spatial applications, such
as Geographic Information Systems. OGIS
defines standard spatial data types which can
be used in combination to represent a spatial
object. Some examples of OGIS data types
include Point, Curve, Surface, and Geometry

Collection. In addition to specifying data
types, the OGIS standard also includes three
categories of spatial operations: (a) basic
spatial operations which can to applied to all

Table 5.1 Relationships among non-spatial
data and spatial data

Non-spatial relationship Spatial relationship

(explicit) (often implicit)

Arithmetic Set-oriented: union, intersection,

membership, · · ·
Ordering Topological: meet, within,

overlap, · · ·
Is instance of Directional: North, NE, left,

above, behind, · · ·
Subclass of Metric: e.g., distance, area,

perimeter, · · ·
Part of Dynamic: update, create,

destroy, · · ·
Membership of Shape-based and visibility
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geometry datatypes, e.g., to find the boundary
of a spatial object, (b) operations to test
for topological relationship between objects,
e.g., to find if two spatial objects overlap,
and (c) operations to perform spatial analysis,
e.g., to calculate the shortest distance path
between two spatial objects.

A recent topic of research is the representa-
tion of spatial data which have an associated
temporal aspect. A location based service is
an example in which a service is offered
based on the location and time of an entity.
Current OGIS standards do not yet support
such systems.

5.3. STATISTICAL FOUNDATION

Readers of this handbook will be exposed to
more statistical foundations in later chapters.
Here we address only the basic concepts
needed to follow the rest of this chapter.

Statistical models (Cressie, 1993) are often
used to represent observations in terms of
random variables. These models can then
be used for estimation, description, and pre-
diction based on probability theory. Spatial
data can be thought of as resulting from
observations on the stochastic process Z(s) :
s ∈ D, where s is a spatial location and D is
possibly a random set in a spatial framework.
Here we present three spatial statistical
problems one might encounter: point process,
lattice, and geostatistics.

Point process
A point process is a model for the spatial
distribution of the points in a point pattern.
Several natural processes can be modeled
as spatial point patterns, e.g., positions of
trees in a forest and locations of bird habitats
in a wetland. Spatial point patterns can be
broadly grouped into random or non-random
processes. Real point patterns are often
compared with a random pattern (generated

by a Poisson process) using the average
distance between a point and its nearest
neighbor. For a random pattern, this average
distance is expected to be 1/(2 ×

√
density),

where density is the average number of
points per unit area. If for a real process,
the computed distance falls within a certain
limit, then we conclude that the pattern is
generated by a random process; otherwise it
is a non-random process.

Lattice
A lattice is a model for a gridded space
in a spatial framework. Here the lattice
refers to a countable collection of regular or
irregular spatial sites related to each other
via a neighborhood relationship. Several
spatial statistical analyses, e.g., the spatial
autoregressive model and Markov random
fields can be applied on lattice data.

Geostatistics
Geostatistics deals with the analysis of spatial
continuity and weak stationarity (Cressie,
1993), which is an inherent characteristic of
spatial datasets. Geostatistics provides a set
of statistics tools, such as kriging (Cressie,
1993), to the interpolation of attributes at
unsampled locations.

One of the fundamental assumptions of
statistical analysis is that the data samples
are independently generated: like successive
tosses of coin, or the rolling of a die.
However, in the analysis of spatial data,
the assumption about the independence of
samples is generally false. In fact, spatial
data tends to be highly self correlated. For
example, people with similar characteristics,
occupation and background tend to cluster
together in the same neighborhoods. The
economies of a region tend to be similar.
Changes in natural resources, wildlife, and
temperature vary gradually over space. The
property of like things to cluster in space is so
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Figure 5.1 Attribute values in space with independent identical distribution and spatial
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fundamental that geographers have elevated
it to the status of the first law of geography:
Everything is related to everything else but

nearby things are more related than distant

things (Tobler, 1979). In spatial statistics,
an area within statistics devoted to the
analysis of spatial data, this property is
called spatial autocorrelation (Shekhar and
Chawla, 2003). For example, Figure 5.1
shows the value distributions of an attribute
in a spatial framework for an independent
identical distribution (Figure 5.1(a)) and
a distribution with spatial autocorrelation
(Figure 5.1(b)).

Knowledge discovery techniques which
ignore spatial autocorrelation typically
perform poorly in the presence of spatial
data. Often the spatial dependencies arise
due to the inherent characteristics of the
phenomena under study, but in particular
they arise due to the fact that the spatial
resolution of imaging sensors are finer than
the size of the object being observed. For
example, remote sensing satellites have
resolutions ranging from 30 m (e.g., the
Enhanced Thematic Mapper of the Landsat 7
satellite of NASA) to 1 m (e.g., the IKONOS
satellite from SpaceImaging), while the

objects under study (e.g., urban, forest,
water) are often much larger than 30 m. As
a result, per-pixel-based classifiers, which
do not take spatial context into account,
often produce classified images with salt and
pepper noise. These classifiers also suffer in
terms of classification accuracy.

The spatial relationship among locations in
a spatial framework is often modeled via a
contiguity matrix. A simple contiguity matrix
may represent a neighborhood relationship
defined using adjacency, Euclidean distance,
etc. Example definitions of neighborhood
using adjacency include a four-neighborhood
and an eight-neighborhood. Given a uni-
form gridded spatial framework, a four-
neighborhood assumes that a pair of locations
influence each other if they share an edge.
An eight-neighborhood assumes that a pair
of locations influence each other if they share
either an edge or a vertex.

Figure 5.2(a) shows a gridded spatial
framework with four locations, A, B,
C, and D. A binary matrix representa-
tion of a four-neighborhood relationship is
shown in Figure 5.2(b). The row-normalized
representation of this matrix is called a
contiguity matrix, as shown in Figure 5.2(c).
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Figure 5.2 A spatial framework and its four-neighborhood contiguity matrix.

Other contiguity matrices can be designed
to model neighborhood relationships based
on distance. The essential idea is to specify
the pairs of locations that influence each
other along with the relative intensity of
interaction. More general models of spatial
relationships using cliques and hypergraphs
are available in the literature (Warrender and
Augusteijn, 1999). In spatial statistics, spatial
autocorrelation is quantified using measures
such as Ripley’s K-function and Moran’s I

(Cressie, 1993).
A topic of recent interest in the field of

spatial statistics is multiscale modeling. Since
most physical and human processes vary
with spatial scale, multi-scale representation
is very important. Much of the current work
related to multi-scale modeling lacks a formal
statistical framework. However, Kolaczyk
et al. (2005) use statistical models called
mixlets which allow representation of spatial
information at multiple scales.

5.4. OUTPUT PATTERNS

In this section, we present spatial data mining
techniques for different output patterns:
predictive models, spatial clustering, semi-
supervised learning, spatial outliers, and
spatial co-location rules.

5.4.1. Predictive models

The prediction of events occurring at partic-
ular geographic locations is very important
in several application domains. Examples of
problems which require location prediction
include crime analysis, cellular networking,
and natural disasters such as fires, floods,
droughts, vegetation diseases, and earth-
quakes. Here we describe one such problem
domain and provide two spatial data mining
techniques for predicting locations, namely
the Spatial Autoregression Model (SAR) and
Markov Random Fields (MRF).

An application domain
We begin by introducing an example to
illustrate the different concepts related to
location prediction in spatial data mining. We
are given data about two wetlands, named
Darr and Stubble, on the shores of Lake Erie
in Ohio, USA in order to predict the spatial
distribution of a marsh-breeding bird, the red-
winged blackbird (Agelaius phoeniceus). The
data was collected from April to June in two
successive years, 1995 and 1996.

A uniform grid was imposed on the two
wetlands and different types of measurements
were recorded at each cell or pixel. In total,
the values of seven attributes were recorded
at each cell. Domain knowledge is crucial
in deciding which attributes are important
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Figure 5.3 (a) Learning dataset: the geometry of the Darr wetland and the locations of the
nests, (b) the spatial distribution of vegetation durability over the marshland, (c) the spatial
distribution of water depth, and (d) the spatial distribution of distance to open water.

and which are not. For example, vegeta-

tion durability was chosen over vegetation

species because specialized knowledge about
the bird-nesting habits of the red-winged
blackbird suggested that the choice of nest
location is more dependent on plant structure,
plant resistance to wind, and wave action than
on the plant species.

An important goal is to build a model for
predicting the location of bird nests in the
wetlands. Typically, the model is built using
a portion of the data, called the learning or

training data, and then tested on the remain-
der of the data, called the testing data. In this
study a model was built using the 1995 Darr
wetland data and then tested using the 1995
Stubble wetland data. In the learning data,
all the attributes are used to build the model
and in the training data, one value is hidden,
in this case the location of the nests. Using
knowledge gained from the 1995 Darr data
and the value of the independent attributes in
the test data, the goal is to predict the location
of the nests in the 1995 Stubble data.
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Modeling spatial dependencies using the
SAR and MRF models
Several previous studies (Jhung and Swain,
1996; Solberg et al., 1996) have shown that
the modeling of spatial dependency (often
called context) during the classification
process improves overall classification
accuracy. Spatial context can be defined by
the relationships between spatially adjacent
pixels in a small neighborhood. In this
section, we present two approaches to
modeling spatial dependency: the SAR and
MRF-based Bayesian classifiers.

Spatial autoregression model
The spatial autoregressive model decom-
poses a classifier fˆC into two parts,
namely spatial autoregression and logis-
tic transformation. We first show how
spatial dependencies are modeled using the
framework of logistic regression analysis. In
the spatial autoregression model, the spatial
dependencies of the error term, or, the
dependent variable, are directly modeled in
the regression equation (Anselin, 1988). If
the dependent values yi are related to each
other, then the regression equation can be
modified as

y = ρWy + Xβ + ε (5.1)

Here W is the neighborhood relationship
contiguity matrix and ρ is a parameter
that reflects the strength of the spatial
dependencies between the elements of the
dependent variable. After the correction term
ρWy is introduced, the components of the
residual error vector ε are then assumed to
be generated from independent and identical
standard normal distributions. As in the case
of classical regression, the SAR equation has
to be transformed via the logistic function for
binary dependent variables.

We refer to this equation as the Spatial
Autoregressive Model (SAR). Notice that
when ρ = 0, this equation collapses to
the classical regression model. The bene-
fits of modeling spatial autocorrelation are
many: the residual error will have much
lower spatial autocorrelation (i.e., systematic
variation). With the proper choice of W , the
residual error should, at least theoretically,
have no systematic variation. If the spatial
autocorrelation coefficient is statistically sig-
nificant, then SAR will quantify the presence
of spatial autocorrelation. It will indicate the
extent to which variations in the dependent
variable ( y) are explained by the average of
neighboring observation values. Finally, the
model will have a better fit, (i.e., a higher
R-squared statistic).

Markov random field-based Bayesian
classifiers
Markov random field-based Bayesian clas-
sifiers estimate the classification model fˆC
using MRF and Bayes’ rule. A set of random
variables whose interdependency relationship
is represented by an undirected graph (i.e., a
symmetric neighborhood matrix) is called
a Markov random field (Li, 1995). The
Markov property specifies that a variable
depends only on its neighbors and is
independent of all other variables. The
location prediction problem can be modeled
in this framework by assuming that the class
label, li = fC(si), of different locations,
si, constitutes an MRF. In other words,
random variable li is independent of lj
if W (si, sj) = 0.

The Bayesian rule can be used to predict
li from feature value vector X and neighbor-
hood class label vector Li as follows:

Pr
(
li
∣∣X, Li

)
=

Pr
(
X
∣∣ li, Li

)
Pr
(
li
∣∣Li

)

Pr (X)
.

(5.2)
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The solution procedure can estimate
Pr(li | Li) from the training data, where Li

denotes a set of labels in the neighborhood
of si, excluding the label at si, by examining
the ratios of the frequencies of class labels
to the total number of locations in the spatial
framework. Pr(li | Li) can be estimated
using kernel functions from the observed
values in the training dataset. For reliable
estimates, even larger training datasets are
needed relative to those needed for the
Bayesian classifiers without spatial context,
since we are estimating a more complex
distribution. An assumption on Pr(li | Li)
may be useful if the training dataset available
is not large enough. A common assumption
is the uniformity of influence from all
neighbors of a location. For computational
efficiency it can be assumed that only local
explanatory data X(si) and neighborhood
label Li are relevant in predicting class label
li = fC(si). It is common to assume that all
interaction between neighbors is captured
via the interaction in the class label variable.
Many domains also use specific parametric
probability distribution forms, leading to
simpler solution procedures. In addition, it
is frequently easier to work with a Gibbs
distribution specialized by the locally defined
MRF through the Hammersley–Clifford
theorem (Besag, 1974).

A more detailed theoretical and experi-
mental comparison of these methods can be
found in Shekhar et al. (2002). Although
MRF and SAR classification have different
formulations, they share a common goal,
estimating the posterior probability distri-
bution: p(li | X). However, the posterior for
the two models is computed differently
with different assumptions. For MRF the
posterior is computed using Bayes’ rule.
On the other hand, in logistic regres-
sion, the posterior distribution is directly
fit to the data. One important difference
between logistic regression and MRF is that
logistic regression assumes no dependence

on neighboring classes. Logistic regression
and logistic SAR models belong to a
more general exponential family. The expo-
nential family is given by Pr(u | v) =
exp (A(θv) + B(u, p) + θT

v u)u where u, and v

are location and label respectively. This expo-
nential family includes many of the common
distributions such as Gaussian, Binomial,
Bernoulli, and Poisson as special cases.

Experiments were carried out on the Darr
and Stubble wetlands to compare classi-
cal regression, SAR, and the MRF-based
Bayesian classifiers. The results showed that
the MRF models yield better spatial and
classification accuracies over SAR in the
prediction of the locations of bird nests.
It was also observed that SAR predictions
are extremely localized, missing actual nests
over a large part of the marshlands (Shekhar
et al., 2002).

5.4.2. Spatial clustering

Spatial clustering is a process of grouping
a set of spatial objects into clusters so
that objects within a cluster have high
similarity in comparison to one another, but
are dissimilar to objects in other clusters.
For example, clustering is used to determine
the ‘hot spots’ in crime analysis and disease
tracking. Hot spot analysis is the process
of finding unusually dense event clusters
across time and space. Many criminal justice
agencies are exploring the benefits provided
by computer technologies to identify crime
hot spots in order to take preventive strategies
such as deploying saturation patrols in hot
spot areas.

Spatial clustering can be applied to group
similar spatial objects together; the implicit
assumption is that patterns in space tend to
be grouped rather than randomly located.
However, the statistical significance of spatial
clusters should be measured by testing the
assumption in the data. The test is critical
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before proceeding with any serious clustering
analyses.

Complete spatial randomness, cluster,
and decluster
In spatial statistics, the standard against
which spatial patterns are often compared is
a completely spatially random point process,
and departures indicate that the pattern is
not distributed randomly in space. Complete

spatial randomness (CSR) (Cressie, 1993) is
synonymous with a homogeneous Poisson
process. The patterns of the process are
independently and uniformly distributed over
space, i.e., the patterns are equally likely to
occur anywhere and do not interact with each
other. However, patterns generated by a non-
random process can be either cluster patterns
(aggregated patterns) or decluster patterns
(uniformly spaced patterns).

To illustrate, Figure 5.4 shows realiza-
tions from a completely spatially random
process, a spatial cluster process, and a
spatial decluster process (each conditioned
to have 80 points) in a square. Notice
in Figure 5.4(a) that the complete spatial
randomness pattern seems to exhibit some
clustering. This is not an unrepresentive real-
ization, but illustrates a well-known property

of homogeneous Poisson processes: event-
to-nearest-event distances are proportional to
χ2 random variables, whose densities have a
substantial amount of probability near zero
(Cressie, 1993). Spatial clustering is more
statistically significant when the data exhibit
a cluster pattern rather than a CSR pattern or
decluster pattern.

Several statistical methods can be applied
to quantify deviations of patterns from a
complete spatial randomness point pattern
(Cressie, 1993). One type of descriptive
statistic is based on quadrats (i.e., well
defined area, often rectangular in shape).
Usually quadrats of random location and
orientations in the quadrats are counted,
and statistics derived from the counters
are computed. Another type of statistic is
based on distances between patterns; one
such type is Ripley’s K-function (Cressie,
1993).

After the verification of the statistical
significance of the spatial clustering, classical
clustering algorithms (Han et al., 2001) can
be used to discover interesting clusters.

Clustering point process
As discussed in section 5.3, a point process
is a model for the spatial distribution of

(a) Complete spatial
 randomness (CSR)
 pattern

(b) Cluster pattern (c) Decluster pattern

Figure 5.4 Illustration of CSR, cluster, and decluster patterns.
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Figure 5.5 Marked spatial point process. Spatial locations for different female chimpanzees
at the Gombe National Park, Tanzania.

the spatial points in a point pattern. A point
process in which each of the spatial locations
is marked with a unique label is called
a marked spatial point process. Clustering
of marked spatial point processes is an
interesting problem in many application
domains. For example, in behavioral ecology,
ecologists are interested in finding clusters
of individual chimpanzees based on their
space usage, which usually consists of several
spatial points for each individual. An example
of marked spatial point processes is shown in
Figure 5.5.

The problem of clustering marked spatial
point processes is a generalization of the
problem of clustering spatial points, where
instead of a single spatial location for
each category, we have multiple spatial
locations for each category. Each category
is a spatial point process. Classical cluster-
ing approaches handle homogeneous spatial
points and hence cannot cluster marked
spatial point processes. A very limited
amount of research has been done in the area
of clustering marked spatial point processes.
(Han et al., 2001).

A data mining technique for clustering
marked spatial point processes is proposed
by (Shekhar et al., 2006). This algorithm is
based on the intuition that the intra-cluster
similarity must be significantly higher than
the inter-cluster similarity. During clustering,

Besag’s L-function (Besag, 1977), which is
a modified version of Ripley’s K-function
(Cressie, 1993), is used to quantify the
second-order interaction between point pro-
cesses. This measure provides the correlation
between the observed and expected pairs of
points at a certain distance from each other.
Based on the value of this measure, marked
point processes can be clustered hierarchi-
cally, to produce a dendrogram or a block
diagonal matrix, which can be analyzed by
domain experts to find a threshold level to
identify proper clusters.

5.4.3. Semi-supervised learning

The methods described in the previous
section are examples of supervised learn-
ing algorithms. In supervised methods, the
model is built using a training dataset.
For example, in a remote sensing image,
training data will be a collection of
labeled pixels. Practically, it is very dif-
ficult to collect labels for all training
data. Hence an approach which does not
require many labeled samples is needed.
Such an approach which uses less labeled
samples and a large number of unlabeled
samples is called semi-supervised learning
(Vatsavai and Shekhar, 2005). Based on the
Expectation–Maximization (EM) algorithm,
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Figure 5.6 Illustration of different approaches in Classification. ‘+’ and ’−‘ indicates labeled
data, ‘o’ indicates unlabeled data.

maximum likelihood, and maximum a poste-

riori classifiers, the semi-supervised method
utilizes a small set of labeled and a large
number of unlabeled training samples to
build a model.

Figure 5.6 illustrates the difference
between different approaches used in
classification. The supervised approach
shown in Figure 5.6(a) requires many
labeled data, in this case ‘+’ and ‘−’ to build
a model. An unsupervised approach does not
require any training dataset to build a model.
The semi-supervised approach shown in
Figure 5.6(c) uses a small number of labeled
and a large number of unlabeled datasets to
build a model.

A semi-supervised approach is better than
using a supervised approach with a smaller
number of labeled samples. Figure 5.7
shows an example which proves that
including an unlabeled dataset and using
a semi-supervised approach improves the

classification model. Figure 5.7 shows clas-
sification of satellite imagery into different
classes. Figure 5.7(a) is obtained by using
100 labeled data points in the training dataset.
The model obtained using only 20 labeled
data points is shown in Figure 5.7(b). As
it can be seen the model with a lesser
number of labeled data points is poorer as
compared to the model with a greater number
of data points. However, the model with a
lesser number of labeled data points can be
improved by including unlabeled data points
and using a semi-supervised technique. The
resulting model is shown in Figure 5.7(c).

5.4.4. Spatial outliers

Outliers have been informally defined as
observations in a dataset which appear to be
inconsistent with the remainder of that set
of data (Barnett and Lewis, 1994), or which
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Figure 5.7 Illustration of supervised and semi-supervised approach.

deviate so much from other observations so
as to arouse suspicions that they were gen-
erated by a different mechanism (Hawkins,
1980). The identification of global outliers
can lead to the discovery of unexpected
knowledge and has a number of practical
applications in areas such as credit card
fraud, athlete performance analysis, voting
irregularity, and severe weather prediction.
This section focuses on spatial outliers, i.e.,
observations which appear to be inconsistent
with their neighborhoods. Detecting spatial
outliers is useful in many applications of
geographic information systems and spatial
databases, including transportation, ecology,
public safety, public health, climatology, and
location-based services.

A spatial outlier is a spatially referenced
object whose non-spatial attribute values
differ significantly from those of other
spatially referenced objects in its spatial
neighborhood. Informally, a spatial outlier is
a local instability (in values of non-spatial
attributes) or a spatially referenced object
whose non-spatial attributes are extreme
relative to its neighbors, even though the
attributes may not be significantly different
from the entire population. For example,
a new house in an old neighborhood of a

growing metropolitan area is a spatial outlier
based on the non-spatial attribute house age.

Illustrative examples
We use an example to illustrate the dif-
ferences among global and spatial outlier
detection methods. In Figure 5.8(a), the
X-axis is the location of data points in
one-dimensional space; the Y -axis is the
attribute value for each data point. Global
outlier detection methods ignore the spatial
location of each data point and fit the
distribution model to the values of the non-
spatial attribute. The outlier detected using
this approach is the data point G, which
has an extremely high attribute value 7.9,
exceeding the threshold of µ + 2σ = 4.49 +
2 × 1.61 = 7.71, as shown in Figure 5.8(b).
This test assumes a normal distribution
for attribute values. On the other hand,
S is a spatial outlier whose observed value
is significantly different than its neighbors
P and Q.

Tests for detecting spatial outliers
Tests to detect spatial outliers separate
spatial attributes from non-spatial attributes.
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Figure 5.8 A dataset for outlier detection.

Spatial attributes are used to characterize
location, neighborhood, and distance. Non-
spatial attribute dimensions are used to
compare a spatially referenced object to its
neighbors. The spatial statistics literature
provides two kinds of bi-partite multidi-
mensional tests, namely graphical tests and
quantitative tests. Graphical tests, which are
based on the visualization of spatial data,
highlight spatial outliers. Example methods
include variogram clouds and Moran scatter-
plots. Quantitative methods provide a precise
test to distinguish spatial outliers from the
remainder of data. Scatterplots (Anselin,
1994) are a representative technique from the
quantitative family.

A variogram-cloud (Cressie, 1993) dis-
plays data points related by neighborhood
relationships. For each pair of locations,
the square-root of the absolute difference
between attribute values at the locations
versus the Euclidean distance between the
locations are plotted. In datasets exhibiting
strong spatial dependence, the variance in
the attribute differences will increase with
increasing distance between locations. Loca-
tions that are near to one another, but with
large attribute differences, might indicate a
spatial outlier, even though the values at

both locations may appear to be reasonable
when examining the dataset non-spatially.
Figure 5.9(a) shows a variogram cloud for
the example dataset shown in Figure 5.8(a).
This plot shows that two pairs (P, S) and
(Q, S) on the left-hand side lie above the main
group of pairs, and are possibly related to
spatial outliers. The point S may be identified
as a spatial outlier since it occurs in both
pairs (Q, S) and (P, S). However, graphical
tests of spatial outlier detection are limited
by the lack of precise criteria to distinguish
spatial outliers. In addition, a variogram
cloud requires non-trivial post-processing of
highlighted pairs to separate spatial outliers
from their neighbors, particularly when
multiple outliers are present, or density varies
greatly.

A Moran scatterplot (Anselin, 1995) is
a plot of a normalized attribute value
(Z[ f ( i)] = (f (i) − µf )/θf ) against the neigh-
borhood average of normalized attribute val-
ues (W • Z), where W is the row-normalized
(i.e.,

∑
j Wi j = 1) neighborhood matrix,

(i.e., Wi j > 0 iff neighbor (i, j)). The
upper left and lower right quadrants of
Figure 5.9(b) indicate a spatial association of
dissimilar values: low values surrounded by
high value neighbors (e.g., points P and Q),
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Figure 5.9 Variogram cloud and Moran scatterplot to detect spatial outliers.

and high values surrounded by low values
(e.g., point S). Thus we can identify points
(nodes) that are surrounded by unusually high
or low value neighbors. These points can be
treated as spatial outliers.

A scatterplot (Anselin, 1994) shows
attribute values on the X-axis and the average
of the attribute values in the neighborhood
on the Y -axis. A least square regression
line is used to identify spatial outliers.
A scatter sloping upward to the right indicates
a positive spatial autocorrelation (adjacent
values tend to be similar); a scatter sloping
upward to the left indicates a negative spatial
autocorrelation. The residual is defined as the
vertical distance (Y -axis) between a point P

with location (Xp, Yp) to the regression line
Y = mX + b, that is, residual ε = Yp −
(mXp + b). Cases with standardized residuals,
εstandard = (ε − µε)/σε, greater than 3.0 or
less than −3.0 are flagged as possible spatial
outliers, where µε and σε are the mean and
standard deviation of the distribution of the
error term ε. In Figure 5.10(a), a scatterplot
shows the attribute values plotted against the
average of the attribute values in neighboring
areas for the dataset in Figure 5.8(a). The
point S turns out to be the farthest from the
regression line and may be identified as a
spatial outlier.

A location (sensor) is compared to its
neighborhood using the function S(x) =
[ f (x) − Ey∈N(x)( f ( y))], where f (x) is the
attribute value for a location x, N(x) is the
set of neighbors of x, and Ey∈N(x)( f ( y)) is
the average attribute value for the neighbors
of x. The statistic function S(x) denotes the
difference of the attribute value of a sensor
located at x and the average attribute value
of x’s neighbors.

Spatial statistic S(x) is normally distributed
if the attribute value f (x) is normally dis-
tributed. A popular test for detecting spatial
outliers for normally distributed f (x) can be
described as follows: spatial statistic Zs(x) =
|(S(x) − µs)/σs| > θ . For each location
x with an attribute value f (x), the S(x) is
the difference between the attribute value at
location x and the average attribute value of
x’s neighbors, µs is the mean value of S(x),
and σs is the value of the standard deviation
of S(x) over all stations. The choice of θ

depends on a specified confidence level. For
example, a confidence level of 95 percent will
lead to θ ≈ 2.

Figure 5.10(b) shows the visualization of
the spatial statistic method described above.
The X-axis is the location of data points
in one-dimensional space; the Y -axis is
the value of spatial statistic Zs(x) for each
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Figure 5.10 Scatterplot and Spatial Statistic Zs(x ) to Detect Spatial Outliers.

data point. We can easily observe that point
S has a Zs(x) value exceeding 3, and will be
detected as a spatial outlier. Note that the two
neighboring points P and Q of S have Zs(x)

values close to −2 due to the presence of
spatial outliers in their neighborhoods.

Designing computationaly efficient tech-
niques to find spatial outliers is important.
One efficient method is to compute the global
statistical parameters using a spatial join
(Shekhar et al., 2003). In this method, the
algorithm computes the algebraic aggregate
functions in a single scan of a spatial self-join
from a spatial dataset using a neighborhood
relationship. The computed values from
the algebraic aggregate functions can be
used to validate the outlier measure of a
dataset.

A drawback in most of the techniques to
detect multiple spatial outliers is that some
of the data points are misclassified, i.e., either
some of the true spatial outliers are ignored
or some points are wrongly identified as
spatial outliers. This misclassification occurs
because most algorithms tend not to take into
account the effect of an outlier in the neigh-
borhood of another outlier. To overcome this
problem, iterative algorithms and a median-
based non-iterative algorithm can be used.

In the iterative algorithms (Kou et al., 2003),
only one outlier is detected in each iteration,
and then its attribute value is modified in
subsequent iterations so that it does not have
a negative impact in detecting a new outlier.
The median-based algorithm (Kou et al.,
2003) reduces the impact of the presence of
data points with extreme high or low attribute
values.

5.4.5. Spatial co-location rules

Boolean spatial features are geographic
object types which are either present or
absent at different locations in a two-
dimensional or three-dimensional metric
space, e.g., the surface of the Earth. Examples
of Boolean spatial features include plant
species, animal species, road types, cancers,
crime, and business types. Co-location pat-
terns represent the subsets of the Boolean
spatial features whose instances are often
located in close geographic proximity. Exam-
ples include symbiotic species, e.g., Nile
crocodile and Egyptian plover in ecology, and
frontage roads and highways in metropolitan
road maps.
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Figure 5.11 (a) Illustration of point spatial co-location patterns. Shapes represent different
spatial feature types. Spatial features in sets {‘+’, ‘×’,} and (‘o’, ‘∗’) tend to be located
together. (b) Co-location between roads and rivers. (Courtesy: Architecture Technology
Corporation).

Co-location rules are models to infer
the presence of Boolean spatial features
in the neighborhood of instances of other
Boolean spatial features. For example, ‘Nile
Crocodiles Egyptian Plover’ predicts the
presence of Egyptian Plover → birds in areas
with Nile Crocodiles. Figure 5.11(a) shows
a dataset consisting of instances of several
Boolean spatial features, each represented by
a distinct shape. A careful review reveals
two co-location patterns, i.e., {‘+’, ‘×’}
and {‘◦’, ‘∗’}

Co-location rule discovery is a process
to identify co-location patterns from large
spatial datasets with a large number of
Boolean features. The spatial co-location
rule discovery problem looks similar to,
but, in fact, is very different from the
association rule mining problem (Agrawal
and Srikant, 1994) because of the lack
of transactions. In market basket datasets,
transactions represent sets of item types
bought together by customers. The support
of an association is defined to be the fraction
of transactions containing the association.
Association rules are derived from all the

associations with support values larger than a
user given threshold. The purpose of mining
association rules is to identify frequent item
sets for planning store layouts or marketing
campaigns. In the spatial co-location rule
mining problem, transactions are often not
explicit. The transactions in market basket
analysis are independent of each other.
Transactions are disjoint in the sense of not
sharing instances of item types. In contrast,
the instances of Boolean spatial features
are embedded in a continuous space and
share a variety of spatial relationships (e.g.,
neighbor) with each other.

Co-location rule approaches
Approaches to discovering co-location rules
can be categorized into two classes, namely
spatial statistics, and data mining approaches.
Spatial statistics-based approaches use mea-
sures of spatial correlation to characterize
the relationship between different types of
spatial features. Measures of spatial cor-
relation include the cross K-function with
Monte Carlo simulation (Cressie, 1993),
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Figure 5.12 Example to illustrate different approaches to discovering co-location
patterns (a) Example dataset. (b) Transaction based approach. Support measure is
ill-defined and order sensitive. (c) A distance-based approach with k -neighbouring
class sets. (d) A distance-based approach with event-centric model.

mean nearest-neighbor distance, and spatial
regression models. Computing spatial corre-
lation measures for all possible co-location
patterns can be computationally expensive
due to the exponential number of candidate
subsets given a large collection of spatial
Boolean features.

Data mining approaches can be further
divided into a clustering-based map over-
lay approach and association rule-based
approaches. A clustering-based map overlay
approach treats every spatial attribute as
a map layer. The spatial clusters (regions)
of point-data in each layer are candidates
for mining associations. Given X and Y as
sets of layers, a clustered spatial association
rule is defined as X ⇒ Y (CS, CC%),
for X ∩ Y = φ, where CS is the
clustered support, defined as the ratio of
the area of the cluster (region) that satisfies
both X and Y to the total area of the
study region S. CC% is the clustered
confidence, which can be interpreted as the
percentage of area of clusters (regions) of
X that intersect with the area of clusters
(regions) of Y .

Association rule-based approaches can be
divided into transaction- and distance-based
approaches. Transaction-based approaches
focus on defining transactions over space so
that an a priori-like algorithm can be used.

Transactions over space can be defined by
a reference-feature centric model. Under
this model, transactions are created around
instances of one user-specified spatial feature.
The association rules are derived using the
a priori (Agarwal et al., 1993) algorithm.
The rules formed are related to the reference
feature. For example, consider the spatial
dataset in Figure 5.12(a) with three feature
types, A, B and C, each of which has two
instances. The neighborhood relationships
between instances are shown as edges.
Co-locations (A, B) and (B, C) may be
considered to be frequent in this example.
Figure 5.12(b) shows transactions created
by choosing C as the reference feature.
Co-location (A, B) will not be found since
it does not involve the reference feature.
Generalizing the paradigm of forming rules
related to a reference feature to the case
where no reference feature is specified is non-
trivial. Also, defining transactions around
locations of instances of all features may
yield duplicate counts for many candidate
associations.

A distance-based approach was proposed
concurrently by Morimoto (2001) and
Shekhar and Huang (2001). Morimoto
defined distance-based patterns called
k-neighboring class sets, in which instances
of objects are grouped together based on
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their Euclidean distance from each other. In
Morimoto’s work, the number of instances
for each pattern is used as the prevalence
measure, which does not possess an
anti-monotone property by nature. Since anti-
monotonicity is required for such algorithms,
Morimoto used a non-overlapping constraint
to get the anti-monotone property for
this measure. Also, it is possible that the
instances of a k-neighboring class set are
different depending on the order the class
is added into the class set. This in turn
yields different values of support of a
given colocation. Figure 5.12(c) shows
two possible partitions for the dataset of
Figure 5.12(a), along with the supports for
co-location (A, B).

The distance-based approach by
Shekhar and Huang (2001) eliminates
the non-overlapping-instance constraint.
Their event-centric model finds subsets
of spatial features likely to occur in a
neighborhood around instances of given
subsets of event types. For example, let
us determine the probability of finding at
least one instance of feature type B in the
neighborhood of an instance of feature type
A in Figure 5.12(a). There are two instances
of type A and both have some instance(s)

of type B in their neighborhoods. The
conditional probability for the co-location
rule is: spatial feature A at location l →
spatial feature type B in neighborhood is

100%. This yields a well-defined prevalence
measure (i.e., support) without the need for
transactions. Figure 5.12(d) illustrates that
the event-centric model will identify both
(A, B) and (B, C) as frequent patterns.

Prevalence measures and conditional prob-
ability measures, called interest measures, are
defined differently in different models, as
summarized in Table 5.2. The transaction-
based and distance-based k-neighboring class
sets ‘materialize’ transactions and thus can
use traditional support and confidence mea-
sures. The event-centric approach defined
new transaction free measures, e.g., the
participation index (see Shekhar and Huang
(2001) for details).

To find co-locations, much of the time is
spent in computing joins to identify instances
of candidate co-location patterns. To decrease
this computation time, a partial-join based
approach (Yoo, 2004) or a join-less approach
(Yoo, 2006) can be used. In the partial-
join based approach, the number of instance
joins for identifying candidate co-locations
are minimized by transactionizing a spatial

Table 5.2 Interest measures for different co-location approaches

Model Items Transactions

defined by

Interest measures for C 1 → C 2 Algorithm

Prevalence Conditional probability

Transaction based Predicates on

reference

and relevant

features

Instances of

reference feature

C 1 and C 2

involved with

Fraction of

instance of

reference feature

with C 1 ∪C 2

Pr (C 2 is true for an

instance of reference

features given C 1 is

true for that

instance of reference

feature)

A priori

Distance-based

k -neighboring

class sets

Boolean

feature types

A partitioning of

spatial dataset

Fraction of

partitions with

C 1 ∩ C 2

Pr (C 2 in a partition

given C 1 in that

partition)

Partition-based

Distance-based

event-centric

Boolean

feature types

Neighborhoods of

instances of

feature types

Participation index

of C 1 ∪ C 2

Pr (C 2 in a

neighborhood of C 1)

Join-based and

Join-less
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dataset under a neighbor relationship and
tracing only residual neighborhood instances
cut apart via the transactions. The key compo-
nent is identifying instances of co-locations
split across explicit transactions.

The join-less approach uses an instance-
look-up scheme instead of an expensive spa-
tial join for identifying co-location instances.
Without any loss of co-location instances, this
approach is more efficient and scalable for
dense data than the join-based method.

5.5. COMPUTATIONAL PROCESS

Many generic algorithmic strategies have
been generalized to apply to spatial data
mining. For example, as shown in Table 5.3,
algorithmic strategies, such as divide-and-
conquer, filter-and-refine, ordering, hierarchi-
cal structure, and parameter estimation, have
been used in spatial data mining.

In spatial data mining, spatial autocorre-
lation and low dimensionality in space (e.g.,
2–3) provide more opportunities to improve
computational efficiency than classical data
mining. NASA Earth observation systems
currently generate a large sequence of global
snapshots of the Earth, including various
atmospheric, land, and ocean measurements
such as sea surface temperature, pressure,
precipitation, and net primary production.
Each climate attribute in a location has a

Table 5.3 Algorithmic strategies in spatial
data mining.

Generic Spatial data mining

Divide-and-conquer Space partitioning

Filter-and-refine Minimum-bounding-rectangle

(MBR)

Ordering Plane sweeping, Space-filling

curves

Hierarchical structures Spatial index, tree matching

Parameter estimation Parameter estimation with spatial

autocorrelation

sequence of observations at different time
slots, e.g., a collection of monthly tem-
peratures from 1951–2000 in Minneapolis.
Finding locations where climate attributes
are highly correlated is frequently used to
retrieve interesting relationships among spa-
tial objects of Earth science data. For exam-
ple, such queries are used to identify the land
locations whose climate is severely affected
by El Niño. However, such correlation-based
queries are computationally expensive due to
the large number of spatial points, e.g., more
than 250k spatial cells on the Earth at a 0.5
degree by 0.5 degree resolution, and the high
dimensionality of sequences, e.g., 600 for the
1951–2000 monthly temperature data.

A spatial indexing approach proposed
by Zhang et al. (2003) exploits spatial
autocorrelation to facilitate correlation-based
queries. The approach groups similar time
series together based on spatial proximity
and constructs a search tree. The queries are
processed using the search tree in a filter-and-
refine style at the group level instead of at the
time series level. Algebraic analyses using
cost models and experimental evaluations
showed that the proposed approach saves a
large portion of computational cost, ranging
from 40% to 98% (see Zhang et al. (2003)
for details).

An important task in most of the spatial
data mining techniques is to estimate the
values of parameters. Inclusion of an auto-
correlation parameter for spatial data mining
increases the computation cost. For example,
in the SAR model, we have to estimate the
value of the spatial autocorrelation parameter,
ρ and value of the regression coefficient β.
Estimation of such parameters is done using
maximum likelihood (ML) and Bayesian
based techniques. A number of algorithms
used for parameter estimation in a SAR
model are provided in Table 5.4.

Maximum likelihood based SAR solution
involves computation of two terms; a cheaper
sum-of-squares error (SSE) term and a
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Table 5.4 Classification of algorithms for spatial autoregression model (Celik et al., 2006)

Method used Exact Approximate

Maximum Applying direct sparese matrix

likelihood algorithms, eigenvalue based

1-D surface

Partitioning

ML based matrix exponential specification, graph theory approach, Taylor

series approximation, Chebyshev polynomial approximation method,

semiparametric estimates, characteristic polynomial approach, double

bounded likelihood estimator, upper and lower bounds via divide and

conquer, spatial autoregression local estimation

Bayesian None Bayesian matrix exponential specification, Markov Chain Monte Carlo

(MCMC)

computationally expensive term, called the
likelihood function, which involves a number
of computations of determinant of a large
matrix. ML-based solutions can be divided
into exact and approximate solutions based
on how they compute the computationally
intensive term. Exact solutions suffer from
high computational complexities and mem-
ory requirements. Approximate solutions are
computationally feasible but many of these
formulations still suffer from large memory
requirements. One way to reduce the compu-
tational complexity of exact SAR solutions
is to reduce the number of computation of
a large martix in its likelihood function.
This is done by setting an upper bound on
the spatial autocorrelation parameter (Celik
et al., 2006).

5.6. RESEARCH NEEDS

In this section, we discuss some areas where
further research is needed in spatial data
mining.

5.6.1. Comparison of classical data
mining techniques with
spatial data mining
techniques

As discussed in section 5.2, relationships
among spatial objects are often implicit.

It is possible to materialize the implicit
relationships into traditional data input
columns and then apply classical data
mining techniques (Quinlan, 1993; Barnett
and Lewis, 1994; Agrawal and Srikant,
1994; Jain and Dubes, 1988). Another
way to deal with implicit relationships
is to use specialized spatial data mining
techniques, e.g., spatial autoregression and
co-location mining. However, the exist-
ing literature does not provide guidance
regarding the choice between classical data
mining techniques and spatial data mining
techniques to mine spatial data. New research
is needed to compare the two sets of
approaches in effectiveness and computa-
tional efficiency.

5.6.2. Spatial interest measures

The interest measures of patterns in spatial
data mining are different from those in
classical data mining, especially regarding
the four important output patterns shown in
Table 5.5.

For a two-class problem, the standard way
to measure classification accuracy is to cal-
culate the percentage of correctly classified
objects. However, this measure may not be
the most suitable in a spatial context. Spatial
accuracy – how far the predictions are from
the actuals – is equally important in this
application domain due to the effects of the
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Table 5.5 Interest measures of patterns for classical data mining and spatial data mining

Classical data mining Spatial data mining

Predictive model Classification accuracy Spatial accuracy

Cluster Low coupling and high cohesion in feature space Spatial continuity, unusual density, boundary

Outlier Different from population or neighbors in feature

space

Significant attribute discontinuity in geographic

space

Association Subset prevalence,

Pr [B ∈ T | A ∈ T , T : a transaction]
Correlation

Spatial pattern prevalence

Pr [B ∈ N (A) | N : neighborhood ] cross

K -Function
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= nest location
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A  =  actual nest in pixel
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Figure 5.13 (a) The actual locations of nests. (b) Pixels with actual nests, (c) Location
predicted by a model. (d) Location predicted by another model. Prediction (d) is spatially
more accurate than (c).

discretizations of a continuous wetland into
discrete pixels, as shown in Figure 5.13.
Figure 5.13(a) shows the actual locations of
nests and Figure 5.13(b) shows the pixels
with actual nests. Note the loss of information
during the discretization of continuous space
into pixels. Many nest locations barely fall
within the pixels labeled ‘A’ and are quite
close to other blank pixels, which represent
‘no-nest’. Now consider the two predictions
shown in Figure 5.13(c) and (d). Domain sci-
entists prefer prediction (d) over (c), since the
predicted nest locations are closer on average
to some actual nest locations. However,
the classification accuracy measure cannot
distinguish between Figure 5.13(c) and (d)
since spatial accuracy is not incorporated in
the classification accuracy measure. Hence,
there is a need to investigate proper measures
for location prediction to improve spatial
accuracy.

5.6.3. Spatio-temporal data mining

Spatio-temporal data mining is done to
extract patterns which have both spatial and
temporal dimensions. Two examples where
spatio-temporal data mining could be useful
are – in a transportation network, to detect
patterns of vehicle movement; and in a
location based service, where a service can
be offered to a customer by predicting his
future location.

Consider a location-based service. It relies
on tracking the positions of a mobile object.
Since the positions change continuously,
large volumes of updates are required on the
database side. Mining the frequently used
paths of a mobile object will reduce the
number of updates required on the database.
The main challenge here is to reduce the
communication between the mobile object
and the system (Civilis and Jensen, 2005).
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Finding spatio-temporal sequential patterns
is another research area in spatio-temporal
data mining. The traditional sequential pat-
tern mining algorithms are not applicable for
spatio-temporal data. A recent algorithm to
find such patterns is given in Cao and Cheung
(2005).

Another challenge in spatio-temporal data
mining is to find co-evolving spatial pat-
terns. A spatially co-located pattern repre-
sents a pattern in which the instances are
often located in close geographic proximity.
Co-evolving spatial patterns are co-located
spatial patterns whose temporal occurences
are correlated with a special time series. For
example, droughts and fires in Australia show
similar variation as El Niño index values over
the last 50 years (Taylor, 1998). Finding co-
evolving spatial patterns is computationally
expensive. Most of the methods in the
literature do not work well for co-evolving
spatial patterns because they do not consider
the temporal domain of the co-location
pattern. An efficient algorithm which takes
temporal domain into account is proposed by
Rogers et al. (2006).

5.6.4. Improving computational
efficiency

Mining spatial patterns is often computation-
ally expensive. For example, the estimation
of the parameters for the spatial autore-
gressive model is an order of magnitude
more expensive than that for linear regression
in classical data mining. Similarly, the co-
location mining algorithm is more expensive
than the a priori algorithm for classical asso-
ciation rule mining (Agrawal and Srikant,
1994). Research is needed to reduce the
computational costs of spatial data mining
algorithms by a variety of approaches includ-
ing the classical data mining algorithms as
potential filters or components.

5.6.5. Modeling semantically
rich spatial properties, such
as topology

The spatial relationship among locations in
a spatial framework is often modeled via
a contiguity matrix using a neighborhood
relationship defined using adjacency and
distance. However, spatial connectivity
and other complex spatial topological
relationships in spatial networks are
difficult to model using the continuity
matrix. Research is needed to evaluate the
value of enriching the continuity matrix
beyond the neighborhood relationship.
Another area with research potential is
modeling of 3D topographic data (Penninga,
2005).

5.6.6. Statistical interpretation
models for spatial patterns

Spatial patterns, such as spatial outliers
and co-location rules, are identified in
the spatial data mining process using
unsupervised learning methods. There is
a need for an independent measure of
the statistical significance of such spatial
patterns. For example, we may com-
pare the co-location model with dedicated
spatial statistical measures, such as Ripley’s
K-function, characterize the distribution of
the participation index interest measure
under spatial complete randomness using
Monte Carlo simulation, and develop a
statistical interpretation of co-location rules
to compare the rules with other patterns in
unsupervised learning.

Another challenge is the estimation of the
detailed spatial parameters in a statistical
model. Research is needed to design effective
estimation procedures for the continuity
matrices used in the spatial autoregres-
sive model and Markov random field-based
Bayesian classifiers from learning samples.
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5.6.7. Effective visualization of
spatial relationships

Visualization in spatial data mining is useful
to identify interesting spatial patterns. As
we discussed in section 5.2, the data inputs
of spatial data mining have both spatial
and non-spatial features. To facilitate the
visualization of spatial relationships, research
is needed on ways to represent both spatial
and non-spatial features.

For example, many visual representations
have been proposed for spatial outliers.
However, we do not yet have a way to
highlight spatial outliers within visualiza-
tions of spatial relationships. For instance,
in variogram cloud (Figure 5.9(a)) and
scatterplot (Figure 5.10(b)) visualizations,
the spatial relationship between a single
spatial outlier and its neighbors is not
obvious. It is necessary to transfer the
information back to the original map in
geographic space to check neighbor rela-
tionships. Since a single spatial outlier
tends to flag not only the spatial location
of local instability but also its neighboring
locations, it is important to group flagged
locations and identify real spatial outliers
from the group in the post-processing
step.

5.6.8. Preprocessing spatial
data

Spatial data mining techniques have been
widely applied to the data in many appli-
cation domains. However, research on the
preprocessing of spatial data has lagged
behind. Hence, there is a need for pre-
processing techniques for spatial data to
deal with problems such as treatment of
missing location information and impre-
cise location specifications, cleaning of
spatial data, feature selection, and data
transformation.

5.7. SUMMARY

This chapter discussed major research
accomplishments and techniques in spatial
data mining, especially those related to
four important output patterns: predictive
models, spatial outliers, spatial co-location
rules, and spatial clusters. Research needs
in the area of spatial data mining were also
identified.
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6
Spatial Autocorrelation

M a r i e - J o s é e F o r t i n a n d M a r k R . T . D a l e

6.1. INTRODUCTION

Objects in natural systems (e.g., tree species
in a forest) are rarely randomly distributed
over space. In fact, they usually have
some degree of patchiness (i.e., they are
spatially clustered). Spatial aggregation of
objects produces a variety of distinct spatial
patterns that can be characterized by the
size and shape of the aggregations, and
can be quantified according to the degree
of similarity between the objects in their
attributes or quantitative values. These prop-
erties of spatial patterns can be indicative
of the underlying processes and factors that
generate and modify them through time.
This is why in most disciplines (geography,
economics, ecology, evolution, epidemiol-
ogy, environmental science, genetics, etc.),
the first step toward the understanding of
phenomena is to determine whether the actual
locations (coordinates) of observational data
matter in explaining the spatial arrangement.
So, the primary quest is to investigate and

to test whether nearby objects tend to have
similar attributes or to be more clustered
(Figure 6.1(a)) than expected from random-
ness alone (Figure 6.1(b)). The presence of
spatial structure in quantitative data means
that similarity varies with distance between
the locations and how this variation is
affected by distance is known as the structure
of the variable’s spatial autocorrelation. In
natural systems, it is the norm to have
a mosaic of patches with different spatial
autocorrelation structures (Figure 6.1). As
spatial structures have their own intensity
(magnitude) and size (extent) that make
them distinct, they are usually easy to
detect. In fact, it is the presence of spatial
patterns that creates scale; if there were
only spatial randomness around us there
would be no need to determine the spatial
sampling design (Delmelle, in this volume;
Fortin et al., 1989). We therefore need to
detect the spatial patterns and determine
the scope of their temporal and spatial
scales.
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(c)(b)(a)

Figure 6.1 Spatial patterns. (a) Positive spatial autocorrelation where cells with similar
values (gray tones) are nearby forming a patch. (b) Spatial randomness. (c) Negative spatial
autocorrelation where nearby cells have dissimilar values showing spatial repulsion.

Just as there is ‘no smoke without fire’,
there is no spatial pattern without the under-
lying processes that create it. Hence, spatial
patterns in data can act as indicators of
the processes that have occurred over a
given region. If it was simple and there
was a straightforward match between the
spatial pattern and the generating process, we
could identify and understand immediately
the phenomenon under study. Of course
it is not that simple. In fact, it is quite
complex because several processes can take
place through time each operating at a
given spatial and temporal scale (Fortin and
Dale, 2005; Green et al., 2005). Moreover,
spatial patterns are shaped by a sequence
of processes, all varying in duration and
in intensity. Consequently, data are the
end-product of an amalgam of interacting
processes (Fortin and Dale, 2005; Wagner
and Fortin, 2005).

The factors and processes that affect data
can be coarsely divided into two kinds:
those that induce spatial dependence (most
spatially distributed environmental factors)
and those that generate spatial autocorrelation
(Figure 6.2). In our grouping of environmen-
tal factors, we include all physical initial
conditions of a region based on geology,

geomorphology, topography, and hydrology.
Similarly, we refer loosely to processes as
any events (such as disturbance, dispersal,
species interactions) that change the spatial
pattern or the state of the variable under
study. As illustrated in Figure 6.2, seed spatial
aggregation can be mainly due to their need
for a specific soil type. This will be a case
of spatial dependency where the seeds are
patchy at the scale of the study area but
not necessarily at the scale of the soil patch.
Seeds’ abundance at a given location i, j can
be modeled by a regression function of the
effects of environmental factors where the
error terms (εi, j) are independent:

seedsi,j

= f (soili,j,moisturei,j,topographyi,j,etc.)

+εi,j.

Non-uniform seed dispersal will also
result in seed patchiness (Figure 6.2). Seed
patchiness is due to the process of dispersal
and refers to the degree of spatial autocor-
relation of the seeds. Here, the distribution
of seeds can be modeled, including the
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(a)

(b)

Figure 6.2 Sources of spatial structures. (a) Spatial dependence where the spatial
distribution of environmental factors (here soil types A and B) constrained seeds spatial
distribution. The gray polygons represent different soil types where black seeds (circles) can
grow only soil type A (light gray polygon) and white seeds on soil type B (dark gray
polygon). (b) Spatial autocorrelation, on top of the spatial dependence described in (a),
where the seeds are dispersed by the trees.

effects of the environmental factors, and
adding the effect of spatial dependence (ρ)
among seed abundance values as function
of distance (d((i,j),(∼i,∼j))) between a location
(i, j) and nearby locations (∼i, ∼j), as an
autoregressive component (Anselin, in this
volume; Lichstein et al., 2002), and having
independent errors (εi, j):

seedsi,j

= f (soili,j,moisturei,j, topographyi,j,etc.)

+ρd((i,j),(∼i,∼j))(seeds∼i,∼j)+εi,j.

As in the case of spatial dependence of the
environmental variables, the seed dispersal
process created spatial patchiness at the scale
of the study area, as well as at the scale of
the soil type.

Furthermore, seed abundance as a func-
tion of environmental factors and pro-
cesses and the errors could include some
degree of spatial dependency (Haining, 2003;

Henebry, 1995):

seedsi,j

= f (soili,j,moisturei,j, topographyi,j,etc)

+(ρd(i,j,∼i,∼j)ε∼i,∼j +εi,j).

This effect results in a statistical problem
because the error terms are not independent
of locations. Spatially dependent errors
impair the use of both parametric significance
testing and randomization tests (Cliff and
Ord, 1981; Fortin and Dale, 2005; Fortin and
Jacquez, 2000; Haining, 2003).

Ideally, to understand natural systems we
would like to be able to separate the spatial
structure due to the environmental factors
from that due to spatial autocorrelation
generated by the processes themselves. This
worthwhile task is complicated because there
are feedback effects between existing spatial
patterns and processes that act on them
that modify both the spatial patterns and
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the processes (Wagner and Fortin, 2005).
These legacies of the spatial patterns on
the processes (Peterson, 2002) can either
promote the spread of disturbances and
disease or impede animal movement (e.g.,
fragmentation due to roads). The result of
the sequence of processes and feedbacks are
included in the observed data (Haining, this
volume). The question is then: At which
scale should we spatial analyze the data
when it is the scale itself that we want to
determine?

Spatial statistics will save us, right?
No!
Spatial statistics were developed to quan-

tify the degree of spatial aggregation (join
count, Ripley’s K), spatial autocorrelation
(Moran’s I, Geary’s c) or spatial variance
(semi-variance γ ; see Atkinson and Lloyd,
in this volume) over a study area where the
mean and variance of the function describing
the process are constant with distance and
direction between locations. Thus, spatial
statistics can quantify patterns but cannot
identify their origin.

So what are spatial statistics good for?
To answer this fundamental question, we

summarize first how the most commonly
used spatial statistics estimate spatial patterns
and spatial autocorrelation. We stress how
spatial analyses of larger areas where there is
more than one process impair the direct use
of spatial statistics and parametric statistics.
We present the statistical issues and the
recent developments aiming to address them.
Then, we conclude by commenting on some
unresolved challenges in the field of spatial
statistics.

6.2. SPATIAL STATISTICS IN A
NUTSHELL

Arising from time series statistics and the
more familiar parametric statistics, spatial

statistics quantify the degree of self-similarity
of a variable as a function of distance.
These spatial statistics assume that, within
the study area, the parameters of the function
defining the underlying process, such as
the mean and the variance, are constant
regardless of the distance and direction
between the sampling locations. This prop-
erty of the random function is known as
spatial stationarity (Cressie, 1993). Then the
goal of spatial statistics is to test the null
hypothesis of absence of ‘spatial pattern’.
For each spatial statistic ‘spatial pattern’
is either spatial aggregation or segregation
(Ripley’s K ; join count statistics) or spatial
autocorrelation (Moran’s I and Geary’s c).
The null hypothesis implies that nearby
locations (or attributes, measures) do not
affect one another such that there is indepen-
dence and spatial randomness (Figure 6.2(b)).
The alternatives are that there is clustering
and thus positive spatial autocorrelation
(Figure 6.2(a)) or repulsion and negative
spatial auotocorrelation (Figure 6.2(c)).

The mathematical commonality of the
various spatial statistics is that they use the
cross-product between a weighted function
relating the degree of distance (wij) among
the sampling locations (n) and a function (Y )
quantifying the degree of similarity among
the values of the variable (xij) at these
sampling locations (Dale et al., 2002; Getis,
1991; Getis and Ord, 1992):

Statistic (d) =

n∑

i=1
i %=j

n∑

j=1
j %=i

wij(d)Yij(x)

C(w, d)

where d is the spatial distance lag (or search
window size or calculation template of
radius d), between the sampling locations at
which the spatial statistic is computed. The
divisor of C(w, d) is just a correction of the
overall magnitude of the statistic calculated.
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Table 6.1 Similarity functions and significance test procedures according to the
spatial statistics

Global spatial statistics Significance test

Point data Ripley’s K : for each radius t, the statistic sums

the indicator function It (i , j ) that counts, at

each point, the number of points within a

circle of radius t (Figure 6.3).

Assess using a confidence envelope based on a

randomization procedure (complete spatial

randomness).

Join count statistics: The statistics count the

number of links of matching Jrr and

mismatching Jrs categories.

Assess by comparing the observed frequencies of

links to those expected under the null

hypothesis of randomness.

Polygon data Join count: The statistics count the number of

links of matching Jrr and mismatching Jrs

categories.

Assess by comparing the observed frequencies of

links to those expected under the null

hypothesis of randomness.

Quantitative data Moran’s I : The statistic sums the deviation of the

values at a given distance lag from the mean

of the variable, Yij (x ) = (xi − x̄ )
(
xj − x̄

)
.

Assess using either a randomization procedure or

a normal distribution approximation test where

the expected value of absence of spatial

autocorrelation is EN (I ) = ER (I ) = −(n − 1)−1.

Geary’s c : The statistic sums the squared

deviation of the values at a given distance

lag, Yij (x ) =
(
xi − xj

)
2.

Assess using either a randomization procedure or

a normal distribution approximation test where

the expected value of absence of spatial

autocorrelation is EN (c ) = ER (c ) = 1.

Each spatial statistic is characterized by
a particular way to determine its search
window type (links, areas), size and shape
(circular, square), as well as the way it
calculates the degree of relationship among
the values of the variables (Table 6.1;
for mathematical details see Cliff and
Ord, 1981; Cressie, 1993; Diggle, 1983;
Epperson, 2003; Fortin and Dale, 2005;
Haining, 2003; Ripley, 1981).

These spatial statistics provide, for each
search window size, a single value rep-
resenting the average degree of spatial
autocorrelation over the study area. This
is why it is important to assume spatial
stationarity. This property of stationarity
of the random function attributed to the
process is also paramount because it allows
significance testing of the null hypothesis
of spatial randomness (Cliff and Ord, 1981;
Cressie, 1993). For instance, by assuming
normality the expected mean and variance
of the spatial pattern can be estimated

(Table 6.1). To overcome the issue of
assumed normality, randomization tests can
be used to determine the significance of the
spatial pattern (Bjørnstad and Falck, 2001).
This is how the significance of Ripley’s
K is assessed by using a complete spatial
randomness procedure (Poisson process).
Several researchers have suggested that
complete spatial randomness is not useful
as a hypothesis for comparison and have
proposed other more realistic point patterns
such as Poisson–Poisson or Cox–Poisson
for comparison (Haining, 2003; Fortin and
Dale, 2005). Other spatially restricted ran-
domization procedures can be used for spatial
statistics to reflect the spatial dynamics of
the process or of the spatial distribution of
the environmental factors (Goovaerts and
Jacquez, 2004; Wiegand and Moloney, 2004).

To emphasize the essential property of
the spatial statistics that are based on
the assumption of spatial stationarity, the
qualifier ‘global’ can be added when referring
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Join count Join count

Ripley’s k

Point data Categorical data

Moran’s I and Geary’s c

Quantitative data

Figure 6.3 Search window types to determine the distance weight among sampling
locations according to the data types and spatial statistics. For points data, the geographical
coordinates of objects as well as their attributes (black or gray) need to be surveyed for the
entire study area. Join count statistics require first to establish the link network among the
sampling locations. Here we used a Delaunay tessellation network (Fortin and Dale, 2005;
Okabe et al., 2000) to determine the links. Ripley’s K is using circles of radius t at each
point. For categorical data from polygons, join count statistics can be used where the links
are determined using the centroid of the polygons. For quantitative data, spatial
autocorrelation coefficients (Moran’s I, Geary’s c ) can be computed using either a link
network among the sampling locations, a search window from each sampling location or
from each cell (quadrat) from a grid (quadrats, cells).

to them. Because spatial stationarity is
assumed, the shape of the search window
is isotropic (Figure 6.3) and the intensity
of the spatial pattern is measured as if
it were the same, whatever the direc-
tion. In natural systems, this assumption
is often not realistic, as water flow and
wind are mostly directional processes. Such
directional processes generate anisotropic
patterns for which the characteristics depend
on direction (Figure 6.2). Isotropic search
windows are not able to detect anisotropic
patterns and therefore, weights are needed
to compute spatial autocorrelation according
to direction as well as distance (Dubin, in

this volume; Fortin and Dale, 2005). While
this feature was used early on in geostatistics
(Atkinson, in this volume; Journel and
Huijbregts, 1978), it took longer to become
common practice in other applications of
spatial statistics (Oden and Sokal, 1986). The
use of these directional weights still assumes
that the process can occur over the entire area.
It is not always the case, as in studying fish
pools for example, where the spatial patterns
we need to consider are only those of the
aquatic network itself. In addition, proximity
in an aquatic network (Figure 6.4) cannot
be determined using Euclidean distance as
in terrestrial systems (Figure 6.2), but rather
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Not spatially connected

The same Euclidean distance but not the same path length

Figure 6.4 Aquatic network path length does not match the Euclidean distance among
sampling locations.

requires a topological basis for proximity
(Fortin and Dale, 2005; Okabe et al.,
2000). Okabe and Yamada (2001) used such
network weights to account for the particular
topology of spatial networks for computing
Ripley’s K.

6.3. EFFECTS OF THE EXTENT ON
GLOBAL SPATIAL STATISTICS

As we are looking for spatial patterns
in natural systems, several decisions will
affect our ability to detect and quantify
spatial structures: how the data are gathered
(Dungan et al., 2002; Fortin and Dale,
2005; Legendre et al., 2002), the size of
the study area (the ‘extent’), and the size
of the sampling units (the ‘grain’). Here
we will focus on the change of extent size
as it has a direct effect on the spatial
stationarity of the area and the validity
of the global spatial statistics. The change
of grain size is also important and it is
known as the modifiable area unit problem
(MAUP). A whole chapter is dedicated to
MAUP (Wong, in this volume), and so
we refer the readers to that part of this
handbook.

The extent of the study area affects
our ability to detect spatial patterns: too

small, and it could not include enough
data to characterize the pattern; too large,
and it could cover several patterns from
various sources and at different scales as
already mentioned above (Dungan et al.,
2002; Fortin and Dale, 2005). Increasing
the extent of the study area implies that
more processes and environmental factors
may alter the variable of interest. Usually,
however, it is rare that we know in advance
at which extent to study a phenomenon. In
the absence of prior knowledge, researchers
should perform a pilot study to determine
it (Dungan et al., 2002; Legendre et al.,
2002). Unfortunately, the wealth of available
data captured by remote sensing over large
areas is tempting and we often succumb
to the temptation. We use all the data
available to us. We ‘go fishing’ for spatial
patterns. The problem is that the larger the
extent, the more likely it is that several
environmental factors and processes operate
on the variable under investigation, resulting
in spatial nonstationarity with the spatial
patterns of several scales intermingled, or
that some processes have greater effects
in some sub-regions than in others. The
consequence of the resulting estimation by
global spatial statistics of spatial autocor-
relation at various distances is that the
average values of spatial autocorrelation
may not reflect any spatial pattern as the
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spatial structures may be cancelling out each
other’s signals.

Even when the extent of the study area
is appropriate for the phenomena under
study, our ability to determine adequately the
spatial pattern can be altered due to sampling
issues, statistical issues, or a combination of
both. One sampling issue is the mismatch
between the location of the extent and the
process under study: if the actual location
of the study area is a few meters north
or south, it can cause the detected spatial
pattern to vary (Plante et al., 2004). From
a statistical point of view, the number of
neighboring points at the edge of the study
area is always smaller than at the center
(as illustrated in Figure 6.3 by the sampling
locations, at the centroid of patches or at
the centroid of quadrats marked by squares).
This edge effect is known and several edge
correction algorithms have been proposed to
adjust either for the edge, the corner or both
(Goreaud and Pélissier, 1999; Haase, 1995;
Wiegand and Moloney, 2004). Similarly,
rectangular study areas will have pairs of
locations at the larger distance classes only in
one direction (Fortin 1999). To have a more
comparable number of pairs of sampling
locations to estimate spatial autocorrelation,
it is recommended to use distance classes
no larger than half or two thirds of the
smallest side of the study area (Fortin and
Dale, 2005) or to use equifrequent classes
where the number of pairs is kept constant
rather than the thresholds of Euclidean
distances for succeeding classes (Sokal and
Wartenberg, 1983).

6.4. LOCAL SPATIAL STATISTICS:
ONE STEP IN A GOOD
DIRECTION

The previous section presented some of
the most common sampling and statistical

issues that affect the reliability of global
spatial statistics in estimating spatial autocor-
relation and how to minimize them within
the context of global analyses over the
entire study area. Another approach to deal
with these issues is to measure spatial
autocorrelation locally using local spatial
statistics (Table 6.2). Local indicators of
spatial autocorrelation (or spatial association,
called LISA, Anselin, 1995) measure the
degree of spatial autocorrelation using, for
example, Moran’s I algorithm for sampling
locations based only on the neighborhood
around a given sampling location. The
neighborhood search window can be based
either on a link network or on distance classes
as in the global Moran’s I approach. Several
variants of LISA having been developed in
the same spirit of measuring local spatial
association rather than autocorrelation such
as the local Getis and the local Ord statistics
(Boots, 2002; Fotheringham et al., 2000;
Getis and Ord, 1996; Ord and Getis, 1995,
2001). One of the advantages of these
local spatial statistics is that the values of
spatial autocorrelation (or spatial association)
can be mapped at each sampling location
allowing the identification of sub-regions
within the study area having positive (called
‘hot spots’) or negative (called ‘cold spots’)
autocorrelation values (Wulder and Boots,
1998). This is very useful when large
study areas are analyzed to determine how
homogeneous (or not) a region is. One
drawback, however, is that the significance
test for each sampling location is based on
the global estimate of spatial autocorrelation
for the entire study area and that assumes
spatial stationarity. In the absence of spatial
stationarity, the advantage of using local
spatial statistics over larger areas is cancelled
by the lack of significance test. This is why
recently researchers have been developing
new procedures to assess local significance
that account for the global estimate of spatial
autocorrelation (Ord and Getis, 2001; Kabos
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Table 6.2 Recent developments related to each kind of spatial statistics

Spatial statistics Developments

Point pattern Dale and Powell (2001): asymmetric point pattern analysis permits the detection of centers of

low and high density regions (univariate) or of segregation and aggregation (bivariate or

multivariate).

Dixon, (2002): multivariate point pattern analysis using counts of nearest neighbors.

Ripley’s K Edge correction algorithms to adjust for points close to the edge and corner of the study area

that have less likely to have points nearby than those at the center (Goreaud and Pélissier,

1999; Haase, 1995).

Spatial network weights accounting for particular topology as in roads or aquatic stream

network (Okabe and Yamada, 2001). Restricted randomization accounting for spatially

heterogeneous study area (Wiegand and Moloney, 2004).

Join count Significance test accounting for the presence of global spatial autocorrelation (Kabos and

Csillag, 2002).

Global spatial statistics Global non-parametric spatial covariance (Bjørnstad and Falck, 2001).

Local indicators of spatial autocorrelation or association (Anselin, 1995).

Local spatial aggregation statistics (Boots, 2002, 2003; Getis and Ord, 1992; Ord and Getis,

1995; Wulder and Boots, 1998).

Local spatial statistics Statistics that account for the presence of global spatial autocorrelation: Ord’s O (Ord and

Getis, 2001).

Local indicators of spatial autocorrelation (Anselin, 1995).

Local spatial aggregation statistics (Boots, 2002, 2003; Getis and Ord, 1992, Ord and Getis,

1995, Wulder and Boots, 1998).

and Csillag, 2002). Even with these newer
methods to test significance, one cannot
apply a Bonferroni’s correction to adjust for
the multiple tests for each coefficient as
for the global spatial statistics (Fortin and
Dale, 2005) because the tests may be highly
correlated, and there are usually too many
sampling locations so often no coefficients
would appear significant. However, the
mapping of a local spatial coefficient value
at each sampling location has been found
a very informative tool for exploring the
characteristics of spatial data (Fotheringham,
1997; Fotheringham and Brunsdon, 1999;
Pearson, 2002; Sokal et al., 1998). In
the same spirit of analyzing locally spatial
pattern and the underlying factor or process
responsible for it, geographically weighted
regression can be used (see Fotheringham, in
this volume).

6.5. SPATIAL AUTOCORRELATION
IMPLICATIONS FOR
PARAMETRIC AND
RANDOMIZATION
SIGNIFICANCE TESTING

One important feature of spatial dependence
in data is that positive spatial autocorrela-
tion makes parametric statistical tests too
liberal, in that they produce more apparently
significant results than the data actually
justify. A simple intuitive explanation is
that because of the lack of independence,
at least some of the information of sam-
ple i is contained in adjacent samples
and so instead of having the information
of n independent samples, we have the
information appropriate to fewer samples,
n, called the ‘effective sample size’ (cf.
Cressie, 1993). It is tempting to suggest
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Table 6.3 Correction procedures for the presence of spatial autocorrelation for
parametric tests

General concepts Correction procedure

Parametric tests Cressie (1993)

Univariate tests

No general solution: model & Monte Carlo Mizon (1995); Dale and Fortin (2002)

Bivariate tests

Correlation Modified t -test (Clifford et al., 1989; corrected by Dutilleul (1993)

Linear regression Alpargu and Dutilleul (2003)

Partial correlation Alpargu and Dutilleul (2006)

2 × 2 contingency table Cerioli (1997)

R × C contingency table Cerioli (2002)

Cochran–Armitage Cerioli (2003)

Multivariate

Following Dutilleul–Cerioli approach Speculation!

that, based on the work of Cressie and
others (see below), we should be able to
use the autocorrelation structure of the data
in order to calculate the correct effective
sample size for testing. For univariate tests,
this approach does not seem to work well,
and Dale and Fortin (2002) suggest the
approach of modeling the data by refining
a general ARMA (‘Auto-Regressive Moving
Average’) model followed by the Monte
Carlo generation of artificial ‘data’ sets
with similar autocorrelation structure for
comparison. For bivariate data, the effective
sample size method seems to work well for a
broad range of statistics (see Table 6.3), and
we speculate that it will work for multivariate
data as well.

To avoid having to deal with the estimation
of the effective sample size, the use of
randomization tests also seems attractive.
Randomization tests (also called permutation,
resampling or computer intensive tests) are
convenient when the goal of the study is
to assess the significance of the sample
itself. When the goal is to make inferences
about the sampling population, a Monte Carlo
procedure should be used instead (Good,
2000). (Permutation re-orders the original

data, whereas a Monte Carlo procedure
produces ‘new’ data of similar structure.)
In either case, the presence of spatial autocor-
relation in the data impairs the fundamental
assumption of randomization tests which is
that each labeling (attributes, values) can be
exchangeable randomly (Figure 6.5 (a,b)).
Depending on the type of spatial autocor-
relation, modified randomization procedures
(or simply restricted randomization tests)
can be used where the data are random-
ized with some specific spatial restriction.
For example, in Figure 6.5(a–c), the data
show marked regional differences along the
south-west–north-east diagonal. With such
a spatial structure, a complete random-
ization test cannot be used, as illustrated
in Figure 6.5(a), and a restricted one is
more appropriate. One way to account for
this type of spatial structure is to have
the study area partitioned into two regions
(Figure 6.5(d)) and then the randomization
is applied in each region separately. When
the data show spatial dependence due to
underlying environmental factors, restricted
randomization procedures that generate a
comparable degree of spatial autocorrelation
as that observed in the data can be helpful
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Figure 6.5 Randomization procedure. (a) Sampling locations with the quantitative values
of a given variable. (b) Complete spatial randomness of the values of the variable over
the sampling locations. (c) Same study area as in (a) where the dashed line delineates
two sub-regions having different mean values. (d) Restricted randomization within each
region.

(Fortin et al., 2003). To assess significance
with more complex spatial patterns in
which there is more than one spatial scale,
Goovearts and Jacquez (2004) proposed
a typology of increasing levels of spatial
restrictions, that they called neutral models,
to simulate more spatially realistic reference
distributions.

6.6. HOW MANY SPATIAL SCALES?

A good practice to analyze larger regions
involves assessing first whether the spatial
patterns of the data involve more than one
spatial scale, and then relate each scale to a
key factor or process. This was easy to say
but not so easy to do until recently. Two new
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approaches have been proposed to use spatial
scales as spatial predictors in regression
or canonical analysis models (Borcard and
Legendre, 2002; Keitt and Urban, 2005).
Borcard and Legendre (2002) determined
spatial predictors using principal coordi-
nates of neighbor matrices (PCNM) that
decomposed spatial scales into orthogonal
spatial predictors based on the eigenvectors
of the positive eigenvalues of the principal
coordinates. The advantage of this method
lies in the fact that neighborhoods, i.e.,
spatial scales, can be determined using
the Euclidean distances among irregularly
spaced sampling locations. Keitt and Urban
(2005) used the wavelet-coefficient of the
wavelet transform at each decomposition
level as spatial predictor in a multiple regres-
sion model. Unlike the PCNM approach,
the wavelet decomposition requires that the
data are surveyed in a contiguous way
as is the case with remotely sensed and
GIS raster data. These new approaches
have a lot of potential to determine the
relative importance of environmental factors
and processes in explaining the patterns
of data.

6.7. NEW ERA OF SPATIAL
ANALYSIS: CATEGORICAL DATA

Spatial analysis of data requires a priori

knowledge about the data and the under-
lying processes. It requires as well good
understanding of possibilities and limitations
of the various spatial statistics available
(Figure 6.6; see also Csillag and Boots,
2005). The issues presented in this chapter
deal mostly with the context of spatial anal-
ysis of quantitative data. Over larger study
areas, it is rare however that quantitative
data are available and it is more likely
that we need to rely only on qualitative
data. The spatial analysis of categorical
data requires often that the questions are
revised (Figure 6.6) as well as the type
of spatial statistical tools. GIS packages
offer a series of simple spatial descriptions
of qualitative data (e.g., area, number of
patches) and several landscape metrics are
available to refine the spatial characterization
of categorical data (Gustafson, 1998). More
work is still needed, however, to be able to
determine the significance of these metrics
so that they can be compared through time

One process

Stationary process Several process:
continue spatial analysis?

Global spatial analysis
Partition into spatially
homogeneous regions

Revised question(s)
Change location
Change size of extent

Yes No

Yes No
Yes No

Global spatial analysis
in each region

Local spatial analysis

Yes No

Figure 6.6 Flow chart to decide which spatial statistics to use.
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and between sites (Fortin et al., 2003;
Remmel and Csillag, 2003, 2006). As for
spatial statistics for categorical data per se,
recent methods were at the global level by
assessing spatial variance using a transiogram
(Weidong, 2006) and at the local level
developing new local measures of spatial
association (Boots, 2003). The use of mark
connection functions (Stoyan and Penttinen,
2000) is also a promising area of further
investigation, perhaps where the mosaic of
patches is converted into a network of points
with ‘marks’ which identify connections to
first-order neighbors. Finally, there remains
the large problem of incorporating time,
creating a spatio-temporal analysis to assess
the changes in spatial characteristics.

REFERENCES

Alpargu, G. and Dutilleul, P. (2003). To be or
not to be valid in testing the significance of
the slope in simple quantitative linear models
with autocorrelated errors. Journal of Statistical
Computation and Simulation, 73: 165–180.

Alpargu, G. and Dutilleul, P. (2006). Stepwise
regression in mixed quantitative linear models with
autocorrelated errors. Communications in Statistics –
Simulation and Computation, 35: 79–104.

Anselin, L. (1995). Local indicators of spatial associa-
tion – LISA. Geographical Analysis, 27: 93–115.

Atkinson and Lloyd (Chapter 9 – Geostatistics)

Bjørnstad, O.N. and Falck, W. (2001). Nonparametric
spatial covariance functions: estimation and testing.
Environmental and Ecological Statistics, 8: 53–70.

Boots, B. (2002). Local measures of spatial association.
Écoscience, 9: 168–176.

Boots, B. (2003). Developing local measures of
spatial association for categorical data. Journal of
Geographical Systems, 5: 139–160.

Borcard, D. and Legendre, P. (2002). All-scale
spatial analysis of ecological data by means
of principal coordinates of neighbour matrices.
Ecological Modelling, 153: 51–68.

Cerioli, A. (1997). Modified tests of independence
in 2 × 2 tables with spatial data. Biometrics,
53: 619–628.

Cerioli, A. (2002). Testing mutual independence
between two discrete-valued spatial processes:
a correction to Pearson chi-squared. Biometrics,
58: 888–897.

Cerioli, A. (2003). The Cochran–Armitage trend test
under spatial autocorrelation. Proceedings of the
Conference ‘Complex Models and Computational
Methods for Estimation and Prediction’. Treviso,
Italy, September 2003.

Cliff, A.D. and Ord, J.K. (1981). Spatial Processes:
Models and Applications. London: Pion.

Clifford, P., Richardson S. and Hémon, D. (1989).
Assessing the significance of correlation between
two spatial processes. Biometrics, 45: 123–134.

Cressie, N.A.C. (1993). Statistics for Spatial Data,
Revised Edition. New York: Wiley.

Csillag, F. and Boots, B. (2005). A framework for
statistical inferential decisions in spatial pattern
analysis. The Canadian Geographer, 49: 172–179.

Dale, M.R.T. and Fortin, M.-J. (2002). Spatial autocor-
relation and statistical tests in ecology. Écoscience,
9: 162–167.

Dale, M.R.T. and Powell, R.D. (2001). A new method
for characterizing point patterns in plant ecology.
Journal of Vegetation Science, 12: 597–608.

Dale, M.R.T., Dixon, P., Fortin, M.-J., Legendre, P.,
Myers, D.E. and Rosenberg, M. (2002). The
conceptual and mathematical relationships
among methods for spatial analysis. Ecography,
25: 558–577.

Delmelle (Chapter 10 – Spatial sampling).

Diggle, P.J. (1983). Statistical Analysis of Spatial Point
Patterns. London: Academic Press.

Dixon, P.M. (2002). Nearest-neighbor contingency
table analysis of spatial segregation for several
species. Écoscience, 9: 142–151.

Dubin (Chapter 8 – Spatial Weights).

Dubin, R.A. (1998). Spatial autocorrelation: A primer.
Journal of Housing Economics, 7: 304–327.

Dungan, J.L., Perry, J.N., Dale, M.R.T., Legendre, P.,
Citron-Pousty, S., Fortin, M.-J., Jakomulska, A.,
Miriti, M. and Rosenberg, M.S. (2002). A balanced
view of scale in spatial statistical analysis. Ecography,
25: 626–640.



102 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

Dutilleul, P. (1993). Modifying the t test for assessing
the correlation between two spatial processes.
Biometrics, 49: 305–314.

Epperson, B.K. (2003). Covariances among join-
count spatial autocorrelation measures. Theoretical
Population Biology, 64: 81–87.

Fortin, M.-J. and Dale, M.R.T. (2005). Spatial Analysis.
A Guide for Ecologists. Cambridge: Cambridge
University Press.

Fortin, M.-J. and Jacquez, G.M. (2000). Randomization
tests and spatially autocorrelated data. Bulletin of
the Ecological Society of America, 81: 201–205.

Fortin, M.-J., Boots, B., Csillag, F. and Remmel, T.K.
(2003). On the role of spatial stochastic models in
understanding landscape indices in ecology. Oikos,
102: 203–212.

Fortin, M.-J., P. Drapeau, P. and Legendre, P.
(1989). Spatial autocorrelation and sampling design.
Vegetatio, 83: 209–222.

Fotheringham (Chapter 13 – GWR).

Fotheringham, A.S. (1997). Trends in quantitative
methods I: stressing the local. Progress in Human
Geography, 21: 88–96.

Fotheringham, A.S. and Brunsdon, C. (1999). Local
forms of spatial analysis. Geographical Analysis,
31: 340–358.

Fotheringham, A.S., Brunsdon, C. and Charlton, M.
(2000). Quantitative Geography: Perspectives on
Spatial Data Analysis. London: Sage Publications.

Getis, A. (1991). Spatial interaction and spatial auto-
correlation: a cross product approach. Environment
and Planning A, 23: 1269–1277.

Getis, A. and Ord, J.K. (1992). The analysis of
spatial association by use of distance statistics.
Geographical Analysis, 24: 189–206.

Getis, A. and Ord, J.K. (1996). Local spatial
statistics: an overview. In: Longley, P and
Batty, M. (eds), Spatial Analysis: Modelling in
a GIS Environment, pp. 261–277. Cambridge:
GeoInformation International.

Good, P. (2000). Permutation Tests: A Practical Guide
to Resampling Methods for Testing Hypotheses, 2nd
edn. New York: Springer-Verlag.

Goovaerts, P. and Jacquez, G.M. (2004). Accounting
for regional background and population size in
the detection of spatial clusters and outliers using
geostatistical filtering and spatial neutral models:

the case of lung cancer in Long Island, New York.
International Journal of Health Geographics, 3: 14.

Goreaud, F. and Pélissier, R. (1999). On explicit
formulas of edge effect correction for Ripley’s
K -function. Journal of Vegetation Science, 10:
433–438.

Green, J.L., Hastings, A., Arzberger, P., Ayala, F.J.,
Cottingham, K.L., Cuddington, K., Davis, F.D.,
Dunne, J.A., Fortin, M.-J., Gerber, L. and Neubert, M.
(2005). Complexity in ecology and conserva-
tion: mathematical, statistical, and computational
challenges. BioScience, 55: 501–510.

Gustafson, E.J. (1998). Quantifying landscape spatial
pattern: What is the state of the art? Ecosystems,
1: 143–156.

Haase, P. (1995). Spatial pattern analysis in ecology
based on Ripley’s K -function: Introduction and
methods of edge correction. Journal of Vegetation
Science, 6: 575–582.

Haining (Chapter 2 – Nature of Spatial Data).

Haining, R. (2003). Spatial Data Analysis: Theory and
Practice. Cambridge: Cambridge University Press.

Journel, A.G. and Huijbregts, C. (1978). Mining
Geostatistics. London: Academia Press.

Kabos, S. and Csillag, F. (2002). The analysis of
spatial association on a regular lattice by join-
count statistics without the assumption of first-
order homogeneity. Computers and Geosciences,
28: 901–910.

Keitt, T.H. and Urban, D.L. (2005). Scale-specific
inference using wavelets. Ecology, 86: 2497–2504.

Legendre, P., Dale, M.R.T., Fortin, M.-J., Gurevitch,
J., Hohn, M. and Myers, D.E. (2002). The
consequences of spatial structure for the design and
analysis of ecological field surveys. Ecography, 25:
601–615.

Lichstein, J.W., Simons, T.R., Shriner, S.A. and Franzreb,
K.E. (2002). Spatial autocorrelation and autore-
gressive models in ecology. Ecological Monographs,
72: 445–463.

Mizon, G.E. (1995). A simple message for autocor-
relation correctors: don’t. Journal of Econometrics,
69: 267–289.

Oden, N.L. and Sokal, R.R. (1986). Directional
autocorrelation: an extension of spatial correlo-
grams to two dimensions. Systematic Zoology, 35:
608–617.



SPATIAL AUTOCORRELATION 103

Okabe, A. and Yamada, I. (2001). The K -function
method on a network and its computational imple-
mentation. Geographical Analysis, 33: 270–290.

Okabe, A., Boots, B., Sugihara, K. and Chiu, S.N.
(2000). Spatial Tessellations: Concepts and Appli-
cations of Voronoi Diagrams, 2nd edn. Chichester:
John Wiley.

Ord, J.K. and Getis, A. (1995). Local spatial
autocorrelation statistics: distributional issues and an
application. Geographical Analysis, 27: 286–306.

Ord, J.K. and Getis, A. (2001). Testing for local
spatial autocorrelation in the presence of global
autocorrelation. Journal of Regional Science, 41:
411–432.

Pearson, D.M. (2002). The application of local
measures of spatial autocorrelation for describing
pattern in north Australian landscapes. Journal of
Environmental Management, 64: 85–95.

Perry, J.N., Liebhold, A.M., Rosenberg, M.S., Dungan,
J., Miriti, M., Jakomulska, A. and Citron-
Pousty, S. (2002). Illustrations and guidelines
for selecting statistical methods for quantifying
spatial pattern in ecological data. Ecography, 25:
578–600.

Peterson, G.D. (2002). Contagious disturbance, eco-
logical memory, and the emergence of landscape
pattern. Ecosystems, 5: 329–338.

Plante, M., Lowell, L., Potvin, F., Boots, B. and
Fortin, M.-J. (2004). Studying deer habitat on Anti-
costi Island, Québec: Relating animal occurrences
and forest map information. Ecological Modelling,
174: 387–399.

Remmel, T.K. and Csillag, F. (2003). When are two
landscape pattern indices significantly different?
Journal of Geographical Systems, 5: 331–351.

Remmel, T.K. and Csillag, F. (2006). Mutual information
spectra for comparing categorical maps. Interna-
tional Journal of Remote Sensing, 27: 1425–1452.

Ripley, B.D. (1981). Spatial Processes. New York: John
Wiley.

Sokal, R.R., Oden, N.L. and Thomson, B.A. (1998).
Local spatial autocorrelation in biological variables.
Biological Journal of the Linnean Society, 65: 41–62.

Sokal, R.R. and Wartenberg, D.E. (1983). A test of
spatial autocorrelation using an isolation-by-distance
model. Genetics, 105: 219–237.

Stoyan, D. and Penttinen, A. (2000). Recent applica-
tions of point process methods in forestry statistics.
Statistical Science, 15: 61–78.

Wagner, H.H. and Fortin, M.-J. (2005). Spatial analysis
of landscapes: concepts and statistics. Ecology,
86: 1975–1987.

Weidong, L. (2006). Transiogram: A spatial relationship
measure for categorical data. International Journal of
Geographical Information Science, 20: 693–699.

Wiegand, T. and Moloney, K.A. (2004). Rings, circles
and null-models for point pattern analysis in ecology.
Oikos, 104: 209–229.

Wong (Chapter 7 – MAUP).

Wulder, M. and Boots, B. (1998). Local spatial
autocorrelation characteristics of remotely sensed
imagery assessed with the Getis statistic. Interna-
tional Journal of Remote Sensing, 19: 2223–2331.





7
The Modifiable Areal Unit

Problem (MAUP)

D a v i d W o n g

7.1. INTRODUCTION

Geographical space is continuous in nature –
there is no perfect discontinuity on the Earth’s
surface. Therefore, in modeling geographical
space, the raster model, which depicts the
Earth’s surface with small grid cells, is often
used to mimic the continuous nature of space
as closely as possible. But the geographical
space is also occupied by locations of
identical characteristics (e.g., locations along
a concrete pedestrian walkway) and objects
or features. In the latter case, we will use
geometric primitives of points, lines or arcs,
and polygons to represent those objects or
features either in drawings (maps) or data
(vector data). In the former situation where
areas have homogeneous characteristics, we
often want to demarcate the areas by discrete
boundaries to define homogeneous or formal
regions. In both situations, boundaries are

drawn, but the former situation, i.e., defining
a region, is the essence of the analytical issue
known as the modifiable areal unit problem
(MAUP).

The term MAUP was coined by Openshaw
and Taylor (1979) when they experimented
with how correlation coefficient values
changed when smaller areal units were
aggregated to form larger areal units either
hierarchically or non-hierarchically. They
concluded that the correlation coefficient
could carry a range of values over different
levels of spatial aggregation. The source
of the problem is that boundaries of areal
units are often created artificially or in an
ad hoc manner and thus can be changed.
When boundaries are drawn in a different
manner, analyses of data tabulated according
to different boundaries will provide different
results. Therefore, Openshaw and Taylor
referred to this inconsistency of analytical
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results due to different spatial configuration
or partitioning schemes as the modifiable
areal unit problem.

This chapter is intended to provide an
overview of the MAUP. Although several
overviews of the MAUP exist, they are
dated (e.g., Openshaw, 1984; Wong, 1995).
I explain the MAUP and its two sub-problems
in more detail in section 7.2. While existing
literature has already elaborated upon the
impacts and scope of the MAUP, I provide an
overview of some of its fundamental impacts
in section 7.3. In section 7.4, I use simulated
data and empirical datasets to illustrate the
processes creating the two MAUP sub-
problems. In section 7.5, I summarize the
research developments pertaining to the
MAUP, with emphases upon the most recent
decades. Different directions in handling and
searching for solutions for the MAUP are
reviewed in section 7.6, and this is followed
by a concluding remark.

7.2. WHAT IS THE MAUP?

The essence of the MAUP is that there are
many ways to draw boundaries to demarcate
space into discrete units to form multiple
spatial partitioning systems. These units
may serve administrative purposes, such as
the counties in the U.S., or statistical or
data gathering purposes, such as the census
enumeration units of tracts, block groups
and blocks below the county level. Although
these boundaries are often drawn along some
physical features (such as rivers or roads)
that may serve as physical barriers separating
areal units, there are multiple ways to draw
those boundaries. Thus multiple datasets of
the same area can be created and they will
offer different descriptions of the areas and
different analytical results.

But the process of ‘drawing boundaries’
should be interpreted beyond the literal sense.

In remote sensing or raster modeling, the
basic areal units are pixels or grid cells.
Each pixel or cell can be regarded as a
spatially discrete unit. These units can be
of different sizes or resolutions. Where the
edges of the pixels or cells are located
is somewhat arbitrary. By shifting the grid
system slightly over space or changing the
size of the pixels or cells, a new dataset can be
created. Thus, numerous raster-based datasets
can be created and they will give us different
results. Therefore, the MAUP is not limited
to polygon or vector data, but also exists in
raster data.

There are two dimensions through which
we can partition space or draw boundaries.
One is to focus on the spatial dimension
by using different configurations to partition
space and fixing the number of areal units to
be derived in the study region. As discussed
earlier, there are many ways to partition
a region even if the number of areal
units is kept constant. In reality, we often
encounter this in the form of re-partitioning
or rezoning processes. A common example
is the rezoning of school districts at the
local scale. In some cases, the number of
schools or districts does not change. But
because of changes in population distribution
across the districts and/or in the capacities
of school facilities (such as through school
renovation or addition of structures), the
school district boundaries have to be redrawn
to accommodate the change. With new school
boundaries, the student compositions of some
schools according to the new boundaries may
be different from the original ones. Therefore,
data tabulated according to the old and new
school boundary systems will give different
results. Note that the number of districts and
the population could be the same before and
after the rezoning. Changes in the data occur
when the population is spatially regrouped
into different sub-units in the region.

Another common example is congressional
redistricting. Although redistricting may not
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Figure 7.1 107th Congressional Districts for Georgia; (b) 109th Congressional Districts for
Georgia; (c) 109th Congressional Districts around the Atlanta Region, Georgia; (d) Census
tracts, block groups and blocks of Washington, DC, 2000 Census.

be a perfect example, since the number of
congressional districts is likely different after
the redistricting process due to population
growth, it provides a good example to
illustrate the significance and magnitude of
this dimension of the MAUP. Figure 7.1(a)
and (b) show two maps of the 107th
and 109th congressional districts (CDs) in
Georgia. Figure 7.1(a) is the map of the 107th
CDs and Figure 7.1(b) is for the 109th CDs.

It is obvious that the two partitioning
systems have very different spatial patterns,
although only two districts were added in
the 109th Congress for Georgia. No old
district in the 107th Congress in Georgia
maintained its territory in the 109th. Another
obvious change is that the area around
the Atlanta metropolitan area has become
much more spatially fragmented to accom-
modate more CDs. Because of the spatial
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complexity within that region, Figure 7.1(c)
was provided to show the details. It is
impressive how some districts have such an
irregular or non-compact shape. For instance,
CD 8 essentially has two sectors, very much
breaking up CD 11. CD 13 seems to have
several pieces scattered around the city of
Atlanta and stretched outward narrowly from
the city. The case of Atlanta CDs is a
possible case of gerrymandering, and is a
good example to illustrate how space can be
partitioned in a seemingly infinite number
of ways (Openshaw, 1996; Fotheringham,
2000).

When the number of areal units is fixed or
relatively stable, but boundaries are redrawn
to accommodate changes, this is basically
a zoning process. Data gathered according
to different zoning systems of the same
region will give us different depictions of the
region and different analytical results when
the data are analyzed. The inconsistency of
the results based upon data from different
zoning systems is known as the zoning

problem, one of the two sub-problems of
the MAUP.

Another dimension through which we
can partition space is the scale dimension.
Given a study region, we can partition
the region to different levels of detail.
For instance, the U.S. is divided into
four census regions, and each region is
further subdivided into divisions, giving
the entire U.S. nine divisions. Under each
division are states, which are essentially
political and administrative units (Wong
and Lee, 2005, p. 8). Under each state,
we have counties and then census tracts,
block groups and census blocks. Under
counties, those census units are enumera-
tion or statistical units created for census
data gathering, tabulation and dissemination
purposes. But they provide information
about the region at a more geographically
detailed level than the state or county
levels.

Note that when the U.S. is partitioned
according to the levels of census geography
described above (region–division–state–
county–tract-block–group-block), they form
a geographical hierarchy such that subdivi-
sions at the more detailed level are found
only within, but not across, the larger units
involved. When other census units, such as
metropolitan areas, are involved, the situation
will not conform to a geographical hierarchy.
Still, the general idea is that the region
can be subdivided to different levels of
detail or spatial resolution, as in raster data.
Figure 7.1(d) offers such an example using
Washington, DC, while only tracts, block
groups, and blocks are shown here.

Data are available at all of these census
geography levels. Census tract and census
block groups data are commonly used in
demographic and socioeconomic analyses.
But one cannot assume that analysis results
from the census tract data will be consistent
with the results based on the block group
data. This inconsistency due to the use of
data at different geographical scales or spatial
resolutions is known as the scale problem,
the second sub-problem of the MAUP. In the
next section, I will use simple examples to
illustrate some fundamental inconsistencies
of analytical results due to the zoning and
scale problems.

7.3. FUNDAMENTAL IMPACTS
OF THE MAUP

To date, most of the literature on the MAUP
has been focused on the impacts of the
problems. Before I provide a review of
the literature, I will illustrate some simple
effects of the MAUP using the Congressional
Districts data of Georgia and the census data
of Washington, DC.

In the Georgia example, the boundaries of
congressional districts (CDs) changed quite
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significantly between the 107th and 109th
Congresses. The maps in Figure 7.1 show
only the boundary changes without demon-
strating the potential impacts on analysis due
to this zoning effect. The redistricting of the
109th Congress was based upon the 2000
Census data. The 2000 Census data can also
be tabulated according to the boundaries of
the 107th Congressional Districts in order
to assess how the rezoning affected the
characteristics of the CDs. Using simple GIS
procedures, some population variables of the
2000 Census were tabulated according to
the 107th CD boundaries. Figure 7.2 shows
the percent black in each congressional
district in Georgia in the 2000 Census,
according to the boundaries of the two
Congresses.

The two maps show very different spatial
patterns of the African–American population.
The congressional district in southeast
Georgia has a lower black concentration
according to the 109th when compared with

that in the 107th. On the other hand, CDs
along the southern side of the city of Atlanta
became more populated by blacks when
the boundaries changed from the 107th to
the 109th, while whites tended to be more
numerous in CDs surrounding the outskirts
of Atlanta and the northeast part of the state.

When one examines the legends of the
two maps in Figure 7.2, it is easy to note
that: (1) the different visual patterns of the
two maps are not due to using different
classification values; and (2) data tabulated
according to the two CDs have different
statistical distributions such as minimum and
maximum values. Table 7.1 shows some
of the statistics in detail. Numerically, the
means from the two Congresses are different,
although they are quite close. The 109th
CDs have a smaller range than the 107th
CDs, but the standard deviation is slightly
larger. When the correlation of percent
white and percent black is evaluated for the
two Congresses, the correlation for the 107th

Percent black by 107th CDs
3.21 – 15
15 – 27
27 – 38
38 – 51
51 – 62.62

Percent black by 109th CDs
3.4 – 15
15 – 27
27 – 38
38 – 51
51 – 56.1

Figure 7.2 Percent blacks in 2000 Census according to the boundaries of the 107th and
109th Congressional Districts (CDs).
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Table 7.1 Selected statistics for the variable percent black for the 107th and 109th CDs

Variable: percent black Mean Minimum Maximum Standard deviation

107th CDs 30.19 3.21 62.62 17.60

109th CDs 28.70 3.40 56.10 18.70

Congress was −0.987 ( p < 0.001) and for
the 109th Congress it was −0.9898 ( p <

0.001), too close to tell that they are different.
Although statistically the two means of
percent black for the two Congresses are not
significantly different, numerical difference
in statistical values does raise some concerns
about the consistency of analysis results
using data tabulated according to different
spatial partitioning systems. This inconsis-
tency attributable to zonal differences is part
of the impact of the zoning effect.

The most effective way to illustrate the
scale effect of the MAUP is to use data at
different levels of a geographical hierarchy.
Figure 7.1(d) shows three levels of the
census geography of the Washington, DC
area. The lowest level, census block, has
limited socioeconomic variables. Therefore,
only census tract and block group data are
used here. Figure 7.3 shows the variable
per capita income (PCI) for blacks at
the two census levels. The overall income
distributions depicted by the two maps are
quite similar – higher levels in the northwest
and lower levels in the southeast. But the
block group map provides refined details
that are otherwise concealed at the census
tract level. Some of the block groups in the
western part of the region have relatively low
PCI values. Because their neighboring block
groups had reasonable PCI levels for blacks,
the overall tract level PCI values are medium
to high. Similarly, there is one small block
group on the southeastern side that had
a moderately high value. But because all
neighboring block groups had lower PCI
values, the aggregated value for that tract was
relatively low.

When a small number of low value areas
are surrounded by a large number of high
value areas, the scale effect tends to inflate
the low value areas. On the other hand,
when a small number of high value areas are
surrounded by a large number of low value
areas, the scale effect tends to deflate the
high value areas. To summarize, a general
characteristic of the scale effect is to smooth
out extreme values so that the range of the
values is narrower. To verify this general
impact, Table 7.2 shows selected statistics
of the variable at the census tract and block
group levels. Although the means for the two
levels are not dramatically different, their
maximum values and standard deviations are
quite different, supporting the argument that
more aggregated data (tract) tend to have less
variation, since the aggregation process over
scale smooths the variability.

If one follows the logic that more spatially
aggregated data are less variable, and this
logic is extended to analyze correlation
between variables, it is not difficult to come
to the conclusion that data at the higher
aggregation levels will likely have higher
correlation than more spatially disaggregated
data. By picking two variables, per capita
income for black and median house value,
we can evaluate their correlation at the tract
and block group levels. At the tract level,
Pearson’s correlation coefficient for the two
variables is 0.6806 ( p < 0.001). At the block
group level, the correlation is only 0.3867
( p < 0.001). Apparently, the correlation at
the block group level was much lower than
that at the census tract level. This impact
of scale effect has long been recognized in
the literature for many decades (Gehlke and
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PCI for blacks, tracts

0 – 12369
12370 – 20883
20884 – 32176
32177 – 56964
56965 – 104731

PCI for blacks, block groups

0 – 12369
12370 – 20884
20884 – 32177
32177 – 56965
56965 – 217910

Figure 7.3 Per capita income of blacks, census tract and block group levels.

Table 7.2 Selected statistics for the variable per capita income for blacks at the census
tract and block group levels

Variable: per capita

income for blacks

Mean Minimum Maximum Standard deviation

Census tracts 21879 0 104731 15053

Block groups 23390 0 217910 20073
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Biehl, 1934; Openshaw and Taylor, 1979;
Robinson, 1956). Fotheringham and Wong
(1991) provided a more detailed statistical
explanation to the spatial scale-variant nature
of the correlation coefficient.

7.4. THE MAUP PROCESSES

7.4.1. The scale effect

The above analyses have demonstrated that
the MAUP is relevant to even simple
mapping. Maps are often used to explore
and visualize spatial patterns. The Georgia
example shows that to a large extent, the
spatial pattern is a function of the partitioning
system. Adopting different partitioning sys-
tems can generate different patterns for the
same area, despite using the same variable.
The impacts on mapping for the scale effect,
in the specific example of Washington, DC,
are not very dramatic. The overall pattern
is quite persistent across different scales.
However, it is dangerous to assume that the
scale effect has minimal impacts on mapping.
In fact, many experiments and studies have
shown that using data from different scale
levels can portray very different spatial
patterns.

The impacts of the MAUP on mapping
are quite obvious, but its impacts on
statistical analysis seem to be quite difficult
to comprehend and generalize. That is why
most of the literature on the MAUP has
been on assessing its impacts on different
subject areas (population, urban, vegetation,
soil, etc.) and on different techniques (general
statistics, spatial statistics, and mathematical
models). But the simple correlation analysis
above using Washington, DC census tract and
block group level data offers some insights
on the processes related to the scale effect
and its potential impacts. As smaller areal
units (such as block groups) are aggregated

to form larger units (such as tracts), original
values of the smaller units with some level
of variability are summarized or replaced by
a representative value, which, in most cases,
is a measure of central tendency such as the
mean or median. Extreme values among the
smaller units are now removed and therefore
data more aggregated are becoming less
varied or more similar. Thus, the correlations
among variables tend to be higher with higher
levels of spatial aggregation. This nature of
the scale effect was best exemplified by the
work of Openshaw and Taylor (1979), which
shows that the correlation coefficient could
carry a wide range from a moderate level for
relatively disaggregated data, to a very high
correlation level for highly aggregated data.
Sometimes, slightly negative relationships at
the individual or disaggregated level can
turn into moderate positive correlations when
data are aggregated into larger areal units
(Fotheringham and Wong, 1991).

Although these correlation analyses are
quite straightforward, their results and
general patterns have significant implications
for conducting general statistical and spatial
analyses on data that may be tabulated and
disseminated at different spatial aggregation
levels. With most multivariate statistics, the
relationships between variables are often
summarized by the correlation matrix, or
the variance–covariance matrix, and these
serve as the foundation for analysis (Griffith
and Amrhein, 1997). Data at higher levels
of aggregation tend to inflate correlation
as compared to the disaggregated levels.
Therefore, we can expect that analyses
using more aggregated data will likely show
stronger relationships than analyses using
more disaggregated data. To some extent, the
process of the scale effect and its general
impacts are quite predictable. Also, because
the variance–covariance matrix is the core of
almost all multivariate analyses, the impacts
of the MAUP on this matrix are propagated
to various multivariate statistical techniques
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(e.g., Perle (1977) on factor analysis; Hunt
and Boots (1996) on principal component
analysis).

7.4.2. The zoning effect

For the zoning effect, its process and its
general impacts seem to be more difficult
to assess and comprehend. There are several
variables acting both independently and
together to determine the impacts of the
zoning effect. To illustrate the roles of
some of these variables, I have created two
artificial landscapes (Figure 7.4a and b). Both
landscapes have the same number of areal
units (100) and the same set of values. For

Figure 7.4(a), similar values (variable 1) tend
to locate close to each other, exhibiting strong
positive spatial autocorrelation, a situation
quite common in reality (Odland, 1988;
Griffith, 1987). Figure 7.4(b) was created by
randomly shuffling the original 100 values
and assigning them to different cells to
create variable 2. As a result, the pattern
is somewhat random. In addition, I have
created two zoning patterns: the first pattern,
Configuration 1 in Figure 7.4, follows closely
the patterns of Variable 1 in Figure 7.4(a); the
second pattern, Configuration 2 in Figure 7.4,
cuts through different zones of Variable 1.

When Configuration 1 is applied to Vari-
able 1, we expected that the general spatial
trend will likely be preserved, while this

Configuration 1

Configuration 2

Variable 1
2 – 23
24 – 40
41 – 57
58 – 75
76 – 96

Variable 2
2 – 23
24 – 40
41 – 57
58 – 75
76 – 96

(a)

(b)

Figure 7.4 100 units with (a) positive spatial autocorrelation and (b) random pattern; and
two hypothetical zoning systems: Configuration 1 and Configuration 2.
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Configuration 1

Variable 1
15
15 – 37
37 – 57.76
57.76 – 84.64

Variable 2
40.68
40.68 – 49.56
49.56 – 50.56
50.56 – 53.5

Variable 1
42.8
42.8 – 47.28
47.28 – 49.56
49.56 – 54.76

Variable 2
43.24
43.24 – 45.12
45.12 – 46.44
46.44 – 59.6

Configuration 2

Figure 7.5 Configurations 1 and 2 applied to Variables 1 and 2.

will not be the case when Configuration 2
is applied to Variable 1. On the other
hand, because the spatial distribution of
Variable 2 is somewhat random, imposing
Configurations 1 or 2 will unlikely create
major differences. Figure 7.5 shows the
results; besides Variable 1–Configuration 1,
we cannot identify any pattern. Note that
the ranges of values in other situations
are much smaller than that in Variable
1–Configuration 1.

Table 7.3 shows the details for some of the
statistics. The first row in Table 7.3 (V1 and
V2) lists the statistics of the original values.
Assuming that we aggregate the original 100
areal units into four larger units by taking
the averages of the original values, the first
batch of rows shows the results from the
averaging process. The only situation that
can preserve some of the statistics (standard
deviation and to some extent maximum) of
the original values reasonably well is V1–C1,
when the spatial configuration coincides with

the spatial pattern. When Configuration 2
was applied to Variable 1, the minimum
value was inflated, but the standard deviation
was greatly suppressed. For Variable 2, we
see no obvious differences in statistics when
different configurations were applied, as the
values are spatially random. In other words,
the zoning effect will be minimal if the
phenomenon exhibits a somewhat random
pattern. But if the phenomenon exhibits
strong positive spatial autocorrelation, then
we should expect some significant impacts
due to the zoning effect.

Besides the spatial distribution of the
data, another major factor in determining
the impacts of the MAUP is the spatial
aggregation mechanism, or the process used
to derive a representative value for the
aggregated units. The above example used
averaging as the process, i.e., the average
value of the original data will be used for the
aggregated unit. But there are other possible
choices for the representative values, such
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Table 7.3 Selected statistics for using the two hypothetical configurations (1 and 2) to
aggregate Variable 1 and Variable 2 in Figure 5

Variables (V1 and V2) and

configurations (C1 and C2)

Mean Minimum Maximum Standard deviation

V1 and V2 49.00 2.00 96.00 27.00

V1–C1 (Average) 48.60 15.00 84.00 29.70

V1–C2 (Average) 48.60 42.80 54.76 4.98

V2–C1 (Average) 48.60 40.68 53.60 5.55

V2–C2 (Average) 48.60 43.24 59.60 7.45

V1–C1 (Minimum) 37.00 2.00 71.00 29.00

V1–C2 (Minimum) 7.00 2.00 11.00 4.00

V2–C1 (Minimum) 5.00 2.00 10.00 3.00

V2–C2 (Minimum) 7.00 2.00 12.00 5.00

as median, minimum, maximum and others.
The second batch of rows in Table 7.3 shows
the aggregation results when the minimum
values are taken as the representative values.

Again, applying Configuration 1 to
Variable 1 best preserves the original
information, but still the results are quite
different from using the averaging process
and the original values. Therefore, how
values of sub-units are aggregated to larger
units will also affect the magnitude of the
MAUP. Although our discussion focuses on
the zoning effect, both the spatial distribution
of the data and the aggregation mechanism
are also applicable to explain the scale effect.

7.5. STAGES OF THE MAUP
RESEARCH

In the following section, I attempt to provide
an account of MAUP research over the past
several decades. To facilitate the discussion,
I divide the history into two periods charac-
terized by the major types of MAUP research
appearing during those periods: discovering
and assessing the impacts of the problem; and
conceptualizing and formulating solutions.

One needs to recognize that this division
is somewhat artificial and not exclusive in
nature, since their labels simply reflect the
dominant types of research during those
periods.

7.5.1. Discovery and impact
assessment

The impacts of MAUP have been
documented thoroughly. Given that changing
the correlation among variables is a typical
and fundamental impact of the MAUP, it
is not surprising to find that most statistical
analyses are subject to the MAUP. In
addition, non-statistical-based mathematical
models or quantitative methods are also
likely impacted by the MAUP. Although
Openshaw and Taylor coined the term, many
researchers prior to them had documented
some aspects of the MAUP. The earliest
seems to be the work by Gehlke and Biehl
(1934), who reported patterns of correlation
coefficient changes when census tracts were
grouped differently. Another early work by
Robinson (1956) moved a step forward by
arguing that a weighting scheme was neces-
sary to correct the correlation coefficient to
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account for different numbers of observations
among areal units. While not targeted at the
MAUP specifically, Moellering and Tobler
(1972) offered a better understanding of the
smoothing process of the scale effect by
explaining how variance changes over scale
levels. Sawicki (1973), and later Clark and
Avery (1976), launched among the earliest
attempts to assess the MAUP effects on
general statistical analyses. Perle (1977)
explicitly links the MAUP to the issue of
ecological fallacy (Wong, 2007), although
the potential problems of using ecological
correlation to infer individual behavior
were well documented (Robinson, 1950).
Parallel to these developments, some British
geographers, including Openshaw, focused
on a related issue of developing optimal zonal
systems, partly for regionalization purposes
and partly to deal with the MAUP problem.
As Batty (1976) adopted the information
approach to handle spatial aggregation,
others aimed at designing the best zonal
systems to support spatial interaction
modeling (Masser and Brown, 1975;
Openshaw, 1977a, b, 1978a, b). Creating
zones or regions is often needed in regional
analysis, and these zones or regions provide
the basis for location–allocation models.
Goodchild (1979) first recognized the MAUP
effect on location–allocation modeling.
Mathematical modelers occasionally picked
up this topic (Fotheringham et al., 1995;
Hodgson et al., 1997; Murray and Gottsegen,
1997; Horner and Murray, 2002), but these
studies were limited to assessing the impacts
of the MAUP.

After Openshaw and Taylor coined the
term MAUP in 1979, the next major
concerted effort in addressing the MAUP
started around 1989, partly due to the
research initiative of the National Center for
Geographic Information Analysis (NCGIA)
on data accuracy. In between, there were
intermittent developments in identifying dif-
ferent aspects of the MAUP. Batty continued

his entropy-based approach to deal with
the aggregation problem in the context
of developing gravity-based models (Batty
and Sikdar, 1982a–d). Putman and Chung
(1989) also joined the British geographers
to address zonal design issues for spatial
interaction models. Blair and Miller (1983)
demonstrated the impacts of MAUP on
input–output models.

The formation of the NCGIA and the
launching of the spatial data accuracy
research initiative created a boost for the
MAUP research since 1989. Fotheringham
(1989) called for the recognition of scale
sensitivity issues in spatial analysis, as well
as the need to perform multi-scale analyses.
In the same volume, Tobler (1989) argued
that the MAUP is a spatial problem and
therefore the solution has to be spatial
in nature. Subsequently, he proposed a
migration modeling framework that was
not sensitive to scale changes, probably
the first scale-independent spatial analytical
technique to be introduced. Unrelated to
the development of NCGIA, Arbia (1989)
published a highly in-depth monograph
addressing the MAUP.

7.5.2. From conceptualization
to problem solving

With the NCGIA research initiative on spatial
data accuracy as the platform, a new wave
of research activities on the MAUP began in
the early 1990s, starting with the paper by
Fotheringham and Wong (1991), a frequently
cited paper, systematically addressing the
impacts of the MAUP on correlation analysis
and regression models. While researchers
were still interested in, and to some extent
obsessed with the impacts of the MAUP,
the community had gradually moved toward
finding solutions to the MAUP. This search
for solutions was in parallel to the effort
of several researchers who had provided
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evidence that the MAUP effects may not be
as pervasive as some others claimed (e.g.,
Fotheringham and Wong, 1991). Amrhein
and Flowerdew (1989) show that the MAUP
has limited impact on Poisson regressions.
Trying to identify when MAUP will be
significant, Amrhein (1995) and Amrhein
and Reynolds (1996) conducted a series of
simulation, controlling for various statistical
properties of the data, including various
levels of spatial autocorrelation. They con-
cluded that the MAUP effects may not be
significant given certain levels of aspatial and
spatial correlation among variables, but their
relationships are extremely complex. While
most impact analyses of the MAUP focused
on statistical or mathematical modeling,
some analyses were more narrowly focused
on index formulations, particularly using
indices to measure segregation (Wong, 1997;
Wong et al., 1999). Besides conceptualizing
the scale effect on measuring segregation,
this line of research also shows that spa-
tial measures are likely more sensitive to
changing scale than aspatial measures (Wong,
2004).

A coordinated effort during this phase
of the MAUP research was the publishing
of a special issue of Geographical Systems

(Wong and Amrhein, 1996). In this special
issue, some researchers still focused on the
MAUP effects (e.g., Okabe and Tagashira,
1996; Hunt and Boots, 1996), but others
delved deeper into the sources of the MAUP
(e.g., Amrhein and Reynolds), including the
change-of-support concept in geostatistics
(Cressie, 1996). A clear direction was to
develop solutions. Holt et al. (1996) argued
that the source of the scale effect was the
changes in correlation between variables and
thus they proposed a framework to model
the changes of correlation over scale by
taking into account spatial autocorrelation
implicitly. Unfortunately, the complexity of
the computational method was beyond a
practical solution to the problem. Creating

optimal zoning was firmly believed to be a
potential solution to the MAUP in the past
(Openshaw, 1977a), and this direction was
still an interest at this stage of the research
(Openshaw and Schmidt, 1996).

Most of the research on the MAUP
mentioned above focused on aggregating
polygon feature data, a popular operation
in manipulating vector format data in GIS
and frequently used in the handling of
socioeconomic phenomena. However, the
impacts of the MAUP are also present in
physical geography, environmental modeling
and in general, the analysis of raster format
data. Outside of human geography, some
landscape ecologists and physical geogra-
phers started developing an appreciation
of the MAUP problems (Jelinski and Wu,
1996), and a series of research followed this
direction. While Arbia et al. (1996) might
have been the first linking the scale effect
in raster or remote sensing data analysis
to the MAUP explicitly, the scale effect
or scale dependency issue was definitely
not new to remote sensing scientists (e.g.,
Bian and Walsh, 1993) since remote sens-
ing data are often available and can be
tabulated easily to multiple scale levels
(Bian, 1997). Part of the issue, which
has historically been a problem in remote
sensing analysis, is to select the resolution
appropriate for the analysis (e.g., Townshend
and Justice, 1988). Lam and Quattrochi
(1992) reviewed several concepts related to
scale and resolution, attempting to address
the issue of choosing the optimal scale
or resolution to analyze a particular phe-
nomenon. Some researchers also recognized
that the scale effect is essentially a change-
of-support problem in geostatistics (Atkinson
and Curran, 1995). The edited volume by
Quattrochi and Goodchild (1997) collected
papers partly focusing on the impacts of
the MAUP on remote sensing, and also
on modeling the scale effect and develop-
ing solutions (e.g., Bian, 1997; Xia and
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Clarke, 1997). Still, no clear solutions have
been identified.

Outside of the geographical literature, the
MAUP attracted additional attention after
the appearance of King’s monograph (1997),
which focused on ecological inference issues
across social science disciplines, but also
addressed the related MAUP. He made a bold
claim that an error-bound approach can solve
the scale effect, part of the MAUP and is
conceptually related to the ecological fallacy
problem. His claim triggered reactions from
the geographic realm, and some of these
reactions were aired through a series of coor-
dinated comments (Sui, 2000), although the
focus was still on the ecological fallacy issue.
But geographers’ responses (Fotheringham,
2000; Anselin, 2000; O’Loughlin, 2000)
were not too optimistic that King’s solutions
can solve the ecological fallacy issue and
specifically the MAUP. On the other hand,
Johnston and Pattie (2001) rebuffed the claim
that geographers have not spent adequate
effort in dealing with the ecological fallacy
by citing previous research on entropy
maximization, which offers promising results
in dealing with the ecological inference
problem.

7.6. POTENTIAL SOLUTIONS

The recent exchanges between geographers
and King raise doubt that King’s solutions
can solve the MAUP. Even though the early
phase of the MAUP research was fascinated
by the pervasiveness of the MAUP effects
and overwhelmed by ‘impact-analysis’ type
of studies, researchers have never stopped
searching for solutions since the very
beginning. Robinson (1956) suggested sim-
plistic weighting methods to overcome some
of the MAUP effects on correlation analysis.
Tobler (1989) argued that because the MAUP
is a spatial problem, solutions have to be

spatial in nature. Thus, he called for the
development of scale-insensitive or frame-
independent spatial analytical techniques to
deal with the MAUP and he employed a
population migration model that was rela-
tively insensitive to scale changes (Tobler,
1989). Tobler’s migration model is one
of the very few analytical tools that are
relatively scale-insensitive. Another one that
has demonstrated some level of stability
in correlation over different scale levels is
location-specific correlation analysis (Wong,
2001). But all of these potentially scale-
insensitive tools have limited applications.

A popular spatial ‘solution’ to the MAUP
even before Openshaw and Taylor coined the
term was to create optimal zoning systems
(Openshaw, 1977a, b, 1978a, b; Openshaw
and Baxter, 1977; Openshaw and Rao, 1995;
Openshaw and Schmidt, 1996). Given that
most aggregation problems involve multiple
variables, derivations of zonal systems have
to be based upon multiple variables and
multiple objectives. In general, the principle
is to create zonal systems to minimize the
intra-zonal variances and to maximize inter-
zonal variances. But often there is no unique
solution and therefore, heuristic processes
seem to be quite promising (Bong and Wang,
2004).

Recently, the edited volume by Tate and
Atkinson (2001) pointed to three directions of
MAUP research: impacts of the scale effects,
the potential of fractal analysis in dealing
the scale issue and the use of geostatistics,
specifically kriging and related methods such
as variograms to handle and model the scale
effect. Although the intended coverage of
the volume included both vector and raster
data, the impact assessment tended to focus
more on vector data while the modeling
and ‘solutions’ were geared more toward
raster data. Fractals have a strong relationship
historically with the scale effect as remote
sensing data can be tabulated and analyzed
at multiple scale levels and fractal geometry
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is a powerful mathematical tool to handle
multiscale phenomena (Lam and Quattrochi,
1992; Lam and De Cola, 1993; Pecknold
et al., 1997; Quattrochi et al., 1997). The
volume by Tate and Atkinson (2001) includes
several papers on using fractals to handle
the scale problem. But so far, although
fractal analysis has been demonstrated to
be effective in describing and modeling
phenomena at multiple scales, it has not yet
been proven to be a viable solution to the
MAUP, or more specifically the scale effect.

Tate and Atkinson (2001) also suggested
geostatistical analysis as a potential solution
to the scale problem. Geostatistical tools,
especially variograms, can identify the geo-
graphical range of spatial autocorrelation.
This is an important piece of information
to understand and model the scale effect.
They claimed that geostatistical tools are
not used to rescale the data themselves,
but to rescale statistics describing the data
(Atkinson and Tate, 2000). This is an inter-
esting idea, but has not been fully validated
or operationalized. More recently, following
the introduction of Geographically Weighted
Regression (GWR), the potential for using
GWR to depict spatial heterogeneity related
to the MAUP was alluded to (Fotheringham
et al., 2000). Because a major source of the
scale effect is spatial heterogeneity and GWR
can model local variability reasonably well,
it is believed that GWR may be more robust
than other global models and less sensitive to
the scale effect (Fotheringham et al., 2002,
pp. 144–158). Still GWR cannot really be
regarded as a solution to the scale effect or
the MAUP.

Somewhat similar to the geostatistical
approach to rescale statistics over multiple
scale levels was the direction taken by a
group of social statisticians (Holt et al.,
1996; Steel and Holt, 1996; Tranmer and
Steel, 1998). They realized that the scale
effect can be kept to a minimum when
the aggregated areas have a high degree of

internal homogeneity (low variance), and the
magnitude of the scale effect will be partly
a function of the internal homogeneity. As
a result, one may model the scale effect
or statistics describing the data at different
scale levels as long as we can establish
the rules of aggregation and how the scale
effect is related to the level of internal
homogeneity. Since the foundation of most
classical statistics is the variance–covariance
matrix, this group of researchers proposed
using the correlation at the individual level
to estimate the correlation at the aggregated
level and thus can estimate the variance–
covariance matrix at the aggregate level.
The statistical derivations involved were very
sophisticated and the computation was very
demanding. As a result, this has not been a
practical solution to the MAUP.

Although tremendous efforts have been
spent to deal with the scale problem, to many
researchers, the zoning problem seems to
be easier to handle. Flowerdew and Green
(1989, 1992) treated the zoning problem in
the same way as resolving incompatible zonal
systems. The general approach is to use spa-
tial interpolation methods to transform data
gathered according to one zonal pattern to
another pattern. Fisher and Langford (1995,
1996) have evaluated the reliability of this
technique in handling the zoning problem.
A related technique, dasymmetric mapping,
was also shown to be effective to handle
incompatible zonal patterns from a carto-
graphic perspective (Fisher and Langford,
1996; Mennis, 2003). An older smoothing or
interpolation technique, the smooth pycno-
phylactic interpolation introduced by Tobler
(1979), has also been revisited and is believed
to be a solution candidate for the MAUP,
specifically in addressing the problem from
the change-of-support perspective (Gotway
and Young, 2002).

To summarize, the MAUP effects can
possibly be tackled by sophisticated models
and computationally intensive techniques,
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while their practical and operational poten-
tials are yet to be affirmed. Relatively simple
techniques can handle the zoning problem,
but not the scale problem. Thus, without
generally feasible methods to handle the
MAUP, the old call for recognizing the
MAUP is still the most affordable approach
to deal with this long-term stubborn problem
(Fotheringham, 1989). Given the advances
in GIS technology and computational tools,
and the availability of digital data at various
scales, repeating the same analysis but
using different scales or partitioning schemes
is within reach of most researchers. This
approach is probably the minimum standard
in handling the MAUP given where we are
on this topic.

Taking one step further, using segregation
indices as examples, Wong (2003) disaggre-
gated segregation at different geographical
levels to demonstrate that one can document
the sources of the MAUP effects. This
accounting framework is to identify and
quantify the amount of the MAUP effects
contributed by different locations at different
scale levels. This detailed mapping of the
MAUP effects by scale and space is not just
informative, but also sheds light on where the
MAUP effects may be the most acute in the
geographic hierarchy and highlights locations
that deserve more attention.

7.7. CONCLUDING REMARK

Many methodological or technical problems
can be found in the geographical literature.
Some have broad impacts and are very
complex, while some are confined to certain
areas and are more manageable. Two very
stubborn but pervasive problems in statistical
analysis of spatial data are spatial auto-
correlation and the MAUP. The past two
decades of research in spatial statistics and
spatial econometrics have moved the field

forward to the stage that some very promising
and operational modeling techniques are
available to handle spatial autocorrelation
quite effectively (e.g., Griffith, 2003). For
the MAUP, we have accumulated pieces of
knowledge and developed some comprehen-
sive understanding and conceptualizations
of the problems. But a systematic research
agenda seems to be needed in order to
bring significant advancements along this
direction. Assessing the impacts of the
MAUP should be a topic confined to the past,
and the future should focus on developing
operational solutions.
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8
Spatial Weights

R o b i n D u b i n

8.1. WEIGHT MATRICES

A weight matrix summarizes the spatial
relationships in the data. In particular, the i’th
row of a weight matrix shows observation i’s
relationship to all of the other observations.
By convention, the main diagonal of this
matrix consists of zeros. Because the weight
matrix shows the relationships between
all of the observations, its dimension is
always N × N , where N is the number
of observations. In most applications, the
weight matrix itself is treated as exogenous;
that is, it is assumed that the researcher
knows how the observations are related to
each other. Note that the space in which
the observations are located need not be
geographic; any type of space is acceptable,
as long as the researcher can specify the
spatial interactions.

Spatial data can appear in many forms. The
data can come from regions (e.g., counties) or
points (e.g., houses). The data may be located

on a regular grid or lattice, but this is not
necessary. The numbers in the weight matrix
can indicate whether or not a relationship is
present or they can indicate the strength of the
relationship. The former weighting schemes
are called discrete, and the latter, continuous.

It is common, but not necessary, to row
normalize the weight matrix. This means
that the matrix is transformed so that each
of the rows sums to one. Row normalizing
gives the weight matrix some nice theoretical
properties. For example, row normalizing
allows the weight matrices from different
weighting schemes to be compared, since
all elements must lie between 0 and 1
(inclusive). Row normalizing also allows l

(a parameter discussed later in the chapter)
to be bounded by −1 and 1. All of the
weight matrices presented in this chapter
will be row normalized. The cost of row
normalizing is that it may interfere with the
interpretation of the weights. For example,
in the case of inverse distance weighting,
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row normalizing will change the weights so
that they sum to one. Thus pairs with the
same separation distance can have different
weights, depending on the number of nearby
observations.

In the remainder of this chapter, I will
explore weight matrices for the following
cases: regular lattice data for points, regular
lattice data for areas, irregularly located data
for points, and irregularly located data for
areas.

Consider the data presented in Figure 8.1.
This is a map of 25 regions arranged on a
regular lattice. The borders of the regions
are shown with solid lines, the centroids
are shown with heavy black points, and the
lattice itself is shown with dashed lines. Each
region is identified by a number between
1 and 25.

The most natural way to represent the
spatial relationships with areal data is through
the concept of contiguity. That is, regions
will be considered to be related if their
boundaries share common points. There are
three types of contiguity that are commonly
considered: rook contiguity, bishop conti-
guity, and queen contiguity. Contiguity is
determined by imagining that the regions
form a chess board; neighbors are determined
by the regions that the appropriate chess piece
could reach.

8.1.1. Rook contiguity

With rook contiguity, the neighbors are due
north, south, east and west. Region 7’s
neighbors are regions 2, 6, 8 and 12 and

5
5 10 15 20 25

4 9 14 19 24

3 8 13 18 23

2 7 12 17 22

1 6 11 16 21

4

3

2

1

1 2 3 4 5

Figure 8.1 Map of regular lattice areas.
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Figure 8.2 Neighbors in rook contiguity.

are indicated with stars in Figure 8.2. The
weight matrix for this data will have 25 rows
and columns. The first 10 rows and columns
are of the unstandardized weight matrix are
shown in Figure 8.3.

This symmetric matrix has zeros on its
main diagonal. A one indicates that regions
i and j are neighbors. Regions in the interior
of the study area will have four ones in their
rows. For example, the seventh row of the
weight matrix contains four ones, because
region 7 has four neighbors (only three
are shown in Figure 8.3 because the fourth
neighbor is region 12). Regions on the
periphery will have fewer neighbors. For
example, the first row (representing region 1)
has only two ones. These are in the second
and sixth cells, indicating that region 1 has
only two neighbors: region 2 and region 6.

To obtain the row normalized version of
this weight matrix, divide each row by the
number of neighbors (ones). Thus in rows
with 4 neighbors, the entries will be 0.25,
and in rows with only two, the entries will
be 0.5. This is a common occurrence: row
normalizing often makes symmetric weight
matrices asymmetric.

8.1.2. Bishop contiguity

In bishop contiguity, region i’s neighbors are
located at its corners. Figure 8.4 shows the
neighbors for region 7 under this scheme. The
neighbors are regions 1, 3, 11 and 13.

Again, regions in the interior will have four
neighbors, while those on the periphery will
have fewer. Figure 8.5 shows the first 10 rows
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0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00

1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00

Figure 8.3 Subset of unstandardized weight matrix for rook contiguity.
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Figure 8.4 Neighbors in bishop contiguity.

and columns of the unstandardized weight
matrix for this case.

Examination of the first row of Figure 8.5
shows a 1 in position 7, indicating that
region 7 is region 1’s (only) neighbor. The
second row shows that region 2 has two
neighbors: regions 6 and 8.

8.1.3. Queen contiguity

In queen contiguity, any region that touches
the boundary of region i, whether on a side
or a corner, is considered to be a neighbor.
The maximum number of neighbors for this
case is eight. In Figure 8.6, stars indicate
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0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 8.5 Subset of unstandardized weight matrix for bishop contiguity.
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Figure 8.6 Neighbors in queen contiguity.

the neighbors for region 7 under queen
contiguity.

The weight matrix for queen contiguity
is the sum of the weight matrices for rook
and bishop contiguity. The first 10 rows and

columns of the unstandardized weight matrix
are shown in Figure 8.7.

Comparing Figure 8.7 to Figures 8.5 and
8.6 shows that Figure 8.7 can be obtained
by summing the other two weight matrices.
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0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00

1.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00

0.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00

0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00

1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
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0.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00

0.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00
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Figure 8.7 Subset of unstandardized weight matrix for queen contiguity.

For example, the first row now has three ones,
in positions 2, 6 and 7, showing that these
three regions are neighbors of region 1.

8.2. CORRELATION MATRICES

Suppose that the data has been generated by
the following process:

Y = µ + ε (8.1)

ε = lWε + e (8.2)

where W is the weight matrix, and e is a
white noise error term (that is, the elements
of e are assumed to be independent and
have zero mean and constant variance, σ 2).
In this system, Y is a random variable
with constant mean, µ, and a spatially
correlated error term, ε. The error term
in the first equation is spatially correlated
because the error term for one observation
depends on the value of the errors of
its neighbors, as shown in equation 8.2.
The parameter l shows the strength of
the spatial autocorrelation and must lie
between −1 and 1 for a normalized weight
matrix.

The variance-covariance matrix for the
data is given by the following formula:

, = σ 2 [(I − lW )′ (I − lW )
]−1 (8.3)

where I is the identity matrix. The variance–
covariance matrix can be converted into
a correlation matrix, K , as shown in
equation 8.4.

Kij =
,ij√
,ii,jj

(8.4)

As equations (8.3) and (8.4) show, the
correlation matrix depends on the choice
of W . In what follows, I examine the
correlation matrices that result from using
the three types of contiguity: bishop, rook
and queen. In the examples l is set to 0.67,
σ 2 to 1, and all weight matrices are row
normalized.

The correlation matrices for the example
set of regions will be 25 × 25. Because
it is difficult to look at so many numbers
at one time, I will present the correlation
matrices using symbols, rather than numbers.
A diamond will represent correlations that
are equal to or greater than 0.8. A cross
will indicate that the correlation is less
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Figure 8.8 Correlation matrix for bishop contiguity.

than 0.8 but greater than or equal to 0.6.
A triangle shows that the correlation is
between 0.4 and 0.6. A square shows that the
correlation is between 0.2 and 0.4, while a
dot shows that the correlation is less than
0.2. Figures 8.8, 8.9 and 8.10 show the
correlation matrices for bishop, rook and
queen contiguity, respectively.

8.2.1. Correlation matrix for
bishop contiguity

Even a brief examination of the three correla-
tion matrices shows that the three weighting
schemes produce very different correlations
in the data. The bishop’s case produces
a particularly interesting correlation matrix.
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Figure 8.9 Correlation matrix for rook contiguity.

In what follows, I will use region 7 for
illustration purposes. Figure 8.11 shows the
seventh row of the correlation matrix.

Recall that under bishop contiguity the
neighbors of region seven are regions 1, 3, 11
and 13. One might then reasonably expect
that the correlation between all of the

direct neighbors and region 7 would be
the same. However, Figure 8.11 shows
that the correlations are 0.76, 0.59, 0.59
and 0.48, respectively. The correlations
differ because these regions have different
numbers of neighbors themselves, as shown
in Table 8.1. The general rule is that the
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Figure 8.10 Correlation matrix for queen contiguity.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.76 0.00 0.59 0.00 0.22 0.00 1.00 0.00 0.31 0.00 0.59 0.00 0.48 0.00 0.20 0.00 0.31 0.00 0.20 0.00 0.22 0.00 0.20 0.00 0.14

Figure 8.11 Row 7 from the bishop’s correlation matrix.
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Table 8.1 Neighbors of region 7 using
bishop contiguity

Neighbors Correlation

with region 7

Number of neighbors

of neighbors

(excluding region 7)

1 0.76 0

3 0.59 1

11 0.29 1

13 0.48 3

more ‘connected’ a region is, the lower
its correlation with another region. This
makes sense because the more neighbors
a region has, the greater the different
influences on it.

Although sensible, this ‘connectedness’
property will increase the severity of ‘edge

effects’. Edge effects occur when the spatial
processes continue outside of the study area.
Regions with fewer neighbors are assigned
higher correlations; however, these regions
occur on the boundaries of the study area,
where they will be influenced by regions not
included in the study.

Also of note in the correlation matrix
is the large number of zeros. These are
shown as dots in Figure 8.8 and can be seen
explicitly in Figure 8.11. This occurs because
there are regions which are impossible to
reach from region i using bishop’s moves.
For example, as Figure 8.12 shows, it is
impossible to reach regions 8 or 10 from
region 7, and so Figure 8.11 shows zeros for
these cells.

Figure 8.12 also shows that, although
not direct neighbors, regions 9 and 5 can
be reached from region 7. It takes two

5
5 10 15 20 25

4 9 14 19 24

3 8 13 18 23

2 7 12 17 22

1 6 11 16 21

4

3

2

1

1 2 3 4 5

Figure 8.12 Relationship paths for bishop contiguity.
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‘moves’ to reach region 9 and three to reach
region 5. Therefore, we should see non-
zero correlations in these cells, with a larger
correlation in cell 9 than in cell 5, and this is
confirmed by Figure 8.11.

8.2.2. Correlation matrix for rook
contiguity

An examination of Figure 8.9 reveals a much
different pattern of correlations for the rook’s
case. The 7th row of the correlation matrix is
shown in Figure 8.13.

The same principal of greater connectivity
leading to smaller correlations continues to
be demonstrated by the rook contiguity, as
shown in Table 8.2.

In the rook’s case, it is possible to get
from one region to any other region, although
many ‘moves’ may be required. This means
that there are no unrelated regions, as in
the bishop’s case, and hence no zeros in
the correlation matrix. There are, however,
many small values, and these are shown
as dots in Figure 8.9. The greater the
number of ‘moves’ required, the smaller
the correlation. For example, starting from
region 7, three moves are required to get
to region 10 but only two to get to region
9. Figure 8.13 shows that the correlation
between regions 7 and 9 is larger than that
between regions 7 and 10. Likewise, it is
also possible to get to region 25, but this
requires 6 moves, and the correlation here is
very small (0.02).

Finally, it is of interest to examine regions
9 and 13. Both are two moves away from
region 7. However, two of region 13’s

Table 8.2 Neighbors of region 7 using rook
contiguity

Neighbors Correlation

with region 7

Number of neighbors

of neighbors

(excluding region 7)

2 0.51 2

6 0.51 2

8 0.44 3

12 0.44 3

neighbors are also neighbors of region 7.
Region 9 has only one neighbor in common
with region 7. This means that region
13 should have the stronger relationship
with region 7, and this is borne out by
Figure 8.13.

8.2.3. Correlation matrix for queen
contiguity

Although the weight matrix for the queen’s
case is the sum of the rook’s and the
bishop’s case, the same cannot be said for
the correlation matrix. However, the same
principals noted above apply: more con-
nected neighbors have lower correlations and
shared neighbors increase the correlations.
The seventh row of the correlation matrix is
shown in Figure 8.14.

Clearly, in the queen’s case, it is possible
to reach one region from any other region,
and so there are no isolated regions. However,
there are again some very small correlations,
which appear as dots in Figure 8.10.
Table 8.3 shows the relationship between

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0.40 0.51 0.31 0.14 0.07 0.51 1.00 0.44 0.16 0.07 0.31 0.44 0.24 0.10 0.05 0.14 0.16 0.10 0.05 0.03 0.07 0.07 0.05 0.03 0.02

Figure 8.13 Row 7 from the rook’s correlation matrix.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.52 0.49 0.40 0.18 0.11 0.49 1.00 0.39 0.19 0.11 0.40 0.39 0.32 0.15 0.09 0.18 0.19 0.15 0.10 0.07 0.11 0.11 0.09 0.07 0.05

Figure 8.14 Row 7 from the queen’s correlation matrix.

Table 8.3 Neighbors of region 7 using
queen contiguity

Neighbors Correlation

with region 7

Number of

neighbor’s

neighbors

Number of

shared

neighbors

1 0.52 2 2

2 0.49 4 4

3 0.40 4 2

6 0.49 4 4

8 0.39 7 4

11 0.40 4 2

12 0.39 7 4

13 0.32 7 2

connectedness and the correlations. The
queen’s case is somewhat more complex than
the rook and the bishop because now there are
more neighbors.

Examination of Table 8.3 shows that, as
before, the correlations with region 7 fall as
its neighboring regions have more neighbors
themselves. For example, region 1 has the
smallest number of neighbors (two) and the
highest correlation (0.52). However, we see
that the relationship is more complex than
before, because regions 2, 3, 6, and 11 all
have four neighbors but their correlations
differ. The answer can be found in the
last column of Figure 8.17, which shows
the number of shared neighbors. That is,
these are the number of regions that are
neighbors to both region 7 and the region
in the first column. Thus, regions 3 and
11 have the same correlation because both
the number of neighbors and the number
of shared neighbors is the same. Similarly,
region 6 has a higher correlation because all

of its four neighbors are also neighbors to
region 7.

8.3. CORRELOGRAMS

The final tool that I will use to analyze differ-
ences between these weighting schemes is the
correlogram. A correlogram shows how the
correlations change as the distance between
the regions increases. Thus, the correlation is
graphed on the vertical axis, and separation
distance is graphed on the horizontal axis.
In general, we expect that the correlations
will fall as separation distance increases.
Figure 8.15 shows the correlograms for the
three cases under consideration.

Since the data is on a regular lattice,
and hence the centroids of the regions are
evenly spaced, one might think that the
correlations would be the same for any given
separation distance. However, Figure 8.15
shows that this is not the case: there is
a range of correlations for each separation
distance, although this range gets smaller as
the separation distance increases. The range
of correlations comes from the dependence
of the correlations on the connectedness of
the neighbors and the number of shared
neighbors as discussed above.

The correlations for both the rook’s and the
queen’s cases do tend to fall with separation
distance. For the bishop’s case, there is a
tendency for the correlations to decline with
separation distance, but this decline is not
monotonic. Relatively large correlations are
interrupted by the zero correlations of the
isolated regions, as discussed previously.
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Figure 8.15 Correlograms for regular lattice data.
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Figure 8.16 Irregularly located point example data.

8.4. REGULAR LATTICE POINT DATA

This is point data that is located at the inter-
section points of a regular grid. The data of
the previous section can be used here by sim-
ply considering the centroids of the regions to
be the data points. This means that applicable
weighting schemes include: rook, bishop and
queen contiguity. Also, weighting schemes
that are used primarily for irregularly located
point data can be used here as well. These
will be discussed in the next section.

8.5. IRREGULARLY LOCATED
POINT DATA

The discussion thus far has pertained to data
located at regular intervals along a grid.
However, spatial data is not always located
so conveniently, and it is to this case that
we now turn. In what follows, I will use ten

points, located as shown in Figure 8.16, for
purposes of illustration. The coordinates of
these points are given in Table 8.4.

I have chosen to use a small number
of points to keep the weight and corre-
lation matrices small. Cluster 1 consists
of observations 1 though 4. This cluster

Table 8.4 Coordinates for irregularly
located point example data

Observation X Coordinate Y Coordinate

1 2 9

2 2 10

3 2 7

4 2 3

5 9 9

6 9 10

7 9.75 9

8 9 7.75

9 7.5 9

10 11 1
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is somewhat dispersed, with observation 4
having the weakest link. Cluster 2 consists
of observations 5 though 9. Cluster 2 is much
tighter than Cluster 1. Observation 10 is an
isolated point and not part of any cluster.
The example data makes it clear that this
type of data is very different from the
regular lattice data, in which no clusters
could appear. There are a number of
weighting schemes that can be used for
this type of data; the analyst must be
skillful in choosing the weighting scheme
that best represents the spatial interactions in
the data.

Since the coordinates of the data points
are known, the distances separating each
pair of observations can be calculated. These
distances can be stored in an N × N distance
matrix. The distance matrix for the example
data is shown in Table 8.5. All of the
weighting schemes discussed in this chapter
will be functions of separation distance.

The relatively small numbers in the shaded
upper left portion of Table 8.5 reveal
Cluster 1. The very small numbers in the
shaded lower right portion reveal Cluster 2.
The large numbers in the last row and column
show that observation 10 is isolated from the
rest of the data.

In what follows, I explore the properties of
five different weighting schemes, which can
be characterized as discrete or continuous.
A discrete weighting scheme will have a
non-normalized weight matrix consisting of
ones and zeros, with the ones indicating
the interactions. In the continuous weighting
schemes, the cells will consist of numbers
which indicate the strength of the interac-
tions. Each of these weighting schemes has
a parameter, the value of which must either
be determined by the researcher or estimated.
The weighting schemes are summarized in
Table 8.6 and described below. Note that
in most of the presented matrices, the

Table 8.5 Distance matrix for irregularly located point example data
0.00 1.00 2.00 6.00 7.00 7.07 7.75 7.11 5.50 12.04

1.00 0.00 3.00 7.00 7.07 7.00 7.81 7.35 5.59 12.73

2.00 3.00 0.00 4.00 7.28 7.62 8.00 7.04 5.85 10.82

6.00 7.00 4.00 0.00 9.22 9.90 9.80 8.46 8.14 9.22

7.00 7.07 7.28 9.22 0.00 1.00 0.75 1.25 1.50 8.25

7.07 7.00 7.62 9.90 1.00 0.00 1.25 2.25 1.80 9.22

7.75 7.81 8.00 9.80 0.75 1.25 0.00 1.46 2.25 8.10

7.11 7.35 7.04 8.46 1.25 2.25 1.46 0.00 1.95 7.04

5.50 5.59 5.85 8.14 1.50 1.80 2.25 1.95 0.00 8.73

12.04 12.73 10.82 9.22 8.25 9.22 8.10 7.04 8.73 0.00

Table 8.6 Weighting schemes

Scheme Type Parameter

Nearest neighbors Discrete Number of neighbors (NN )

Limit Discrete Distance limit (L)

Pace and Gilley’s nearest neighbors Continuous Exponent (α), Maximum number of neighbors (k∗)

Inverse distance Continuous Exponent (P )

Negative exponential Continuous Denominator (A)
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elements representing the pairs in the two
clusters will be shaded. If the text refers
to specific cells, these will be highlighted
instead.

8.5.1. Nearest neighbors

A nearest neighbor weight matrix is defined
so that:

Wij = 1 if j is i’s nearest neighbor

= 0 otherwise

A nearest neighbor is the observation that
is the closest to observation i. Nearest
neighbors can be generalized to include any
number of neighbors. For example, if the
number of nearest neighbors is set to five,
then the non-normalized W will have five
ones in each row, indicating the five closest
observations to i. The number of neighbors
(NN) is the parameter of this weighting
scheme. Table 8.7 shows the weight matrix
when NN is set to 1.

An examination of this table shows that
the weight matrix is not symmetric. For
example, (3, 1) = 1 but (1, 3) = 0. This
is because observation 1 is observation 3’s
nearest neighbor, but the reverse is not

true (observation 2 is 1’s nearest neighbor).
Also note that this weighting scheme gives
observation 4 the same relationship with
observation 3 that 3 has with 1, even though
3 is much closer to 1 than 4 is to 3. For one
nearest neighbor, the unstandardized weight
matrix will have one 1 in each row; in
general, the number of ones per row will be
equal to NN.

Figure 8.17 shows the correlation matrix
for 1 nearest neighbor. The two clusters show
up clearly. Note that observation 10 appears
to be part of Cluster 2, even though it
is distant from the other points in that
cluster. Figure 8.18 provides a closer look at
Cluster 2.

Let a doublet be a pair such that each is
the other’s nearest neighbor, and a singlet be
a pair in which one member is the other’s
nearest neighbor, but not the reverse. The
only doublet shown in Figure 8.18 is the pair
(5, 7), and this pair has the highest correlation
shown, at 0.92. Observations 6, 8 and 9 have
only singlet connections to observation 5,
and their correlations are lower at 0.83.
Observation 10 has a singlet connection to 8,
but this correlation is even lower at 0.76. This
is because 8 (the nearest neighbor) is less well
connected to the rest of the cluster than is
point 5.

It may seem that there is a contradiction
between the correlation patterns in the

Table 8.7 Weight matrix for example data with one nearest neighbor
0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
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Figure 8.17 Correlation matrix for one nearest neighbor (λ = 0.67).
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Figure 8.18 Correlations between selected points for cluster two, one nearest neighbor.
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regular and irregular lattice cases: greater
connectedness causes lower correlations
in the regular lattice case and higher
correlations here. The apparent contradiction
is caused by differences in what is being held
constant in each case. For the regular lattice,
the number of neighbors can vary but the
relationships between the data points is fixed.
For the nearest neighbors weighting scheme
with irregularly spaced data, the number of
neighbors is fixed, but the spatial relation-
ships can change. For the regular lattice,
more neighbors means more influences and
therefore lower correlations. Here, having
a central neighbor (as indicated by a high
correlation) causes point i to be more central
as well.

With nearest neighbors, points can only
be related through nearest neighbor pairs
(whether doublet or singlet). Thus a ‘move’
here is a step along a path connecting nearest
neighbor pairs. As in the regular lattice
case, as the number of moves increases,
the correlations fall. Observation 9 has a
correlation of 0.52 with point 10. This
is because 6 is related to 10 through
observation 5 (path: 9, 5, 8, 10). Observation
7 has a slightly higher correlation with 10
(0.58) even though the same number of
moves are involved, because the path to
10 goes through the doublet (5, 7) (path:
7, 5, 8, 10).

8.5.2. Two nearest neighbors

Table 8.8 shows the standardized weight
matrix and Figure 8.19 the symbolic cor-
relation matrix for two nearest neighbors.
Increasing the number of neighbors to two
makes the weight matrix more symmetric in
the clusters, which means that there will be
more doublets. Since there are more doublets,
the impact of the most central points (1 and 5)
is reduced. This has the effect of making the
clusters appear more compact, as shown in
Figure 8.19.

Figure 8.20 explores Cluster 2 more
closely. Since there are two neighbors, as
opposed to one, Figure 8.20 shows more
doublets and singlets than Figure 8.18.
The general rules for the magnitudes of
the correlations are that: (a) doublets have
higher correlations than singlets and (b) the
more connected the ‘partners’, the higher the
correlations (this rule holds for both doublets
and singlets). For example, ρ8,10 is smaller
than ρ8,5 because point 8 is better connected
than point 10.

The pairs shown by the dotted lines are
not nearest neighbor pairs, and therefore are
reached by steps along a path. As before,
if the path goes through a doublet, the
correlations are higher than if it goes through
a singlet. Also, the larger the number of steps,
the lower the correlation.

Table 8.8 Standardized weight matrix for two nearest neighbors
0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00
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Figure 8.19 Correlation matrix for two nearest neighbors (λ = 0.67).
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Figure 8.20 Correlations between selected points for cluster two, two nearest neighbors.
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8.5.3. Three nearest neighbors

Table 8.9 shows the standardized weight
matrix for this case and Figure 8.21 shows the
correlation matrix. Because there are more
doublets and singlets, more pairs become
well connected or central. However, the
influence of any individual connection is
diminished, since there are more connections.
Thus the clusters look more diffused and the
two clusters begin to affect each other, as
shown in Figure 8.21.

Figure 8.22, which illustrates the correla-
tions for Cluster 2, shows that pair (5, 7) has
regained its dominant position, having the
highest correlation at 0.74. This pair is the
most connected because all of its connections
are doublets. Even though this pair has the
highest correlation, it had a much higher
correlation in the one nearest neighbor case
(0.92). This is because there are many more
doublets here, so each has a smaller impact.

Comparing Figure 8.22 to Figures 8.18
and 8.20 shows that most of the dotted lines

Table 8.9 Standardized weight matrix for three nearest neighbors
0.00 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00

0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00

0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00

0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.00 0.00

0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.33 0.00

0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.00 0.00

0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.33 0.00

0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.33 0.00 0.00

0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.33 0.00 0.00
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Figure 8.21 Correlation matrix for three nearest neighbors.
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Figure 8.22 Correlations between selected points for cluster two, three nearest neighbors.

have been replaced by solid and dashed lines,
because there are more neighbors. Thus, most
of the points in this cluster are related, which
leads to the diffused pattern of correlations
shown in Figure 8.21.

8.5.4. Correlograms for nearest
neighbors

The correlograms for nearest neighbors are
shown in Figure 8.23. Examination of
this figure shows that the correlations do
not decline monotonically with separation
distance. For one nearest neighbor, although
there is a slight diminution with distance,
the basic pattern is that the correlations
are either very strong or zero. Further-
more, the strong correlations are interspersed
with the zeros. This means that some
pairs can be highly correlated, while others,
that are closer together, are not. However,
all of the small separation distance pairs
are highly correlated and all of the large

separation distance pairs are not related to
each other.

Increasing the number of neighbors to two
reduces the size of the large correlations,
and hence diminishes the diminution with
separation distance. The same pattern of large
correlations interspersed with zeros persists.
Finally, when the number of neighbors is
increased to three, all points are related at
least weakly (keep in mind that there are
only 10 observations). The upper end of the
strong (greater than 0.5) correlations has been
reduced further. There is still a separation
distance range in which strong correlations
are interspersed with weak ones, and so there
is no monotonic relationship between sep-
aration distance and correlation. It remains
true, however, that the strongest correlations
are associated with the smallest separation
distances and the largest separation distances
have the smallest correlations.

All of these results show that the number of
neighbors is an important parameter for this
weighting scheme; the number of neighbors
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Figure 8.23 Nearest neighbor correlograms, λ = 0.67.

has a sizeable impact on the weight matrix
and the associated correlation matrix. It is
traditional for researchers to pick the number
of neighbors a priori. These results show that
this should be done with care.

8.5.5. Pace and Gilley’s continuous
version of nearest neighbors
(P&G)

In this model, described in pace and Gilley
(1998), the unstandardized weight matrix is
given by:

W =
NN∑

k=1

αkN(k)

where N(k) is an N × N matrix such that:

N (k)ij =1 if j is i’s kth nearest neighbor

=0 otherwise,

α is a parameter to be estimated, and NN

is chosen by the researcher. This model was
developed to finesse the fact that the number
of neighbors is generally chosen by the
researcher, rather than estimated. As the value
of α increases, the influence of more distant
neighbors increases. Thus, if the researcher
does not know the number of neighbors, he
can pick a number k∗ (which is generally
larger than the probable number of neighbors)
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and then estimate α to find the optimal
degree of influence.1 In the example, NN is
set to 5.

This weighting scheme falls into the
continuous category, because the unstan-
dardized weight matrix does not consist of
ones and zeros, as in nearest neighbors.
The standardized weight matrices are shown
in Tables 8.10 and 8.11, for α = 0.1 and
α = 0.5. These weight matrices differ from
the nearest neighbor weight matrices, partic-
ularly as α becomes larger. For example, a
comparison of Tables 8.7 and 8.10 shows
that α = 0.1 produces a weight matrix that
is similar to that for one nearest neighbor.
However, comparing Tables 8.9 and 8.11
shows that the α = 0.5 case is quite different
from three nearest neighbors. This is because,
in the nearest neighbors weighting scheme,

all of the neighbors are assigned equal
weight. In the P&G weighting scheme, the
first nearest neighbor always has the greatest
weight. As the value of α increases, the more
distant neighbors are given greater weight,
but the weights are always less than for
the first nearest neighbor. For example, in
Table 8.9 (three nearest neighbors) W has
0.33 in the second, third and ninth elements
of the first row, while in Table 8.11 (α = .3)
the corresponding elements are 0.52, 0.26,
and 0.13.

Figure 8.24 shows the correlation matrices
for α = 0.1 and 0.5. Examination of this
figure shows that α = 0.1 corresponds well
to one nearest neighbor. Not surprisingly
however, α = 0.5 differs from three nearest
neighbors in that there is less bleeding of the
clusters with P&G.

Table 8.10 Standardized weight matrix for α = 0.1
0.00 0.90 0.09 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.90 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.90 0.09 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.09 0.01 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.09 0.90 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.90 0.00 0.09 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.90 0.09 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.90 0.00 0.09 0.00 0.01 0.00

0.00 0.00 0.00 0.00 0.90 0.09 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.09 0.90 0.00 0.00

Table 8.11 Standardized weight matrix for α = 0.5
0.00 0.52 0.26 0.06 0.03 0.00 0.00 0.00 0.13 0.00

0.52 0.00 0.26 0.06 0.00 0.03 0.00 0.00 0.13 0.00

0.52 0.26 0.00 0.13 0.00 0.00 0.00 0.03 0.06 0.00

0.26 0.13 0.52 0.00 0.00 0.00 0.00 0.03 0.06 0.00

0.03 0.00 0.00 0.00 0.00 0.26 0.52 0.13 0.06 0.00

0.00 0.03 0.00 0.00 0.52 0.00 0.26 0.06 0.13 0.00

0.03 0.00 0.00 0.00 0.52 0.26 0.00 0.13 0.06 0.00

0.00 0.00 0.03 0.00 0.52 0.06 0.26 0.00 0.13 0.00

0.03 0.00 0.00 0.00 0.52 0.26 0.06 0.13 0.00 0.00

0.00 0.00 0.00 0.03 0.13 0.00 0.26 0.52 0.06 0.00



148 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

Alpha = 0.1

0
1

2
3

4
5

6
7

8
9

1
0

1
1

0 1 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

6
7

8
9

1
0

1
1

0 1 2 3 4 5 6 7 8 9 10 11

Alpha = 0.5

Figure 8.24 Correlation matrices for Pace and Gilley model.

Figure 8.25 shows the correlograms for
the P&G model. These should be compared
to the nearest neighbors correlograms in
Figure 8.23. Not surprisingly, the first panels
of these two figures agree quite closely, while
the second panels do not. In the P&G model,
the attenuation of the strong correlations
with separation is more pronounced than in
nearest neighbors. Additionally, the range of
the strong correlations does not become as
compressed when α increases as it does when
the number of neighbors increases. Finally,
comparing the two panels in Figure 8.25,
the ‘bleeding’ of the clusters is shown by
the zero correlations in the first panel (α =
0.1) becoming positive in the second panel
(α = 0.5).

8.6. DISCUSSION

Pace’s model is sufficiently different from
nearest neighbors that I do not believe it
should be considered as a replacement with
an estimable parameter. Rather, I believe that
it adds an additional feature to the nearest

neighbors model. That is, it changes the
weighting on the neighbors so that more
distant (in terms of neighbors) neighbors
have less weight. Further, the rate of decline
of the weight is estimated. Thus it should
be considered to be an important weighting
scheme in its own right. The features of this
weighting scheme may make sense in some
situations. For example, if the data looks like
cluster one, then it makes sense to weight the
third neighbor less than the second. However,
if the data looks like cluster two, it makes
less sense. Note also that the researcher must
choose the maximum number of neighbors,
NN. As in all choices of parameters, the
researcher must use his judgment as to what
is best.

8.6.1. Limit models

Limit models use a weighting scheme such
that:

Wij = 1 if Dij ≤ L

= 0 otherwise
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Figure 8.25 Correlograms for Pace and Gilley model.

where L is the distance limit. The parameter
L is usually chosen by the researcher and
its value can have a profound effect on
both the weight and correlation matrices.
The unstandardized version of W is sym-
metric because Dij = Dji. However, the
standardized W is usually not symmetric
because the number of points within the
distance limit will vary by observation. This
is a discrete weighting scheme because the
unstandardized W consists entirely of ones
and zeros.

Tables 8.12 and 8.13 show standardized
weight matrices for distance limits of 1 and 3,
respectively. When L = 1, W is very
sparse, because there are very few pairs
with separation distance less than one. The
asymmetry is illustrated by the shaded
cells in Table 8.12. Observation 5 has two
other points located within 1 distance unit
(points 6 and 7), and so these weights
are standardized to 0.5. However, points
6 and 7 only have one ‘neighbor’ each
(point 5), and so the weight for point 5 in
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Table 8.12 Standardized weight matrix, distance limit = 1
0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 8.13 Standardized weight matrix, distance limit = 3
0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25 0.00

0.00 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.25 0.00

0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.25 0.25 0.00

0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.00 0.25 0.00

0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rows 6 and 7 is 1. Table 8.13 shows that,
when the distance limit is increased to 3,
the weight matrix becomes symmetric. This
distance limit reveals the two clusters, putting
observations 1 through 3 in Cluster 1 and
5 through 9 in Cluster 2. Points 4 and 10
have no ‘neighbors’; these rows contain only
zeros.

Figure 8.26 shows correlation matrices for
the Limit Model, for L = 1 and L = 3.
When L = 1, the correlation matrix is very
sparse, and the correlations that are present
are very high. Observations 1 and 5 are very
dominant. The two clusters are apparent, but
include too few observations. Expanding the
distance limit to 3 reveals the two clusters
more accurately, although observations 4 and
10 remain excluded from either. Although
L = 3 seems to make the most sense for this

data, the correlation matrix does not resemble
those of the previously discussed weighting
schemes. Also note that L is not required to
be an integer.

Figure 8.27 shows the correlograms for
L = 1 and L = 3. For the small distance
limits shown here, there is no intermingling
(with respect to distance) of correlated and
uncorrelated points, as in nearest neighbors.
Pairs are either correlated or not, and when
they are, the correlation is high. The strictly
positive correlations end at the distance
limit. However, when the distance limit
is larger (not shown), there is a range
of separation distances in which positive
and zero correlations are interspersed. This
range occurs beyond the distance limit
and shows the ‘neighbors of neighbors’
effect.
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Figure 8.26 Correlation matrices for limit model.
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Figure 8.27 Correlograms for limit model.
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8.6.2. Inverse distance

In this weighting scheme, the weights are
inversely related to separation distance as
shown below:

Wij =
1

DP
ij

where the exponent P is a parameter that is
usually set by the researcher. This weighting
scheme falls into the continuous category
because the unstandardized weights are
between 1 and 0 (inclusive), rather than being
restricted to 1 or 0.

Tables 8.14 and 8.15 show the standardized
weight matrices for P = 1 and P = 3.

When P = 1 (Table 8.14), the weights in
the clusters are relatively low. For example,
the weights associated with point 1 (the most
central point in Cluster 1) are all less than 0.5,
and the weights associated with point 5 are
all less than 0.4. Additionally, the weights for
pairs outside the clusters are relatively large,
reaching values as high as 0.11.

When P = 3 the in-cluster weights are
very large, while the out of cluster weights
are close to zero. For example, the weights
associated with point 1 are as high as 0.95
(since these weight matrices are standardized,
all weights lie between 0 and 1). The weights
associated with point 5 are as large as 0.72.
Points 4 and 10 have relatively large weights.

Figure 8.28 shows the correlation matrices
for P = 1 and P = 3. When P = 0.5

Table 8.14 Standardized weight matrix P = 1
0.00 0.40 0.20 0.07 0.06 0.06 0.05 0.06 0.07 0.03

0.44 0.00 0.15 0.06 0.06 0.06 0.06 0.06 0.08 0.03

0.27 0.18 0.00 0.13 0.07 0.07 0.07 0.08 0.09 0.05

0.14 0.12 0.20 0.00 0.09 0.08 0.08 0.10 0.10 0.09

0.03 0.03 0.03 0.02 0.00 0.22 0.30 0.18 0.15 0.03

0.04 0.04 0.04 0.03 0.29 0.00 0.23 0.13 0.16 0.03

0.03 0.03 0.03 0.03 0.34 0.21 0.00 0.18 0.11 0.03

0.05 0.04 0.05 0.04 0.26 0.14 0.22 0.00 0.16 0.05

0.06 0.06 0.06 0.04 0.23 0.19 0.15 0.17 0.00 0.04

0.09 0.08 0.10 0.11 0.12 0.11 0.13 0.15 0.12 0.00

Table 8.15 Standardized weight matrix P = 3
0.00 0.87 0.11 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.95 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.65 0.19 0.00 0.08 0.01 0.01 0.01 0.01 0.03 0.00

0.15 0.09 0.50 0.00 0.04 0.03 0.03 0.05 0.06 0.04

0.00 0.00 0.00 0.00 0.00 0.24 0.57 0.12 0.07 0.00

0.00 0.00 0.00 0.00 0.56 0.00 0.29 0.05 0.10 0.00

0.00 0.00 0.00 0.00 0.72 0.16 0.00 0.10 0.03 0.00

0.00 0.00 0.00 0.00 0.48 0.08 0.30 0.00 0.13 0.00

0.01 0.01 0.01 0.00 0.42 0.24 0.12 0.19 0.00 0.00

0.05 0.04 0.06 0.10 0.14 0.10 0.15 0.23 0.12 0.00
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Figure 8.28 Correlation matrices for inverse distance model.

(not shown), all points are correlated with all
other points, and the correlations are roughly
the same. When P = 1, we begin to see some
stronger correlations associated with points
1 and 5, but non-zero correlations still exist
between all pairs. When P = 3, the clusters
appear very clearly, and points 1 and 5 appear
to be influential. Note that points 4 and 10 are
always included in the clusters.

Figure 8.29 shows the correlograms for
P = 1 and P = 3. Examination of this
figure shows that the correlations decline
monotonically when P = 1. At P = 3, an
intermixing of large and small correlations
occurs when separation distance is in the
range of 5 to 9.

8.6.3. Negative exponential model

This is another continuous weighting scheme.
Here the weights decline exponentially with
separation distance.

Wij = exp (−Dij/A)

where A is a parameter that is commonly
chosen by the researcher.

Tables 8.16 and 8.17 show the standardized
weight matrices for A = 0.5 and A = 2.
When A = 0.5, the weights within the
clusters are reasonably large, and the largest
weights are associated with points 1 and 5.
The weights for pairs outside of the clusters
are all zero, except for point 10. When A = 2,
the weights associated with points 1 and 5
get smaller, but there is an indeterminate
effect on the weights on the other pairs in
the cluster: some get smaller and some get
larger. The weights on the pairs outside of
the cluster become larger.

Figure 8.30 shows the correlation matrices
for A = 0.5 and A = 2. When A =
0.25 (not shown), the clusters are clearly
indicated, and correlations associated with
points 1 and 5 are very large, indicating
their centrality. When A is increased to 0.5,
point 5 loses some of its centrality, remaining
highly correlated only with point 7. When A

is set to 1 (not shown), point 5 appears no
different from the other points in Cluster 2,
and the centrality of point 1 becomes weaker.
Finally, when A = 2, all of the points become
correlated, although the highest correlations
remain in the clusters. Note that point 10 is
always included in Cluster 2, regardless of
the value of A.
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Figure 8.29 Correlograms for inverse distance model.

Table 8.16 Standardized weight matrix for negative exponential model, A = 0.5
0.00 0.88 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.98 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.87 0.12 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.28 0.46 0.17 0.10 0.00

0.00 0.00 0.00 0.00 0.53 0.00 0.32 0.04 0.11 0.00

0.00 0.00 0.00 0.00 0.60 0.22 0.00 0.15 0.03 0.00

0.00 0.00 0.00 0.00 0.49 0.07 0.32 0.00 0.12 0.00

0.00 0.00 0.00 0.00 0.46 0.25 0.10 0.19 0.00 0.00

0.00 0.00 0.00 0.01 0.07 0.01 0.10 0.79 0.03 0.00

Figure 8.31 shows correlograms for
A = 0.5 and A = 2. When A = 0.5, the
pattern is familiar: high correlations at small
separation distances, a range between 5 and
9 where strong correlations are interspersed

with zero correlations, and zero correlations
at separation distances greater than 9. When
A = 2, previously strong correlations are
reduced somewhat, and the previously zero
correlations become stronger.
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Table 8.17 Standardized weight matrix for negative exponential model, A = 2
0.00 0.51 0.31 0.04 0.03 0.02 0.02 0.02 0.05 0.00

0.59 0.00 0.22 0.03 0.03 0.03 0.02 0.02 0.06 0.00

0.42 0.25 0.00 0.15 0.03 0.03 0.02 0.03 0.06 0.01

0.18 0.11 0.48 0.00 0.04 0.03 0.03 0.05 0.06 0.04

0.01 0.01 0.01 0.00 0.00 0.25 0.28 0.22 0.20 0.01

0.01 0.02 0.01 0.00 0.31 0.00 0.27 0.16 0.21 0.01

0.01 0.01 0.01 0.00 0.33 0.25 0.00 0.23 0.15 0.01

0.02 0.01 0.02 0.01 0.29 0.18 0.26 0.00 0.20 0.02

0.04 0.03 0.03 0.01 0.26 0.23 0.18 0.21 0.00 0.01

0.02 0.02 0.04 0.10 0.15 0.10 0.17 0.28 0.12 0.00
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Figure 8.30 Correlation matrices for negative exponential model, selected values of A.

8.7. IRREGULARLY LOCATED AREAS

All of the weighting schemes described in
the previous section can be used for areas,
if they are applied to the centroids of the
regions. Other weighting schemes have been
suggested for areas. For example, Cliff and
Ord (1981) suggest using weights based on
centriod separation distance and the length
of the shared boundary.

Wij =
βb

i(j)

Da
ij

where βi(j) is the proportion of the perimeter
of area i that is shared with area j, and a and
b are parameters. Dacey (1968) suggested
taking the relative size of each area into
consideration, and proposed the following
weights:

Wij = dijαiβi(j)

where dijis one if the areas are contiguous
and zero otherwise, and αi is the fraction of
the study area that is contained in area i.
Many other weighting schemes have been
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Figure 8.31 Correlograms for negative exponential model.

proposed. These will not be explored further
in this chapter.

8.8. DISCUSSION

The weight matrix is a powerful tool for
representing spatial relationships. There are
many choices for the form that this matrix
can take; only a few have been described
in this chapter. The researcher will always
have to specify a family of schemes (e.g.,
nearest neighbor, limit) and will often have
to choose at least one parameter to complete
the specification. Despite this, it is standard to
treat the weight matrix as exogenous, which

means that both the family and parameter
value are known by the researcher. While
this makes the estimation of other parameters
easier, it is not very satisfying, since it
implies that the researcher knows a great
deal about the spatial interactions in the
data. Furthermore, the remaining parameter
estimates can be biased, since they will
be conditional upon the specification of W .
Given the impact of the choice of family and
parameters upon the analysis, it is incumbent
upon the researcher to choose carefully.

Estimation of W is appealing, although
difficult. Maximum likelihood methods can
be used, at the cost of assuming normality.
Bhattacharjee and Jensen-Butler (2006) have
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recently suggested an approach that is based
on the eigenvalues and eigenvectors of the
variance/covariance matrix estimated from a
first stage OLS regression. Clearly, this is an
area for future research. For further reading
see Anselin (1988), Upton and Fingleton
(1985), and Cliff and Ord (1973).

NOTE

1 It should be pointed out that it is probably as
easy to estimate the number of neighbors as it is to
estimate α.
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9
Geostatistics and Spatial

Interpolation

P e t e r M . A t k i n s o n a n d C h r i s t o p h e r D . L l o y d

9.1. INTRODUCTION

This chapter is concerned with geostatistics,
a set of techniques for the analysis of
spatial data (Journel and Huijbregts, 1978;
Goovaerts, 1997; Chilès and Delfiner,
1999). Oliver and Webster (1990) and
Burrough and McDonnell (1998) are two
accessible introductions to geostatistics, the
latter describing geostatistics within the
context of geographical information systems.
Geostatistics has its origins in mining
but geostatistical approaches have been
applied in many other disciplines including
glaciology (Herzfeld and Holmlund, 1990),
remote sensing (Curran and Atkinson, 1998)
and archaeology (Lloyd and Atkinson, 2004).
Geostatistics is characterized by the common
dependence of its constituent techniques on
the random function (RF) model, described

below. Such techniques include those
for spatial prediction, spatial simulation,
regularization and spatial optimization.
Commonly, the RF model is defined to be
stationary in the sense that the parameters
of the model are invariant through space.
In this chapter, the focus of later discussion
is on non-stationarity of parameters through
space, in keeping with the local spatial
analysis described in other chapters of
this book.

A RF Z(x) may be defined as a random
variable (RV), that is, a stochastic process Z

that varies as a function of location x.
The process of rolling a six-sided die is
a commonly quoted example of a RV.
The die can take any one of six possible
outcomes (an integer between 1 and 6)
where, for an unbiased die, each number
has an equal chance of 1/6 of being rolled.
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These possible outcomes define the discrete
distribution function of the die. Rolling the
die leads to a particular outcome, called
a realization. For continuous variables, a
continuous function (the probability density
function, pdf, or cumulative distribution
function, cdf) replaces the discrete def-
inition of the distribution function. The
cdf defines the probability of the outcome
being less than a selected value (Goovaerts,
1997). See Isaaks and Srivastava (1989)
for a discussion of RVs in a geostatistical
context.

In defining a RF it is important to
consider how the RV will be allowed to
vary through space x. One simple possibility
is to allocate to every position x in space
its own cdf, with each independent of all
other cdfs. A problem is that this model
requires a large number of parameters;
one set (e.g., mean and variance of the
Gaussian model) for each possible location.
Moreover, such a possibility is unlikely
to be realistic in practice; we know that
places close together tend to have similar
characteristics. Therefore, this model is too
loosely controlled and does not make use of
our practical knowledge of spatially varying
phenomena. For these reasons, we place
some restrictions on the RF model. The
most common set of restrictions are referred
to as stationarity constraints, meaning that
particular parameters are invariant with x.
In the strictest sense, the mean and variance
parameters can be held constant for all
locations x. However, under this model each
point is identical, independent distributed
(iid), meaning that spatial inference is
severely limited (we now have too tight a
control over the possibilities).

In geostatistics, it is common to define a
stationary mean parameter. Various alterna-
tive models have been proposed in which the
mean is allowed to vary through space. Such
a non-stationary mean parameter is generally
referred to as a trend (see Goovaerts,

1997, and section 9.4.1 below). For the
present purpose, a stationary mean provides
a basic starting point. A second important
restriction, which is not as restrictive as
defining a stationary variance, is to define
a stationary spatial covariance function (rep-
resenting second-order stationarity) or semi-
variogram (representing intrinsic stationarity,
a weaker form of stationarity). Although
much of the computation in geostatis-
tics is based on the spatial covariance,
the equations are often written in terms
of semi-variograms and, thus, we shall
focus on the semi-variogram from this
point onwards.

The semi-variogram defines the relations
between points and, thus, facilitates spatial
statistical inference. It is usually estimated
from empirical data as a plot of half the
average squared difference between pairs
of values (the semivariance) against the
vector separation or lag. Then a mathe-
matical model is commonly fitted to the
empirical semi-variogram plot for use in
geostatistical operations. Various methods
may be employed in the fitting, although
weighted least squares is a common basic
starting point. Several important considera-
tions should be taken into account during
model fitting (see McBratney and Webster,
1986). Once the parameters are estimated
(either with or without the uncertainty of
estimation accounted for) the RF is defined
and geostatistical operations can proceed.
Variogram estimation and model fitting are
described in section 9.2.

The mean and semi-variogram are, thus,
the parameters that define the RF model,
and that need to be estimated, effectively
replacing the mean and variance of the
RV model. It should be pointed out that
the variogram may itself be comprised of
several further parameters. For example,
the spherical model is an example of a
transitive variogram model (i.e., for which
a positive finite maximum value is defined).
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The spherical model has two parameters; the
sill c and the non-linear parameter a usually
referred to as the range. The sill defines the
maximum value of semivariance while the
range defines the lag at which the sill is
reached.

Geostatistical operations include spatial
prediction, spatial simulation, regularization
and spatial optimization. In spatial prediction
or kriging, the objective is to predict the
value of z(x0) at some unobserved location x0

given a sample of data z(xi), i = 1, 2, . . ., n

usually defined on point supports (the space
on which each observation is defined) or
quasi-points. The RF model helps because
it is useful to base the prediction of z(x0)
on a model that captures our knowledge
of the underlying processes or form. In
environmental science (in the broadest sense)
process knowledge is often limited and
the RF model provides a useful stochastic
framework that builds on some general
principles.

The RF model is useful for several reasons,
but prime among them are:

1 the dependence of the prediction z (x0) on the

data z (xi ), i = 1, 2, . . . , n is estimated by the

semi-variogram. In a general sense, the closer

z (x0) and a given data point the more similar the

two values are likely to be. The semi-variogram

quantifies this spatial dependence. Critically,

this means in a linear weighting of proximate

data to be used in spatial prediction the

weights can be determined automatically through

linear algebra. This process is referred to as

kriging.

2 In kriging, the relations between the sample data

themselves are accounted for so that, at a given

separation, a cluster of data points will contribute

less to the prediction than a dispersed set (Journel

and Huijbregts, 1978).

3 The cdf of the predicted value (i.e., the set of

possible values from which one realization is

drawn) can be conditioned on the sample data.

In particular, the variance of the conditional cdf

(ccdf) is likely to be less than that of the original

cdf. In general terms, this means that the range

of possible values for the unknown value is

restricted to be close to the neighbouring data by

an amount determined by the spatial proximity of

the prediction location to the neighbours. Such

information can be used to extend the process

of spatial prediction (in which the mean of the

posterior or conditional cdf is drawn) to spatial

simulation (in which a value is drawn from the

ccdf randomly).

Geostatistics, as described above, has
been used widely to characterize spatial
variation (using the semi-variogram or other
function) in relatively small data sets and
to predict unobserved values using kriging
informed by the modelled semi-variogram.
In such circumstances, the decision to
adopt a stationary model of the mean
and semi-variogram makes sense. In fact,
it is necessary for statistical inference.
However, very large spatially-extensive and
spatially-detailed data sets are increasingly
readily available. Examples include digital
elevation data and image-based data sets
provided primarily through remote sensing
(Atkinson, 2005). Researchers and practi-
tioners are increasingly overwhelmed by
the magnitudes of the datasets available
for analysis. This has led to a realization
that the biggest problem facing spatial
analysts today is one of data richness
rather than data sparcity. In these cir-
cumstances, a stationary RF model is not
only inappropriate, but wasteful of data.
More suitable solutions can be found by
allowing the previously stationary parame-
ters to vary across the region of interest
(Atkinson, 2001).

The present chapter provides an
introduction to linear geostatistics, but with a
particular focus on models that include non-
stationarity parameters, particularly of (a) the
mean and (b) the semi-variogram. The next
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section describes the process of fitting the RF
model parameterized by a spatial covariance
or semi-variogram, while section 9.3
describes geostatistical prediction (kriging).
Section 9.4 considers non-stationary models
and section 9.5 discusses a range of
issues related to the use of geostatistics
within GIS.

9.2. CHARACTERIZING SPATIAL
VARIATION

9.2.1. Estimating the experimental
semi-variogram

Much of the effort and time associated with
geostatistical analysis is expended in analysis
of the spatial structure of a variable. One
simple way of examining spatial structure is
through estimating the semi-variogram cloud.
The semi-variogram cloud is a plot of the
semivariances for paired data against the
distances separating the paired data points
in a given direction. The semivariance is
half the squared difference between values
at two locations, and can be thought of
as a measure of dissimilarity. Thus, the
semi-variogram cloud shows how dissimilar
paired data points are as a function of their
separation distance and direction (termed
spatial lag, h). If data are spatially structured
then pairs separated by small lags will tend
to be less dissimilar than pairs separated by
large lags.

A core idea in geostatistics is that the
spatial structure in a variable should be
characterized and used for spatial prediction
and simulation. The objective of geostatis-
tical prediction is to find optimal weights
to assign to observations located around
the prediction location. If information is
available on how dissimilar two observations
are likely to be for a given lag then
this information can be used to determine

these weights. The most commonly used
approach is based on the estimated semi-
variogram. The experimental semi-variogram
is estimated by calculating the squared
differences between all the available paired
observations and obtaining half the average
for all observations separated by a given
lag (or within a lag tolerance where the
observations are not on a regular grid). So,
while the semi-variogram cloud provides
semivariances as a function of a set of
actual lags the experimental semi-variogram
provides only a set of average semivariances
at a set of discrete lags. Examination of
the semi-variogram cloud provides a means
of identifying heterogeneities in spatial
variation within a variable (Webster and
Oliver, 2000) that are obscured through
the summation over lags that occurs with
the experimental semi-variogram. Therefore,
examination of the semi-variogram cloud is
a sensible step prior to estimation of the
experimental semi-variogram.

The experimental semi-variogram, γ̂ (h),
can be estimated from p(h) paired observa-
tions, z(xα), z(xα + h), α = 1, 2, . . ., p(h)
using:

γ̂ (h) =
1

2 p(h)

p(h)∑

α=1

{
z(xα) − z(xα + h)

}2

(9.1)

The semi-variogram can be estimated for dif-
ferent directions to enable the identification
of directional variation (termed anisotropy).
Where a variable is preferentially sampled
in areas with large or small values of the
property of interest, the histogram will be
unrepresentative and often a declustering
algorithm is necessary to correct this. For
example, values in areas or cells with more
data may be given smaller weights than
values in sparsely sampled areas (Deutsch
and Journel, 1998). Preferential sampling
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of a variable also impacts on the form of
the experimental semi-variogram. Richmond
(2002) shows that clustering can, in some
cases, alter drastically the form of the semi-
variogram. Two methods of declustering for
weighting paired data in estimation of the
experimental semi-variogram are given by
Richmond (2002).

In the presence of large-scale, low-
frequency variation (e.g., that would be fitted
well by a trend model), the form of the
semi-variogram will be affected. If the semi-
variogram increases more rapidly than a
quadratic polynomial for large lags then a RF
which is non-stationary in the mean should
be adopted (Armstrong, 1998). This topic is
explored in greater depth in section 9.4.1.

9.2.2. Fitting a semi-variogram
model

A mathematical model may be fitted to
the experimental semi-variogram and the
coefficients of this model can be used for
a range of geostatistical operations such as
spatial prediction (kriging) and conditional
simulation. A model is usually selected from
one of a set of so-called authorized models.
McBratney and Webster (1986) provide a
review of some of the most widely used
authorized models. There are two principal
classes of semi-variogram model. Transitive
(bounded) models have a sill (finite variance),
and indicate a second-order stationary pro-
cess. Unbounded models do not reach an
upper bound; they are intrinsically station-
ary only (McBratney and Webster 1986).
Figure 9.1 shows the parameters of a bounded
semi-variogram model (the spherical model
as defined below). The nugget effect, c0,
represents unresolved variation (a mixture
of spatial variation at a scale finer than
the sample spacing and measurement error).
The sill, c, represents the spatially correlated
variation. The total sill, c0 + c, is the

a priori variance. The range, a, represents the
scale of spatial variation (Atkinson and Tate,
2000). For example, if a measured property
varies markedly over small distances then the
property can be said to exhibit short range
spatial variation.

Some of the most commonly used author-
ized models are detailed below. The nugget
effect model, defined above, is given by:

γ (h) =
{

0 for h = 0
c0 for |h| > 0.

(9.2)

Three of the most frequently used bounded
models are the spherical model, the expo-
nential model and the Gaussian model and
these are defined in turn. The spherical
model is perhaps the most widely used
semi-variogram model. Its form corresponds
closely with what is often observed in
many real world studies; almost linear
growth in semivariance with separation and
then stabilization (Armstrong, 1998). It is
given by:

γ (h)=
{

c ·[1.5(h/a)−0.5(h/a)3] if h≤a

c if h>a

(9.3)

where c is the sill of the spherical model and
a is the non-linear parameter, known as the
range.

The exponential model is given by:

γ (h) = c ·
[

1 − exp
(

−
h

d

)]
(9.4)

where d is the non-linear distance parameter.
The exponential model reaches the sill
asymptotically and the practical range is 3d
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Range (a)

Nugget (c0)

Total sill (c0 + c)

Lag (h)

Sill (c)

Figure 9.1 Bounded semi-variogram.

(i.e., the separation at which approximately
95% of the sill is reached).

The Gaussian model is given by:

γ (h) = c ·
[

1 − exp
(

−
h2

d2

)]
. (9.5)

The Gaussian model does not reach a sill
at a finite separation and the practical range
is a

√
3 (Journel and Huijbregts, 1978).

Semi-variograms with parabolic behaviour at
the origin, as represented by the Gaussian
model here, are indicative of very regular
spatial variation (Journel and Huijbregts,
1978). Authorized models may be used in
positive linear combination where a single
model is insufficient to represent well the
form of the semi-variogram.

Where the semi-variogram appears to
increase indefinitely with separation the most
widely used model is the power model:

γ (h) = m·hω (9.6)

where ω is a power 0 < ω < 2 with
a positive slope, m (Deutsch and Journel,
1998). The linear model is a special case of
the power model.

One of the advantages of kriging is
that it is often fairly straightforward to
model anisotropic structure using the semi-
variogram. Two primary forms of anisotropy
have been outlined in the geostatistical
literature. If the sills for all directions are not
significantly different and the same structural
components (for example, spherical or
Gaussian) are used then anisotropy can be
accounted for by a linear transformation of
the co-ordinates: this is called geometric
or affine anisotropy (Webster and Oliver,
1990). Where the sill changes with direction
but the range is similar for all directions
the anisotropy is called zonal (Isaaks and
Srivastava, 1989). However, the modelling of
zonal anisotropy is much more problematic
than the modelling of geometric anisotropy.
In practice, a mixture of geometric and zonal
anisotropy has been found to be common
(Isaaks and Srivastava, 1989).

There are various approaches for fitting mod-
els to semi-variograms. Some geostatisticians
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prefer fitting semi-variogram models ‘by
eye’ on the grounds that it enables one to
use personal experience and to account for
features or variation that may be difficult
to quantify (Christakos, 1984; Journel and
Huijbregts, 1978). Weighted least squares
(WLS) has been proposed as a suitable
means of fitting models to semi-variograms
(Cressie, 1985; Pardo-Igúzquiza, 1999)
and the approach has been used by many
geostatisticians. The technique is preferred
to unweighted ordinary least squares (OLS)
as in WLS the weights can be used to
reflect the uncertainty in the individual
semivariance estimates or the desire to
fit at certain lags more accurately than at
others. For example, the weights are often
selected to be proportional to the number
of pairs at each lag (Cressie, 1985), such
that lags with many pairs have greater
influence in the fitting of the model. The
use of generalized least squares (GLS) has
also been demonstrated in a geostatistical
context (Cressie, 1985; McBratney and
Webster, 1986). Use of maximum likelihood
(ML) estimation (McBratney and Webster,
1986) has become widespread amongst
geostatisticians and has been used for
WLS. The goodness of fit of models to
the semi-variogram, and of the relative
improvement or otherwise in using different
numbers of parameters, may be compared
through the examination of the sum of
squares of the residuals or through the
use of the Akaike Information Criterion
(McBratney and Webster, 1986; Webster and
McBratney, 1989).

Figure 9.2 shows an experimental semi-
variogram estimated from precipitation data
acquired in Great Britain in January 1999.
The semi-variogram was estimated using
the Gstat software (Pebesma and Wesseling,
1998). The data are described by Lloyd
(2002, 2005). The semi-variogram was
fitted with a nugget and two spherical
components. Authorized models are often

used in combination in this way to model
nested spatial structures. In Figure 9.3, the
directional semi-variogram, estimated from
the same data, is shown. It indicates that
the scale of spatial variation is similar
in all directions while the magnitude of
the variation (the semivariance) is clearly
different for different directions.

9.3. SPATIAL PREDICTION AND
SIMULATION

9.3.1. Ordinary kriging

There are many varieties of kriging. Its sim-
plest form is called simple kriging (SK). To
use SK it is necessary to know the mean of the
property of interest and this must be modelled
as constant across the region of interest. In
practice, this model is often unsuitable. The
most widely used variant of kriging, ordinary
kriging (OK), allows the mean to vary
spatially: the mean is modelled as constant
within each prediction neighbourhood only.
For each point to be predicted a new
neighbourhood is defined and so effectively
the mean is allowed to vary locally.

OK predictions are weighted averages
of the n available data. The OK weights
define the best linear unbiased predictor
(BLUP). The OK prediction, ẑOK(x0), is
defined as:

ẑOK(x0) =
n∑

α=1

l
OK
α z(xα) (9.7)

with the constraint that the weights, l
OK
α , sum

to 1 to ensure an unbiased prediction:

n∑

α=1

l
OK
α = 1. (9.8)
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Figure 9.2 Omnidirectional semi-variogram of precipitation.
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So, the objective of the kriging system is
to find appropriate weights by which the
available observations will be multiplied
before summing them to obtain the predicted
value. These weights are determined using
the coefficients of a model fitted to the semi-
variogram (or another function such as the
covariance function).

The kriging prediction error must have an
expected value of 0:

E{ẐOK(x0) − Z(x0)} = 0. (9.9)

The kriging (or prediction) variance, σ 2
OK, is

expressed as:

σ̂ 2
OK(x0) = E[{ẐOK(x0) − Z(x0)}2]

= 2
n∑

α=1

l
OK
α γ (xα − x0)

−
n∑

α=1

n∑

β=1

l
OK
α l

OK
β γ (xα − xβ ).

(9.10)

That is, we seek the values of l1, . . . , ln

(the weights) that minimize this expression
with the constraint that the weights sum to
one (equation (9.8)). This minimization is
achieved through Lagrange multipliers. The
conditions for the minimization are given by
the OK system comprising n + 1 equations
and n + 1 unknowns:






n∑

β=1
l

OK
β γ (xα − xβ ) + ψOK = γ (xα − x0)

α = 1, . . . , n
n∑

β=1
l

OK
β = 1

(9.11)

where ψOK is a Lagrange muliplier. Knowing
ψOK, the kriging variance, an estimator of the
prediction variance of OK, can be given as:

σ̂ 2
OK =

n∑

α=1

l
OK
α γ (xα − x0) + ψOK. (9.12)

The kriging variance is a measure of
confidence in predictions and is a function of
the form of the semi-variogram, the sample
configuration and the sample support (Journel
and Huijbregts, 1978). The kriging variance
is not conditional on the data values locally
and this has led some researchers to use alter-
native approaches such as conditional simu-
lation (discussed in the next section) to build
models of spatial uncertainty (Goovaerts,
1997).

There are two varieties of OK: punctual
OK and block OK. With punctual OK the pre-
dictions cover the same area (the support, v)
as the observations. In block OK, the
predictions are made to a larger support than
the observations. With punctual OK the data
are honoured. That is, they are retained in
the output map. Block OK predictions are
averages over areas (that is, the support has
increased). Thus, at x0 the prediction is not
the same as an observation and does not need
to honour it.

The choice of semi-variogram model
affects the kriging weights and, therefore,
the predictions. However, if the form
of two models is similar at the origin
of the semi-variogram then the two sets of
results may be similar (Armstrong, 1998).
The choice of nugget effect may have
marked implications for both the predictions
and the kriging variance. As the nugget
effect is increased, the predictions become
closer to the global average (Isaaks and
Srivastava, 1989).

A map of precipitation in Britain in
January 1999 generated using OK is shown
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in Figure 9.4. It was generated using the
semi-variogram model given in Figure 9.2
and the 16 nearest neighbours to each grid
cell were used in the prediction process.
The map is very smooth in appearance;
this is a common feature of maps derived
using OK.

9.3.2. Cokriging

Where a secondary variable (or variable)
is available that is cross-correlated with
the primary variable both variables may
be used simultaneously in prediction using
cokriging. To apply cokriging, the semi-
variograms (that is, auto semi-variograms)
of both variables and the cross semi-
variogram (describing the spatial dependence
between the two variables) are required.
The operation of cokriging is based on
the linear model of coregionalization (see
Webster and Oliver, 2000). For cokriging to
be beneficial, the secondary variable should
be cheaper to obtain or more readily available
to make the most of the technique. If the
variables are clearly linearly related then
cokriging may estimate more accurately than,
for example, OK.

9.3.3. Conditional simulation

Kriging predictions are weighted moving
averages of the available sample data.
Kriging is, therefore, a smoothing
interpolator. Conditional simulation (also
called stochastic imaging) is not subject
to the smoothing associated with kriging
(conceptually, the variation lost by kriging
due to smoothing is added back) as
predictions are drawn from equally probable
joint realizations of the RVs which make
up a RF model (Deutsch and Journel,
1998). That is, simulated values are not

the expected values (i.e., the mean) but
are values drawn randomly from the
conditional cdf: a function of the available
observations and the modelled spatial
variation (Dungan, 1999). The simulation
is considered ‘conditional’ if the simulated
values honour the observations at their
locations (Deutsch and Journel, 1998).
As noted above, simulated realizations
represent a possible reality whereas kriging
does not. Simulation allows the generation
of many different possible realizations that
may be used as a guide to potential errors
in the construction of a map (Journel, 1996)
and multiple realizations encapsulate the
uncertainty in spatial prediction. Arguably,
the most widely used form of conditional
simulation is sequential Gaussian simulation
(SGS). With sequential simulation, simulated
values are conditional on the original data
and previously simulated values (Deutsch
and Journel, 1998). In SGS the ccdfs
are all assumed to be Gaussian. SGS is
discussed in detail in several texts (for
example, Goovaerts, 1997; Deutsch and
Journel, 1998; Chilès and Delfiner, 1999;
Deutsch, 2002).

9.4. NON-STATIONARY MODELS

This section discusses non-stationarity in the
mean and the semi-variogram. Approaches
for dealing with non-stationarity in the mean
are well developed and are the subject of
section 9.4.1. There is a variety of methods
for estimating the local semi-variogram
where the spatial structure in the property of
interest varies from place to place. However,
such approaches are less widely used than
methods that allow for non-stationarity in the
mean. Some approaches for estimating the
non-stationary semi-variogram are discussed
in section 9.4.2.
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Figure 9.4 OK derived map of precipitation.
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9.4.1. Non-stationary mean:
fitting a trend and kriging
with a trend model

OK is robust but, in some cases, an even more
general form of kriging may be appropriate.
In cases where the mean of the variable
changes markedly over small distances a non-
stationary model of the mean may provide
more accurate spatial prediction. While the
mean varies from place to place with OK
it does not vary within the search window.
Several approaches exist that provide a non-
stationary mean.

One approach is to fit a global polynomial
trend model and estimate the semi-variogram
of the residuals. SK can then be used to
make predictions after which the trend can be
added back to the predicted values. Figure 9.5
shows the omnidirectional semi-variogram of

raw precipitation values and of residuals from
a first-order and a second-order polynomial
trend. In this case, the form of each of
the semi-variograms is similar although the
variance decreases as a higher-order trend
is removed. Another approach to obtaining
the trend-free semi-variogram is to estimate
the semi-variogram for several directions and
retain the semi-variogram for the direction
that has least evidence of trend, that is,
for which the variance is smallest. Figure 9.6
shows the semi-variogram of precipitation for
the direction with the smallest variance.

The most widely used approach to
prediction where the mean is non-stationary
is called kriging with a trend model (KT;
sometimes termed universal kriging). In KT,
the mean is modelled using a polynomial.
The principal problem with KT is that the
underlying trend-free semi-variogram must
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Figure 9.6 Semi-variogram of precipitation: direction with the smallest variance.

be estimated yet the local trend (or drift) is
estimated as a part of the KT procedure which
itself requires the semi-variogram. Various
approaches for estimating the trend-free
semi-variogram are described in the literature
and two approaches are summarized above.
Figure 9.7 shows the KT predictions made
using 16 nearest neighbours with the semi-
variogram model given in Figure 9.6; the
semi-variogram for the direction with the
least evidence of trend. An alternative
approach is Intrinsic Random Functions of
Order k kriging whereby the generalized
covariance is used in place of the semi-
variogram (Chilès and Delfiner, 1999).

Making use of secondary variables:
KED and SKlm
As well as estimating the form of the trend
from the variable of interest, there are various

approaches that make use of secondary
variables that describe the shape of the mean
in the primary variable. If some variable is
available that is linearly related to the primary
variable and varies smoothly (i.e., there are
no marked local changes in values) it could
be used to inform spatial prediction of values
of the primary variable. Two such approaches
are described below.

With SK, the mean is assumed to be
constant (there is no systematic change in
the mean of the property across the region of
study) and known. If the mean is not constant,
but we can estimate the mean at locations in
the domain of interest, then this locally vary-
ing mean can be used to inform prediction.
That is, the local mean can be estimated prior
to kriging. The locally-varying mean can
be estimated in various different ways. One
approach, termed simple kriging with locally
varying means (SKlm), is to use regres-
sion to estimate the value of the primary
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Figure 9.7 KT derived map of precipitation.
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variable at (a) all observation locations and
(b) all locations where SKlm predictions
will be made. The semi-variogram is then
estimated using the residuals from the
regression predictions at the data locations.
SKlm is conducted using the residuals and
the trend is added back after the prediction
process is complete (an example is given by
Lloyd, 2005).

An alternative approach is kriging with
an external drift model (KED). In KED,
the secondary data act as a shape func-
tion (the external trend) and the function
describes the average shape of the primary
variable (Wackernagel, 2003). The local
mean of the primary variable is derived as
a part of the kriging procedure using the
secondary information and SK is carried
out on the residuals from the local mean.
So, the approach differs from SKlm in
that the local mean is estimated as part
of the kriging procedure and not before
it, as is the case with SKlm (Goovaerts,
1997). Lloyd (2002, 2005) illustrates the use
of KED in mapping monthly precipitation
whereby elevation is used as the external
trend.

As noted above, a major problem with KT
and KED is that the underlying (trend-free)
semi-variogram is assumed known. That is,
if the mean changes from place to place the
semi-variogram estimated from the raw data
will be biased, so it is necessary to remove the
local mean and estimate the semi-variogram
of the residuals. Since the trend (that is,
local mean) is estimated as a part of the
KED (and KT) system, which requires the
semi-variogram model coefficients as inputs,
we are faced with a circular problem.
A potential solution is to infer the trend-
free semi-variogram from paired data that are
largely unaffected by any trend (Goovaerts,
1997; Wackernagel, 2003). Hudson and
Wackernagel (1994), in an application
concerned with mapping mean monthly
temperature in Scotland, achieved this by

estimating directional semi-variograms and
retaining the semi-variogram for the direction
that showed least evidence of trend. That is,
temperature values systematically increase or
decrease in one direction (there is a trend
in the values), but values of temperature
are more constant in the perpendicular
direction. In such cases, the concern is
to characterize spatial variation in the
direction for which values of temperature
are homogeneous. Hudson and Wackernagel
(1994) assumed that the trend-free semi-
variogram was isotropic and the semi-
variogram for the direction selected was used
for kriging.

9.4.2. Non-stationary
semi-variogram

In cases where the semi-variogram does
not represent well spatial variation across
the whole of the region of interest some
approach may be necessary to account
for the change in spatial variation locally.
In the geostatistical literature, there are
several approaches presented for estimation
of non-stationary semi-variograms. These
vary from approaches that estimate and
model automatically the semi-variogram in a
moving window (this approach is discussed
below) to approaches that transform the
data so that the transformed data have
a stationary semi-variogram. Reviews of
some methods are provided by Sampson
et al. (2001) and Schabenberger and
Gotway (2005).

The estimation and automated modelling
of local semi-variograms for kriging is one
published approach that accounts for non-
stationarity in the semi-variogram (Haas,
1990). This approach is employed here.
The WLS semi-variogram model fitting
routine presented by Pardo-Igúzquiza (1999)
was used to fit models to semi-variograms
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estimated in a moving window. Fortran 77
code was written to visit each observation
in the precipitation dataset and estimate
the semi-variogram using the n nearest
neighbours to each observation. The routine
of Pardo-Igúzquiza (1999) was then used
to fit a model to each semi-variogram
automatically with the result that there were
3037 (equal to the number of observa-
tions in the precipitation dataset) sets of
semi-variogram model coefficients. The WLS
routine allows the fitting of several different
models, but in this case a spherical model
was fitted to all of the semi-variograms.
No nugget effect was fitted as it proved
problematic to fit a nugget effect while at
the same time obtaining a feasible range
parameter.

In the example presented, the semi-
variograms were estimated using the 1000
nearest neighbours to each observation. The
variogram bin size was 5000 m and the
number of bins was 14. In Figure 9.8,
the values of the spherical model sills are
mapped. There is a clear trend in values
from the south (small semivariances) to
the north (large semivariances) of Britain.
This corresponds with expectations: the
magnitude of variability in precipitation is
greater in the north and west than in the south
and east of Britain. In Figure 9.9 the ranges
are shown. As for the sills, there is spatial
variation. In the south of Britain the range
values tend to be large while in the north
they tend to be smaller. This suggests that
precipitation amount varies less over short
distances in the south than it does in the north
of Britain.

It is clear that the spatial structure of
precipitation in Britain varies spatially
and, as such, a global semi-variogram
model does not represent variability across
Britain well. Use of locally-estimated
and modelled semi-variograms may
increase the accuracy of predictions using
kriging.

9.5. DISCUSSION

9.5.1. Automatic fitting of
variogram models

Fitting semi-variogram models automatically
is not straightforward. In Figure 9.9, five
local semi-variograms are selected and
illustrated. In most of the selected cases,
the model appears to fit the experimental
semi-variogram well. However, in one case
(the second semi-variogram from the bottom)
the form of the semi-variogram is not
well represented by a (single) spherical
structure. This problem could be at least
partially resolved by fitting several models
and selecting the best fitting model. However,
as the complexity of the model fitting process
increases further problems can arise with
automatic fitting. Generally, we have found
that the use of simple constraints to guide the
fitting (e.g., nugget variance is constrained to
lie within a sensible range of between zero
and some positive value less than half of the
total sill, for very smooth variation) leads
to acceptable results in the vast majority of
cases.

9.5.2. Non-stationary
semi-variograms and kriging

It is easy to see how the local semi-
variograms estimated in section 9.4 could
be used in kriging. The parameters of
the local semi-variogram are inserted
into the local kriging equations instead
of the global parameters (Haas, 1990).
There is little restriction on the variant
of kriging to which this non-stationary
set of semi-variogram parameters can be
applied. For example, in recent years,
local semi-variogram parameters have been
used in local space-time kriging (Gething
et al., 2007) and local semi-variogram
and cross semi-variogram parameters have
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Figure 9.9 Range of spherical model for a moving window, showing five selected
semi-variograms with automatically fitted models.
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been used in local downscaling cokriging
(Pardo-Igúzquiza and Atkinson, 2007).

9.5.3. The objective of
non-stationary modelling

Several other chapters of this book have been
concerned with geographically weighted
regression (GWR). The non-stationary
approaches presented in this chapter differ
from GWR in their objective. For GWR
the objective is to explore the spatially
varying parameters of a local regression
model; spatial variation in the estimated
parameters is the primary interest. For the
non-stationary mean and semi-variogram
modelling presented in this chapter the
objective is spatial prediction or some other
geostatistical operation. Thus, non-stationary
modelling will be useful where it leads to an
increase in the precision of prediction and
where it leads to an increase in the precision
of the estimation of the prediction variance.

While the objective is spatial prediction, it
is often informative to map the non-stationary
parameters (in the sense of GWR). For
GWR, the coefficients inform on local
relations between variables. For geostatistics,
the non-stationary mean and (especially)
semi-variogram parameters inform on the
nature of local spatial structure. For example,
the local sill c is very much related to the
magnitude of variation locally. The local
sill parameter is related mathematically to
the local variance (LV), which itself has
been used repeatedly as a texture mea-
sure in describing remotely sensed images
(e.g., Bocher and McCloy, 2006). The local
range parameter is related to the scale of
spatial variation locally. The local range has
also been mapped and used as a texture
measure in the classification of remotely
sensed images (e.g., Ramstein and Raffy,
1989; Atkinson and Lewis, 2000). Recently,

Lloyd et al. (2005) have used the local
range to show that the choice of optimum
spatial resolution for a given scene itself
varies locally. In the multivariate case, local
variation in the parameters of the linear
model of co-regionalization contains more
information than the parameters mapped
through GWR. The latter omits information
on the spatial correlation in each variable,
as well as the cross-correlation between
variables.

One of the reasons that local modelling
is so important for remotely sensed images
is that remotely sensed scenes rarely lend
themselves to description using the RF model
directly. Often, scenes are comprised of sev-
eral objects arranged on a background (e.g.,
buildings in a rural area) or comprised of a
mosaic of objects (e.g., an agricultural scene).
In such circumstances, it is unreasonable to
expect the RF model parameterized with a
global semi-variogram function to capture
the full range of variability in the image
locally. Non-stationary variogram modelling
achieved by fitting within a moving window
goes some way to addressing this problem,
but probably not far enough. It would be
preferable to define the objects of interest
and then fit the RF model locally within the
boundaries of those objects. For example,
Berberoglu et al. (2000) and Lloyd et al.
(2004) estimated semi-variograms on a per-
field basis; semi-variograms were estimated
using values within pre-defined boundaries.
The semivariances were then used as inputs,
along with spectral values, to maximum
likelihood and artificial neural network
(ANN) classifiers.

9.5.4. When is local, local enough?

The size of neighbourhood within which
the local variogram is estimated, whether
defined in terms of a search radius or the
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nearest number of data points, represents a
compromise between two competing factors.
The first is the desire to achieve suf-
ficient data points (i.e., sufficiently large
neighbourhood) to reduce the uncertainty
of variogram estimation to a tolerable
level. McBratney and Webster (1986) and
Webster and Oliver (1992) provide excellent
discussions of the number of data required
for reliable estimation of the variogram.
The second is the desire to reduce the
neighbourhood such as to localize suf-
ficiently the variogram parameters. With
regard to the latter point, it should be
remembered that since the objective is
precise spatial prediction, what is actually
required is to represent accurately the local
variogram within the window used for
local kriging. So an extremely localized
variogram may be counter-productive. Ulti-
mately, a balance between these factors
should be achieved, potentially through
calibration of the window size, although
this possibility is often too expensive
computationally.

9.6. FUTURE TRENDS IN
GEOSTATISTICS

The availability of extensive data sets which
cover large areas and have a variety of
supports poses problems for conventional
geostatistics, as this chapter indicates. Much
research is being conducted to develop
solutions to the kinds of problems that
have arisen. Gotway and Young (2002)
review a variety of approaches for area
to point interpolation while Kyriakidis
(2004) outlines one possible framework in
the univariate (kriging) case and Pardo-
Igúzquiza and Atkinson (2007) a possible
solution in the multivariate (cokriging) case.
There are various nonstationary geostatistical
models, as discussed at some length in

this chapter (see section 9.4), and such
approaches overcome the problem of nonsta-
tionarity of the mean and variogram which
is likely to be encountered if the region of
concern is large.

Perhaps the biggest change in focus in the
application of geostatistics in the last 20 years
has been a shift from prediction (kriging)
based analyses to those based on conditional
simulation (see section 9.3.3). Simulation
allows the generation of many equally-
probable realizations and the exploration
of spatial uncertainty in the property of
interest. In cases where extreme values are
of interest kriging is problematic because
of its smoothing properties. In such cases,
conditional simulation is more appropriate
(Goovaerts, 1997).

Another research focus has been on
the use and development of model-based
geostatistics (Diggle and Ribeiro, 2006).
The term was coined by Diggle et al.
(1998) who introduced a body of approaches
that is applicable where Gaussian distribu-
tional assumptions, and therefore classical
geostatistics, are inappropriate. A Bayesian
approach is presented that the authors
argue enables uncertainty in the prediction
of model parameters to be accounted for
properly.

The advances in geostatistical methodol-
ogy that have been made are limited in their
application if extensive expert knowledge
is required to apply such models. In the
last decade, the range of software packages
with extensive geostatistical functionality has
grown markedly. Functions for estimating
variograms and for kriging and simulation
are now commonplace in GIS software.
Undoubtedly, with widespread access to
often very sophisticated methods misuse and
misunderstanding are apparent (Atkinson,
2005). However, an increasingly well edu-
cated user base will hopefully contribute
to more effective use of spatial data in all
application areas.
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9.7. SUMMARY

Geostatistics represents a set of tools for
the analysis of spatial data. This set is
characterized by its shared dependence on the
RF model. Central to the RF is the notion of
parameter stationarity. For many data sets in
mining engineering and petroleum geology
the decision to adopt a stationary model is a
necessity due to sparcity of data. For many
geographical data sets such as are provided
by remote sensing (e.g., LiDAR elevation
data) it is sensible to relax the constraint
of stationarity and estimate the parameters
of the RF model locally. This chapter has
reviewed geostatistics with a particular focus
on non-stationary approaches. Readers are
now directed to Chilès and Delfiner (1999)
which is widely regarded as a standard
reference on the subject.
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10
Spatial Sampling

E r i c D e l m e l l e

10.1. INTRODUCTION

When trying to make inferences about
a phenomenon, we are forced to collect
a limited number of samples instead of
trying to acquire information at every
possible location (see, e.g., Cochran, 1963;
Dalton et al., 1975; Hedayat and Sinha,
1991; and Thompson 2002 for various
summaries). A full inventory would yield
a clear picture of the variability of the
variable of interest, although this process
is very time-consuming and expensive.
Haining (2003) underlines that the cost of
acquiring information on each individual
may rule out a complete census. Sparse
sampling on the other hand is cheap, but
misses important features. However, there
are instances where the level of precision
may be the major motivation of the sampling
process, especially when sampling remains

relatively inexpensive. As a rule of thumb,
it is generally desirable to have a higher
concentration of samples where exhaustive
and accurate information is needed, keep-
ing in mind that the number of samples
should always be as representative as pos-
sible of the entire population (Berry and
Baker, 1968).

When surveying a phenomenon charac-
terized by spatial variation, it is necessary
to find optimal sample locations in the
study area D. This problem is referred to
spatial or two-dimensional sampling and
has been applied to many disciplines such
as mining, soil pollution, environmental
monitoring, telecommunications, ecology,
geology, and geography, to cite a few.
Specific studies on spatial sampling can be
found in Ripley (1981), Haining (2003),
Cressie (1991), Stehman and Overton (1996)
and Muller (1998). Spatial and non-spatial
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sampling strategies share common characte-
ristics:

1 the size m of the set of samples;

2 the selection of a sample design, limited by the

available budget;

3 an estimator (e.g., the mean) for the population

characteristic; and

4 an estimation of the sampling variance to

compute confidence intervals.

Following Haining, spatial sampling
challenges can be divided into three different
categories. The first pertains to problems
concerned with estimating some non-spatial
characteristics of a spatial population; for
example, the average income of households
in a state. The second category deals with
problems where the spatial variation of a
variable needs to be known, in the form
of a map, or as a summary measure that
highlights scales of variation. The third
category includes problems where the
objective is to obtain observations that
are independent of each other, allowing
classical statistical procedures to assist in
classifying data.

10.1.1. Spatial structure

A common objective in both spatial and
non-spatial approaches is to design a sam-
pling configuration that minimizes the vari-
ance associated with the estimation. In this
regard, the location of the samples is very
critical and depends heavily on the structure
of the variable. In non-spatial problems,
it may be crucial to stratify the sampling
scheme according to important underlying
covariates. This holds for spatial phenomena
as well. Unfortunately, this variation is often
unknown, and an objective is to design

an optimal sampling arrangement, to obtain
a maximum amount of information. If we
undersample in some areas, the spatial vari-
ability will not be captured. Oversampling
on the other hand can result in redundant
data. Consequently, both the location and
quantity of the samples is important. This
chapter is concerned primarily with the
second category of sampling challenges,
i.e., capturing the spatial structure of the
primary variable.

10.1.2. Structure of the chapter

In this chapter, spatial sampling configura-
tions are reviewed along with their benefits
and drawbacks. Second, the influence of
geostatistics on sampling schemes is dis-
cussed. Sampling schemes can be designed
to capture the spatial variation of the variable
of interest. Two common objectives therein
are the estimation of the covariogram and
the minimization of the kriging variance.
Third, methods of adaptive sampling and
second-phase sampling are presented. Such
methods are of a nonlinear nature, and
appropriate optimization techniques are nec-
essary to solve such problems. Finally, salient
sampling problems such as sampling in the
presence of multivariate information, and the
use of heuristics are discussed.

10.2. SPATIAL SAMPLING
CONFIGURATIONS

This section reviews significant sampling
schemes for the purpose of two-dimensional
sampling. In the following subsections
I will assume that a limited number of
samples m is collected within a study
area denoted D. The variable of interest
Z is sampled on m supports, generating
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observations {z(si) | i = 1, 2, . . . m }. For ease
of illustration, a square study area is used.

10.2.1. Major spatial
sampling designs

Random sampling
A simple random sampling scheme consists
of choosing randomly a set of m sample
points in D, where each location in D has an
equal probability of being sampled (Ripley,
1981). The selection of a unit does not
influence the selection of any other one
(King, 1969). Figure 10.1(a) illustrates the
random configuration. This type of design
is also called uniform random sampling

since each point is chosen independently
uniformly within D. Practically, two random
numbers Ki and K ′

i are drawn from the
interval [0, 1]. Then the point si, defined by
the pair {xi, yi} is selected such that:

xi = KiL, yi = K ′
i L, (10.1)

where L denotes the length of the study area
D (Aubry, 2000). The process is repeated
m-times. According to Griffith and Amrhein
(1997), the distribution of the points may
not be representative of the underlying
geographic surface, because for most samples
drawn, some areas will be oversampled
while other will be undersampled. The
advantages of this design however reside in
its operational simplicity, and its capacity to
generate a wide variety of distances among
pairs of points in D.

Systematic sampling
The population of interest is divided into
m intervals of equal size. The first element
is randomly or purposively chosen within
the first interval, starting at the origin.
Depending on the location of the first sample,

the remaining m − 1 elements are aligned
regularly by the size of the interval /.
If the first sample is chosen at random, the
resulting scheme is called systematic random

sampling. When the first sample point is not
chosen at random, the resulting configura-
tion is called regular systematic sampling.
A centric systematic sampling occurs when
the first point is chosen in the center
of the first interval. The resulting scheme
is a checkerboard configuration. The most
common regular geometric configurations are
the equilateral triangular grid, the rectangular
(square) grid, and the hexagonal one (Cressie,
1991). Practically, consider the case where
D is divided into a set of small, square
cells of size / = L/

√
m. A first point

s1 = {x1, y1} is selected within the first cell in
the bottom left of D. The coordinates of s1 are
subsequently used to determine the following
point si = {xi, yi} (Aubry, 2000):

xi = x1 + (i − 1)/, yi = y1 + (j − 1)/

∀i, j = 1, . . .,
√

m. (10.2)

To locate sample points along the x- and
y-directions, it is imperative to have a
desired number of samples m for which√

m must be an integer value. The bene-
fits of a systematic approach reside in a
good spreading of observations across D,
guaranteeing a representative sampling cov-
erage. Additionally, the spreading of the
observations prevents sample clustering and
redundancy. This design however presents
two inconveniences:

1 the distribution of distances between points of D

is not sampled adequately because many pairs of

points are separated by the same distance; and

2 there is a danger that the spatial process

shows evidence of recurring periodicities that

will remain uncaptured, because the systematic
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Figure 10.1 From left to right, top to bottom: random, centric systematic, systematic
random, and systematic unaligned sampling schemes. Sampling size m = 100.
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design coincides in frequency with a regular

pattern in the landscape (Griffith and Amrhein,

1997; Overton and Stehman, 1993).

The second drawback can be lessened
considerably by use of a systematic random

method that combines systematic and random
procedures (Dalton et al., 1975). One sample
point is randomly selected within each
cell. However, sample density needs to
be high enough to have some clustering
of observations or the spatial relationship
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between observations cannot be built. From
Figure 10.1(c), some patches of D remain
undersampled, while others regions show
evidence of clustered observations. A system-

atic unaligned scheme prevents this problem
from occurring by imposing a stronger
restriction on the random allocation of
observations (King, 1969).

Stratified sampling
According to Haining (2003), there are
cases when local-area estimates are to be
examined, causing stratification to be built
into the sampling strategy. In stratified

sampling, the survey area (or D) is par-
titioned into non-overlapping strata.1 For
each stratum, a set of samples is collected,
where the sum of the samples over all
strata must equal m. The knowledge of
the underlying process is a determining
factor in defining the shape and size of
each stratum. Some subregions of D may
exhibit stronger spatial variation, ultimately
affecting the configuration of each stra-
tum (Cressie, 1991). Smaller strata are
preferred in non-homogeneous subregions.
When points within each stratum are chosen
randomly, the resulting design is named
stratified random sampling. In Figure 10.2(a),
six strata are sampled in proportion to their
size. For instance, stratum A represents 30%
of D, therefore if m = 100, 30 sample points
will be allocated within A. Figure 10.2(b)
illustrates the allocation of one sample per
stratum (in casu the centroid), undersampling
larger strata.

10.2.2. Efficiency of spatial
sampling designs

The sampling efficiency is defined as the
inverse of the sampling variance. According
to Aubry (2000), the most efficient design
leads to the most accurate estimation.

Consider the estimation of the global
mean zD:

zD =
1

[D]

∫

D
z(s) ds. (10.3)

It is desirable, from a statistical standpoint
to select a configuration that minimizes the
prediction error of zD for a given estimator,
for instance the arithmetic mean:

z̄ =
1
m

m∑

i=1

z(si). (10.4)

Efficiency is calculated for all possible real-
izations of the variable Z by Var ξ

[
Z ′

D − ZD

]

using σ 2
k , which is the geostatistical pre-

diction error, defined later. In terms of
the sampling variance, stratified random

sampling is at least always equally or more
accurate than random sampling; its relative
efficiency is a monotone increasing function
of sample size.

Spatial autocorrelation
Ideally, the density of sample points should
increase in locations exhibiting greater spatial
variability. Values of closely spaced samples
will show strong similarities and it may be
redundant to oversample in those areas. The
spatial autocorrelation function summarizes
the similarity of the values of the variable
of interest at different sample locations, as
a function of their distance (Gatrell, 1979;
Griffith, 1987). Moran’s I (Moran, 1948,
1950) is a measure of the degree of spatial
autocorrelation among data points:

I =
m

1′W1

∑
i, j w(sij)(z(si) − z̄)(z(sj) − z̄)

∑
i (z(si) − z̄)2

(10.5)
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Figure 10.2 Stratified sampling designs with six strata of different sizes (m = 6 on the right
figure and m = 100 to the left).

with W defined as a weight matrix w(sij),
m is the number of observations, the mean
of the sampled values is denoted by z̄

and z(si) is the measured attribute value at
location si. The weight w(sij) is a measure

of spatial proximity between points siand sj;
for example:

w(sij) = exp(−βd(sij)2) (10.6)
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where d(sij)2 is the squared distance between
location si and point sj. Moran’s I is not
implicitly constrained within the interval
[−1, +1]. Spatial autocorrelation generally
decreases as the distance between sample
points increases. A positive autocorrelation
occurs when values taken at nearby samples
are more alike than samples collected farther
away. When the autocorrelation is a linearly
decreasing function of distance, stratified

random sampling has a smaller variance
than a systematic design (Quenouille, 1949).
If the decrease in autocorrelation is not linear,
yet concave upwards, systematic sampling
is more accurate than stratified random
sampling, and a centered systematic design,
where each point falls exactly in the middle
of each interval, is more efficient than a
random systematic sampling configuration
(Madow, 1953; Zubrzycki, 1958; Dalenius
et al., 1960; Bellhouse, 1977; Iachan, 1985).

10.2.3. Other sampling designs

Nested or hierarchical sampling
Nested or hierarchical sampling designs
require the study area D to be partitioned
randomly into sample units (or blocks)
creating the first level in the hierarchy,
and this is then further subdivided into
sample units nested within level 1, and
so forth (Haining, 2003). These units can
be systematically or irregularly arranged.
As the process progresses, the distances
between observations decreases (Corsten and
Stein, 1994). One advantage of a nested
sampling design is that it allows for multiple
scale analysis and supports quadrat analysis.
Spatially nested sampling designs may work
well for geographic phenomenon that are
naturally clustered and for exploring multiple
scale effects. Hierarchical sampling is also
possible at the discrete level. In such cases,
it is desirable to first select randomly one
or more counties in a state. Then within

these counties we might sample a number of
quadrats, or say, townships and finally, within
the latter, randomly select some farmsteads
(King, 1969).

In the multivariate case, dependent and
independent variables are hierarchically
organized and are thus not collected at
the same sampling frequency (Haining,
2003). The primary variable may exhibit
rapid change in spatial structure while the
secondary variables are much more homo-
geneous. A hierarchical sampling design
captures such variation by collecting one
variable at points nested within larger sam-
pling units so that it can be collected more
intensively than another variable.

Clustered sampling
This type of sampling consists of the
random selection of groups of sites where
sites are spatially close ‘within’ groups
(Cressie, 1991). Clusters of observations are
drawn independently with equal probability.
In the first stage, when the population
is grouped into clusters, the clusters are
first sampled (Haining, 2003). Either all of
the observations in the clusters, or only
a random selection from it, are included.
Cluster sampling is essentially useful in the
discrete case, when a complete list of the
members of a population cannot be obtained,
yet a complete list of groups (i.e., clusters) of
the variable is available. The method is also
useful in reducing sampling cost.

10.3. SAMPLING RANDOM FIELDS
USING GEOSTATISTICS

Most classical statistical sampling methods
make no use of the spatial information
provided by nearby samples. Geostatistics
describes the spatial continuity that is an
essential feature of many natural phenomena.
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It can be seen as a collection of statistical
methods, describing the spatial autocorre-
lation among sample data. In geostatistics,
multidimensional random fields are formal-
ized and modeled as stochastic processes
(see, e.g., Matérn, 1960; Whittle, 1963).
In other words, the variable of interest is
modeled as a random process that can take a
series of outcome values, according to some
probability distribution (Goovaerts, 1997).
Kriging is an interpolation technique that
estimates the value of the primary variable
at unsampled locations (usually on a set G

of grid points
{
sg

∣∣
g = 1, 2, . . ., G

}
, while

minimizing the prediction error. Using data
values of Z , an empirical semivariogram γ̂ (h)
summarizing the variance of values separated
by a particular distance lag (h) is defined:

γ̂ (h) =
1

2d(h)

∑

|si−sj|=h

(
z(si) − z(sj)

)2

(10.7)

where d(h) is the number of pairs of points
for a given lag value, and z(si) is the
measured attribute value at location si. The
semivariogram is characterized by a nugget
effect a, and a sill σ 2 where γ̂ (h) levels out.
The nugget effect is the spatial dependence
at micro scales, caused by measurement
errors at distances smaller than the possible
sampling distances (Cressie, 1991). Once the
lag distance exceeds a value r, called the
range, there is no spatial dependence between
the sample sites. The variogram function
γ̂ (h) becomes constant at a value called
the sill, σ 2. A model γ (h) is fitted to the
experimental variogram (e.g., an exponential
model). With the presence of a nugget
effect a:

γ (h) = a + (σ 2 − a)(1 − e−3h/r). (10.8)

The corresponding covariogram C(h) that
summarizes the covariance between any two
points is:

C(h) = C(0) − γ (h) = σ 2 − γ (h). (10.9)

The interpolated, kriged value at a location
s in D is a weighted mean of surrounding
values; each value is weighted according to
the covariogram model:

ẑ(s) =
I∑

i=1

wi(s)z(si) (10.10)

where I is the set of neighboring points
that are used to estimate the interpolated
value at location s, and wi(s) is the
weight associated with each surrounding
point. The optimization of spatial sampling
in a geostatistical context first requires
the estimation of a model to express the
spatial dependence at different pairs of
distances. This is summarized in the covar-
iogram function. Secondly, such a model
is then used for optimal interpolation of
the variable under study (Van Groenigen,
1997).

10.3.1. Optimal geometric designs
for covariogram estimation

To compute the most representative covar-
iogram and to capture the main features
of spatial variability, a good spread-
ing of sample points across the study
area is necessary (Van Groenigen et al.,
1999). In that context, systematic sampling

(Figure 10.1(b)) performs well. However,
such a sampling design does not guarantee a
wide range of separating distances (which is
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necessary to estimate the covariogram),
because:

1 distances are not evenly distributed; and

2 there are few pairs of points at very small

distances to estimate the nugget effect.

A systematic random or systematic

unaligned sample will generate a greater
variety of distance pairs. Another solution
consists of designing a sampling arrangement
where a subset of the m observations are
evenly spread across the study area D and
the remaining points are somewhat more
clustered (Figure 10.3), to capture the
covariance at very small distances.

Sample size and sample
configuration issues
Optimizing the sampling configuration to
estimate the parameters of the covariogram
is not an easy task. Webster and Oliver
(1993) suggested that a total of at least
m = 150 samples over the study area
is necessary. Moreover, the reliability of
the covariogram is partly dependent on
the number of pairs of points available
within each distance class. In this context,

the Warrick/Myers (WM) criterion tries
to reproduce an a priori defined ideal
distribution of pairs of points for estimating
the covariogram. The procedure allows one to
account for the variation in distance. Follow-
ing Van Groenigen (1997), the WM-criterion
is defined as:

Jw/m(S) = a

K∑

i=1

wi(ξ∗
i − ξi)2+b

K∑

i=1

σ (mi)

(10.11)

K∑

i=1

ξ∗
i =

m(m − 1)
2

(10.12)

where i denotes a given lag class of the
covariogram, K represents the total number
of classes, and the parameters a, b, and
wi are user-defined weights. The term ξ∗

i

is a prespecified number of point-pairs for
the ith class, ξi is the actual number of
distances within that class, and σ (mi) is the
standard deviation from the median of the
distance lag class (Warrick and Myers, 1987).
Equation (10.12) expresses the total number
of possible distance pairs, given the number
of samples. So for instance, when m = 4,
six pairs of points are generated.

(a) (b)

Figure 10.3 A systematic sampling scheme of m = 36 points in D is improved by the
introduction of n = 12 additional samples (•) clustered among the initial samples.
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Presence of anisotropy
Anisotropy (as opposed to isotropy) is a
property of a natural process, where the
autocorrelation among points changes with
distance and direction between two locations.
In other words, spatial variability is direction-
dependent. Spatial variables may exhibit
linear continuity, such as in estimating
riparian habitat along rivers, aeolian deposits,
and soil permeability along prevailing wind
directions. We talk about an isotropic process
however when there is no effect of direction
in the spatial autocorrelation of the primary
variable. It is generally desirable to aug-
ment the sampling frequency in the angle
of minimum continuity, since the spatial
gradient of variation is maximum in that
direction.

Impact of the nugget effect
Bogaert and Russo (1999) made an attempt
to understand how the covariogram param-
eters are influenced by the choice of
particular sampling locations. Their objec-
tive was to limit the variability of the
covariogram estimator. When the covari-
ogram has no nugget effect, the benefits
of the optimization procedure are somewhat
diminished. In the presence of a nugget
effect, a random sampling configuration
will score poorly, because of the limited
information offered by random sampling for
small distances.

Using nested designs
A nested design allows good estimation of the
nugget effect at the origin. However, nested

sampling configurations produce inaccurate
estimation of the covariogram in comparison
to random and systematic sampling. This
occurs due to the rather limited area covered
by the sampling scheme, yielding a high
observation density in subregions of the area,
and a low observation density for other

parts of the area. This in turn generates
only a few distances for which covariogram
values are available. Nested sampling designs
are especially unsuitable when the observa-
tions collected according to such a design
are used subsequently to estimate values
at unvisited locations (Corsten and Stein,
1994).

10.3.2. Optimal designs to
minimize the kriging
variance

Kriging provides not only a least-squares
estimate of the attribute but also an error
variance (Isaaks and Srivastava, 1989),
quantifying the prediction uncertainty at a
particular location in space. This uncertainty
is minimal, or zero when there is no
nugget effect, at existing sampling points
and increases with the distance to the
nearest samples. A major objective consists
of designing a sampling configuration to
minimize this uncertainty over the study
area. This can be achieved when the covar-
iogram, representing the spatial structure
of the variable, is known a priori or
has been estimated. In this regard, optimal
sampling strategies have been suggested
to reduce the prediction error associated
with the interpolation process (Pettitt and
McBratney, 1993; Van Groenigen et al.,
1999). Equation (10.13) formulates the
kriging variance at a location s, where C−1

M

is the inverse of the covariance matrix
CM based on the covariogram function
(Bailey and Gatrell, 1995). M denotes the
set of initial samples and has cardinality m.
The term c is a column vector and cT

the corresponding row vector, as given in
Equation (10.15):

σ 2
k (s) = σ 2 − cT (s) · C−1

M · c(s) (10.13)
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CM =





σ 2 C1,2 . . . C1,m

C2,1 σ 2 · · · C2,m

...
...

. . .

Cm,1 Cm,2 · · · σ 2




(10.14)

c =





σ 2

C2,1
...

Cm,1




, cT =

[
σ 2 C1,2 . . . C1,m

]
.

(10.15)

The total kriging variance TKV is obtained
by integrating Equation (10.13) over D:

TKV =
∫

D
σ 2

k (s)ds. (10.16)

Computationally, it is easier to discretize D

and sum the kriging variance over all grid
points sg. The average kriging variance AKV

over the study area is defined as:

AKV =
∑

g∈G

σ 2
k (sg). (10.17)

The only requirement to calculate the kriging
variance is to have an initial covariogram and
the locations of the m initial sample points.
It then depends solely on the spatial depen-
dence and configuration of the observations
(Cressie, 1991).

Illustration
Since continuous sampling is not feasible,
it is necessary to discretize the area into
a set of potential points. Seeking the best
sampling procedure becomes a combinatorial
problem. Figure 10.4 illustrates the kriging
variance associated with random sampling
and systematic random sampling from an
exponential model. Darker areas denote

a higher interpolation uncertainty, which
is increasing away from existing points.
The estimation error is low at visited
points.

Distance-based criteria
It is possible to design sampling config-
urations considering explicitly the spatial
correlation of the variable (Arbia, 1994).
What would you do if you were in a dark
room with candles? You would probably
light the first candle at a random location
or in the middle of the room. Then you
would find it convenient to light the second
candle somewhere further away from the
first. How far away will depend on the
luminosity of the first candle. The stronger
the light, the further it can be located from
the first candle. You would then light the
third candle far away from the two first ones.
Such an approach – known as Depending

Areal Units Sequential Technique (DUST) –
is an infill sampling algorithm, and very
suitable to locate points to minimize the
kriging variance over D. Another method,
known as the Minimization of the Mean

of the Shortest Distances (MMSD) requires
all sampling points spread evenly over
the study area, ensuring that unvisited
locations are never far from a sampling
point. Both MMSD and DUST methods
assume:

1 prior knowledge of the spatial structure of the

variable; and

2 a stationary variable – an assumption violated in

practice.

Both criteria are purely deterministic, result-
ing in spreading pairs of points evenly across
the study area, similar to the systematic
configuration. Van Groenigen (1997) notes
that the area D is a continuous, infinite plane.
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Figure 10.4 The kriging variance of a systematic random pattern (right figure) reduces the
value of Equation 17 by 20% from a random pattern. Sample patterns are similar to those in
Figure 10.1.
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In reality, it is not physically possible
to sample everywhere; the presence of
spatial barriers such as roads, buildings or
mountains restricts the sampling process and
limits the number and location of potential
points.

Impact of the nugget effect
What is the influence of the nugget effect
and sampling densities on the final sam-
pling configuration? As the ratio nugget/sill

increases, a different sampling configuration
is reached, placing more observations near
the boundaries of the study area, because
of the high variance at short distances.
In that case, more samples are needed to
obtain the same level of objective function
(equation (10.17)) over D (Burgess et al.,
1981). When the nugget effect is maximum
(≈ sill), the covariogram is pure noise, and
the resulting optimal sampling scheme is
purely random, because no spatial correlation
is present. At maximum sampling density, the
estimation variance can never be less than the
nugget effect. When the variance among pairs
of points at very small distances (≈ nugget
effect) is very high, a hexagonal design will
perform best.

Presence of anisotropy
Which type of sampling design performs
better in reducing the maximum kriging
variance, when anisotropy is present? When
the process is isotropic, a systematic equi-
lateral triangle design will keep the variance
to a minimum, because it reduces the
farthest distance from initial sample points
to points that are not visited. A square
grid performs well, especially in the case
of isotropy (McBratney and Webster, 1981;
McBratney et al., 1981). When anisotropy
is present on the other hand, a square
grid pattern is preferred to a hexagonal

arrangement, although the improvement is
marginal (Olea, 1984).

Choice of a covariogram fitting model
Does the choice of a covariogram fitting
model affect the value of equation (10.17)?
According to Van Groenigen (2000), an expo-
nential model generates a point-symmetric
sampling configuration that is identical to a
linear model. However, the use of a Gaussian
model tends to locate sample points very
close to the boundary of D. This is explained
by the large kriging weights assigned to small
distance values (parabolic behavior at the
origin).

10.3.3. Sampling reduction

Sampling density reduction of an existing
spatial network is a problem related to
sampling designs and is relevant in many
regions of the world where funding for
environmental monitoring is decreasing. The
process entails lowering the number of sam-
ples to reach an effective level of accuracy.
Technically, it consists of selecting existing
samples from the original data set that will,
in combination with a spatial interpolation
algorithm, produce the best possible estimate
of the variable of interest, in comparison
with the results obtained if all sample
points were used (Olea, 1984). Usually, it
is assumed that the residuals come from a
stationary process, and that the covariogram
is linearly decreasing, with no nugget effect,
and that the process is isotropic. In a
study aimed at predicting soil water content,
Ferreyra et al., (2002) developed a similar
sampling density reduction method, from
57 observations to 10 observations. With an
optimal arrangement of 10 samples, over
70% of the predicted water content had an
error within ±10%, showing that a similar
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level of confidence is reached with a limited
number of samples.

10.4. SECOND-PHASE AND
ADAPTIVE SAMPLING

When there is a need or desire to gather
more information (i.e., additional samples)
about the variable of interest, we talk
about adaptive and second-phase sampling,
depending on the study objective. In the
following subsections, both techniques are
discussed.

10.4.1. Adaptive sampling

Adaptive sampling finds its roots in the
concept of progressive sampling (Makarovic,
1973). It provides an objective and automatic
method for sampling, for example, terrain of
varying complexity when sampling altitude
variation. As illustrated in Figure 10.5,
progressive sampling involves a series of
successive runs, beginning with a coarse
sampling grid and then proceeding to grids of
higher densities. The grid density is doubled
on each successive sampling run and the
points to be sampled are determined by a
computer analysis of the data obtained on
the preceding run. The analysis proceeds
as follows: a square patch of nine points
on the coarsest grid is selected and the
height differences between each adjacent
pair of points along the rows and columns
are computed. The second differences are
then calculated. The latter carries information
on the terrain curvature. If the estimated
curvature exceeds a certain threshold, it
becomes necessary on the next run to increase
the sampling density and sample points at the
next level of grid density.

A similar study was carried out by Ayeni
(1982) to determine the optimum number and

spacing of terrain elevation data points to
produce a Digital Elevation Model (DEM).
The importance of evaluating the adequate
number of data points as well as the appropri-
ate sampling distribution of such points, that
in turn constitute a good match to character-
ize a given terrain. Determining a sufficient
number of points is not straightforward, since
it depends on terrain roughness in relation to
the size of the area occupied by the terrain.
The ideas suggested in progressive sampling
were later carried over to the field of adaptive

sampling (see Thompson and Seber, 1996).
A major difference with conventional designs
lies in the selection of additional samples
in adaptive designs, because the location
of a new sample will depend upon the
value of the points observed in the field.
In other words, the procedure for selecting
additional samples depends on the outcome
of the variable of interest, as observed during
the survey of an initial sampling phase.
The addition of a new sample improves
confidence in the sampling distribution.
Adaptive sampling is very efficient in the
context of soil contamination (Cox, 1999).
How should a risk manager decide where to
re-sample in order to maximize information
on contamination? In this particular context
it is generally recommended to sample in
locations above a particular threshold and
draw a fixed number of additional samples
around them until subsequent measurement
values are below a pre-specified contami-
nation threshold. Figure 10.6 illustrates the
procedure for adaptive cluster sampling,
where sample points represent measurement
locations of hypothetical contamination rates.
On the left, contamination rates have been
measured at seven locations. A geographic
location is said to be at risk (and needs
remediation) when its value is above 0.7
or at 70% of the contamination threshold.
Call a property fathomed if samples have
been taken from its immediate neighbors.
A common choice is to define new neighbors



198 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

(a)

2
5

2
0

20

2
5

1525

25

30

3
0

3
0

30

2
0

10

15

(b)

Figure 10.5 Initial systematic sampling of altitude is performed over the study in the top
figure. When strong variation in elevation is encountered, the sampling density is increased
until desirable threshold is met.

of a contaminated zone to the North, South,
East, and West: fathom each property on
the list by sampling and remove it from
the risk list when it has been fathomed.
In other words, the procedure re-samples
four neighboring locations of a contaminated
site. Once a site shows a contamination rate
under the threshold value, it is fathomed.
Otherwise, the procedure continues until a
trigger condition is satisfied (e.g., a maximum
number of additional samples is reached).
This approach has some limitations however,

because there is little rationale in taking
additional samples in areas where we know
that the probability of exceeding a particular
threshold is maximal.

10.4.2. Second-phase sampling

In second-phase spatial sampling, a set
M of m initial measurements has been
collected, and a covariogram C(h) has been
calculated. In the second-phase, the scientist



SPATIAL SAMPLING 199

(a)

. 4

. 4

. 4

. 69

. 71

. 76

. 78

. 75

. 78
. 74 . 72

. 65

. 7

. 71

. 59

. 71
. 73 . 89

. 89

. 8

. 72

. 4

. 4

. 5

. 4

. 8

. 7
. 5

(b)

Figure 10.6 The cluster adaptive sampling procedure, illustrated in the context of toxic
waste remediation. A site is fathomed (+) when its toxicity rate does not exceed the
contamination value.

augments the set of observations, guided
by the covariogram. The objective function
aims to collect new samples to reduce the
kriging variance or uncertainty by as much
as possible. Equation (10.18) formulates the
change in kriging variance /σ 2

k over all
grid points sg, when a set N of size n

containing new sample points is added to
our initial sample set M. The change /σ 2

k is
the difference between the kriging variance
calculated with initial sample points and the

kriging variance of the augmented set M ∪ N

containing [m + n] samples:

/σ 2
k =

[
TKVold −TKVnew

]

=
1
G




∑

g∈G

σk,old2 (sg)−
∑

g∈G

σ 2
k,new(sg)





(10.18)
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σ 2
k,old(sg)=σ 2 −c(sg)

︸︷︷︸
[1,m]

·C−1
︸︷︷︸
[m]

·cT (sg)
︸ ︷︷ ︸
[m,1]

(10.19)

σ 2
k,new(sg)=σ 2 − c(sg)

︸︷︷︸
[1,m+n]

· C−1
︸︷︷︸
[m+n]

· cT (sg)
︸ ︷︷ ︸
[m+n,1]

.

(10.20)

The objective function (equation (10.21)) is
to find the optimal set S∗ containing m + n

points that will maximize this change in
kriging variance (Christakos and Olea, 1992;
Van Groenigen et al., 1999), where S is a
specific sampling scheme:

MAX︸ ︷︷ ︸
{sm+1, ...,sm+n}

J(S) =
1
G

∑

g∈G

/σ 2
k (sg; S ).

(10.21)

For simplicity, the continuous region D is
usually approximated by a finite set P of
p points (Cressie, 1991). The set of new
points is selected from the set of potential

points P. Hence, there is a total of
(

p

n

)

possible sampling combinations and it is too
time-consuming to find the optimal set using
combinatorics. Figure 10.7 illustrates the case
where 50 sample points have been collected
in the first stage, leading to an exponen-
tial covariogram, with the sequential addition
of n = 10 new points and an improvement in
the objective function of nearly 20%.

Weighting the kriging variance?
The use of a weighting function w (•) for
the kriging variance was originally suggested
by Cressie (1991) and has been applied
by Van Groenigen et al., (2000), Rogerson
et al., (2004), and Delmelle (2005). The
importance of a location to be sampled is
represented by a weight w(s). The objective
is to find the optimal sampling scheme S∗

containing m+n points that will maximize the
change in weighted kriging variance. From
equation (10.21):

MAX︸ ︷︷ ︸
{sm+1,...,sm+n}

J(S) =
1
G

∑

g∈G

w(sg)/σ 2
k (sg; S).

(10.22)

In an effort to detect contaminated zones in
the Rotterdam harbor, Van Groenigen et al.,
(2000) introduced the Weighted Means of

Shortest Distance (WMSD) criterion, offer-
ing a flexible way of using prior knowledge
on the variable under study. However, the
weights do not reflect the spatial structure
of the variable, but rather the scientist’s
perception of the risks of contamination. In
the first sampling phase, sampling weights
are assigned to sub-areas based on their
risks for contamination. In the second phase
however, a greater weight is assigned to
locations expected to exhibit a higher priority
for remediation. Four weighting factors are
considered with weights w = 1, 1.5, 2, and
3, leading to more intensive sampling where
the weight is higher. In a more recent study,
Rogerson et al., (2004) have developed a
second-phase sampling technique, allowing
re-sampling in areas where there is some
uncertainty associated with a variable of
interest, and hence not in areas where
the probability of an event occurring is
near 0 or 1. A greedy algorithm was proposed
to locate the points that would maximize the
change in weighted kriging variance.

Shortcomings of the use of the
kriging variance
Many authors have advocated the use of the
kriging variance as a measure of uncertainty.
It is unfortunately misused as a measure
of reliability of the kriging estimate, as
noted by several authors (Deutsch and
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Figure 10.7 An initial sampling network of m = 50 points (in white) has been augmented
with the addition of n = 10 new samples (in blue). The figure to the right displays the
improvement.
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Figure 10.8 Example of two-dimensional non-stationarity. Dark points are used as data
values to interpolate the center point (light gray). After Armstrong (1994).

Journel, 1997; Armstrong, 1994). It is solely
a function of the sample pattern, sample
density, the numbers of samples and their
covariance structure. The kriging variance
assumes that the errors are independent of
each other. This means that the process is
stationary, an assumption usually violated
in practice. Stationarity entails that the
variation of the primary variable between
two points remains similar at different
locations in space, as long their separation
distance remains unchanged. Figure 10.8
illustrates non-stationarity in two dimensions
(Armstrong, 1994). The objective in this
particular example is to interpolate the value
of the inner grid point, highlighted with a
question mark. The interpolation depends on
the values of the four surrounding points.
Two scenarios are presented. The scenario
in b shows three very similar values and
an extreme one. The scenario in a however
shows four values in a very narrow range.
Assuming the spatial structure is similar in
both cases, and since the configuration of
the data points is the same, the kriging
variances are identical. However, we have
more confidence in the scenario on the

left since there is less variation among the
neighbors. This illustrates that the prediction
error is not suitable for setting up confidence
intervals and should not be used as an
optimization criterion for additional sampling
strategies.

10.5. CURRENT RESEARCH
DIRECTIONS

10.5.1. Incorporating multivariate
information

Sample data can be very difficult to
collect, and very expensive, especially in
monitoring air or soil pollution for instance
(Haining, 2003). Secondary data can be a
valuable asset if they are available over
an entire study area and combined within
the primary variable (Hengl et al., 2003).
Secondary spatial data sources include maps,
socioeconomic, and demographic census
data, but also data generated by public
sources (local and regional). This is very
valuable and there has been a dramatic
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growth in the availability of secondary data
associated with DEMs and satellites (for
environmental data). Such secondary data is
easily integrated within a GIS framework
(Haining, 2003). In multi-phase sampling,
for instance, research has been confined to
the use of covariates in determining the
locations of initial measurements, whereby
sample concentration is increased where
covariates exhibit substantial spatial variation
(Makarovic, 1973). Ideally, secondary vari-
ables should be used to reduce the sampling
effort in areas where their local contribution
in predicting the primary variable is maxi-
mum (Delmelle, 2005). If a set of covariates
predicts accurately the data value where
no initial sample has been collected yet,
there is little incentive to perform sampling
at that location. On the other hand, when
covariates perform poorly in estimating the
primary variable, additional samples may
be necessary. The general issue pertains to
quantifying the spatial contribution given by
covariates.

10.5.2. Weighting the kriging
variance appropriately

Some current research has looked at ways
to weight the kriging variance. Intuitively,
one would like to sample at unvisited
locations, far from existing ones. This is
accomplished using the kriging variance as
a sampling criterion. However, the spatial
variability of the primary variable is not
accounted for. It is recommended to weight
the kriging variance where the gradient of
the primary variable is maximum, because
there is a rapid change at that location in
the variable (Delmelle, 2005). It is also
desirable to reduce sampling effort by using
information provided by auxiliary variables,
when available.

10.5.3. The use of heuristics in
sampling optimization

In second-phase sampling, the set N of
additional samples will be chosen from
a set P of candidate sampling locations.
This set is relatively large in practice, and
hence the number of possible solutions
forbids an exhaustive search for the optimum
(Michalewicz and Fogel, 2000). A total
enumeration of all potential solutions is
not possible, because of the combinatorial
explosion. (Goldberg, 1989; Grötschel and
Lovàsz, 1995). The search for an approximate
solution for complex problems is conducted
using a suitable heuristic method H. The
use of a heuristic is necessary to assist
in the identification of an optimal sample
set S∗ (or near optimal set S+) ⊂ P. The
heuristic controls a process that intends
to solve this optimization problem. The
set S∗ is optimal for the objective func-
tion J defined in equation (10.22). The
efficiency of a heuristic depends on its
capacity to give as often as possible a
solution S+ close to S∗ (Grötschel and
Lovàsz, 1995). In second-phase sampling,
there are two different ways of supplementing
an initial set. Either n points are selected
at one time and added to the initial set
or one point at a time is added n-times
to the initial set. The former is defined as
simultaneous addition and the latter is known
as sequential addition and is suboptimal.
Note that a hybrid approach that would
combine both techniques is possible as well.
In spatial sampling, limited research has
been devoted to comparing the benefits and
drawbacks of these heuristics. The greedy
(or myopic) algorithm has been used by
Aspie and Barnes (1990), Christakos and
Olea (1992) and Rogerson et al., (2004).
Simulated annealing has been applied to
spatial sampling problems in Ferri and
Piccioni (1992), Van Groenigen and Stein
(1998), and Pardo-Igúzquiza (1998).
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10.5.4. Spatio-temporal
sampling issues

Spatial sampling optimization as discussed
in this chapter is based on the assumption
of stationarity of the variable itself over
time (≈ no temporal variation). Variables
such as rainfall, temperature, and snowfall
vary over time and it is not possible to
take a second set of samples to improve
the prediction of these variables without
affecting the stability of the model. Work in
this context has been carried out by Lajaunie
et al., (1999).

NOTE

1 Note that a systematic sampling scheme is a
special case of a stratified design in that the strata
are all squares of equal size.
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11
Statistical Inference for
Geographical Processes

C h r i s B r u n s d o n

It is often necessary to make informed
statements about something that cannot be
observed or verified directly. It is equally use-
ful to assess how reliable these statements are
likely to be. A great deal of research is based
on the collection of data, both qualitative and
quantitative in order to make such statements.
For this reason, inference in science is a
fundamental topic, and the development of
theories of statistical inference should be
seen as a cornerstone of any field of study
claiming to be based on scientific method.
Indeed, the American Association for the
Advancement of Science (AAAS) listed the
development of the chi-squared test as one of
the twenty key scientific developments of the
twentieth century.1

In general, the success of the statistical
hypothesis testing methodology is reflected
in the vast number of publications in which

some form of statistical test appears, and
in the wide range of software packages
(spreadsheets, statistical packages and others)
in which code for carrying out such
techniques appears.

However, despite this clear recognition
of the importance of statistical inference,
many commercial GIS packages claiming
to offer ‘spatial analysis’ facilities have no
procedures for this. The reasons for this are
complex, but one thing to note is that it
was the chi-squared test, and not statistical
inference in general that was cited by the
AAAS as a key development. Chi-squared
tests are relatively simple computationally,
and make a number of assumptions about
the simplicity of the underlying processes
about which inferences are to be made. In
particular, they assume that each observation
is probabilistically independent, and drawn
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from the same distribution. For spatial data
this is unlikely to be the case – recall
Tobler’s law stating that nearby things are
likely to be more related than distant things.
In addition, the distributions of observations
may well depend on their geographical
location. This violates the ‘drawn from
the same distribution’ assumption. Thus,
although tools of inference are just as
important for geographical data as for any
other kind of data, there are potential
problems when ‘borrowing’ standard statis-
tical methods and applying them to spatial
phenomena. The aim of this chapter is
to consider some fundamental ideas about
inference, and then to discuss some of
the difficulties of applying these ideas on
to spatial processes – and hopefully offer
a few constructive suggestions. It is also
important to note that although for some
areas a degree of consensus has been reached,
the subject of statistical inference is not
without its controversies – see Fotheringham
and Brunsdon (2004) for example, and in
particular there are unresolved issues in
inference applied to geographical data.

11.1. BASIC CONCEPTS OF
STATISTICAL INFERENCE

To begin it is important to identify – and
distinguish between – some key concepts of
statistical inference. These are:

• The inferential framework. This is essentially

the model of how inferences are made. Examples

of these are Bayesian inference (Bayes, 1763) and

classical inference. Each model provides a char-

acteristic set of general principles underpinning

how some kind of decision related to a model

(or set of models) can be made, given a set of

observations.

• The process model. This is a model, with a

number of unknown parameters, describing the

process that generated the observations. This

will take a mathematical form, describing the

probability distribution of the observations. The

mathematical model can be very specific, so

that only a small number of parameters are

unknown – or quite broad – so that for example a

mathematical function of the general form f (x , y )

is not known.

• The inferential task. The task that the analyst

wishes to perform having obtained his or her

data. Typical tasks will be testing whether

a hypothesis about a given model is true,

estimating the value of a parameter in a given

model, or deciding which model out of a set of

candidates is the most appropriate.

• The computational approach. Having chosen

a process model, the inferential framework

should determine what mathematical procedure

is necessary to carry out the inferential task. In

many cases, the procedure is the relatively simple

application of a simple formula (for example a

chi-squared test). However, sometimes it is not.

In such cases alternative strategies are needed.

Sometimes they involve numerical solution of

equations or optimizations. In other cases Monte

Carlo simulation-based approaches are used,

where characteristics of statistical distributions

are determined by simulating variables drawn

from those distributions. The strategy used to

carry out the task is what will be termed the

‘computational approach’ here.

Probably the most fundamental of these
concepts is the inferential framework. This
is also the most invariant across different
kinds of statistical applications – even if
geographers have special process models
or computational approaches, or inferential
tasks, most of the time they are still appealing
to the same fundamental principles when they
draw inferences from their data. For example,
one frequently sees geographers declare
parameters in models to be ‘significantly
different from zero’, or quote confidence
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intervals. When they do so, they are making
use of two key ideas from classical inference2

which may be applied to geographical and
non-geographical problems alike.

The most geographically specific of the
concepts is the process model. As stated
earlier, many inferential tests are based on the
assumption that observations are independent
of one another – in many geographi-
cal processes (such as those influencing
house prices) this is clearly not the case.
In some cases, the geographical model is a
generalization of a simpler aspatial model –
perhaps the situation where geography plays
no role is a special case where some
parameter equals zero. In these situations,
one highly intuitive inferential task is to
determine whether this parameter does equal
zero. In other cases, the task is to estimate
the parameters (and find confidence intervals)
that appear in both spatial and aspatial
cases of the models (for example regression
coefficients). In these cases, the spatial part
of the model is essentially a nuisance, making
the inferential task related to another aspect
of the model more difficult.

The previous examples are relatively
simple from a geographical viewpoint, but
more sophisticated geographical inferential
tasks can be undertaken. In particular, the
tasks above are related to what Openshaw
(1984) terms ‘whole-map statistics’. That is,
they consider single parameters (or sets of
parameters) that define the nature of spatial
interaction at all locations, but supply no
information about any specific locations. To
the geographer, or GIS user, it is often more
important to identify which locations are in
some way different or anomalous. Arguably,
this is a uniquely geographical inferential
task. Although this inferential task can be
approached with standard inferential frame-
works, some careful thought is required.

Thus, to address the issue of statistical
inference for geographical data one must
consider the nature of statistical inference

in general, the particular nature of statis-
tical inference when spatial processes are
considered and the way in which these two
are related. This provides a broad frame-
work for the chapter. First, a (very) brief
overview of the key statistical inferential
frameworks will be outlined. Next, spatial
process models and related inferential tasks
will be considered, together with a discussion
of how the inferential approaches may be
applied in this context. Finally, a set of
suggested computational approaches will be
considered.

11.2. AN OVERVIEW OF FORMAL
INFERENTIAL FRAMEWORKS

The two most commonly encountered
inferential frameworks are Classical and
Bayesian. Suppose we assume a model M

with some unobserved parameters θ , and
some data x. Two kinds of tasks commonly
encountered are:

1 Given M and x , to infer whether some statement

about θ is likely to be true.

2 Given M and x , to estimate the value of θ or

some function of θ , f (θ ).

Although both methods can address both
types of question, they do so in quite
different ways.

11.2.1. Classical inference

The classical framework is most commonly
used, and will be defined first. The classical
framework generally addresses two kinds of
inferential tasks. The first task is dealt with
using the significance test.
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Hypothesis testing
The statement about θ mentioned above
is termed the null hypothesis. Next a test

statistic is defined. Of interest here is the
distribution of the test statistic if the null
hypothesis is true. The significance (or
p-value) of the test statistic is the probability
of obtaining a value at least as extreme
as the observed value of the test statistic
if the null hypothesis is true. When the
significance is very low, this suggests that
the null hypothesis is unlikely to be true.
To perform an α% significance test one
calculates the value of the test statistic with
a significance of α – this is called the
critical value. Typical values of α are 0.05
and 0.01. If the observed value is more
extreme than the critical value, then the null
hypothesis is rejected. Note that adopting
the above procedure has a probability of α

of rejecting the null hypothesis when it is
actually true.

This may seem rather abstract without
an example. One commonly used technique
based on these principles is the two-sample
t-test. Here θ = (µ1, µ2) where µ1 and µ2

are means of two normally distributed
samples having the same variance σ 2. The
null hypothesis here is that µ1 = µ2.
Here the test statistic is the well-known
t-statistic:

t =
x1 − x2√

s2

(
1
n1

+
1
n2

) (11.1)

where x1 and x2 are the sample means
from the two samples, n1 and n2 are
the respective sample sizes, and s2 is
defined by:

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(11.2)

where s2
1 and s2

2 are the respective sample
variances for the two samples. A significance
test is often performed by looking up the
critical value of t from a set of tables,
computing the observed t for the two
samples and comparing this to the critical
value. In this case, the t statistic has
ν = n1 + n2 − 2 degrees of freedom.

The above outlines the procedure of a
significance test, one of the two inferential
tasks performed using classical inference.
Of course, such inference is probabilistic –
one cannot be certain if we reject the
null hypothesis that it really is untrue.
However, we do know what the probability
of incorrectly rejecting the null hypothesis is.
This kind of error is referred to as the type I

error. Another form of error results when we
incorrectly accept the null hypothesis – this
is called a type II error. It is generally harder
to compute the probability of committing a
type II error – usually denoted as 1 − β.
The relationship between α and β is given
in Table 11.1.

For the two-sample t-test, the null
hypothesis is µ1 = µ2, and the alternatives to
this take the form µ1 %= µ2, or equivalently
µ1 − µ2 = k for k %= 0, β will depend
on the value of k. In general, if k is
large then there is a stronger chance of
obtaining a significant t value, and so a
smaller chance of incorrectly failing to reject
the null hypothesis. β also depends on the
values of n1 and n2 the sizes of the two
samples. The larger these quantities are, the
smaller the probability of incorrectly failing
to reject the null hypothesis. Given any

Table 11.1 Relationship between α and β

Probability Reject null hypothesis

Yes No

Null hypothesis true 1 − α α

Null hypothesis false 1 − β β



STATISTICAL INFERENCE FOR GEOGRAPHICAL PROCESSES 211

three of k, β, n1 and n2 one can compute
the fourth (although the computation is not
always simple).

Estimating parameters
The other inferential task is that of estimating
θ or f (θ ). As with hypothesis testing, we
cannot be sure that our estimate of θ or
f (θ ) is exact – indeed given the fact that
it is estimated from a sample we can
be almost certain that it is not. Thus, in
classical inference the key method provides
upper and lower bounds – the so-called
confidence interval for θ or f (θ ). Note
that this assumes that θ or f (θ ) are scalar
quantities. The situation when they are
not will be discussed later. A confidence
interval is a pair of numbers a and b

computed from the sample data, such that
the probability that the interval (a, b) contains
θ is 1 − α. This probability is computed on
the assumption that the model M is known
in advance, up to the specification of θ .
A very important distinguishing characteristic
of this approach is that the probability
quoted for a confidence interval is not the
probability that a random θ lies within the
deterministic interval (a, b) – rather it is
the other way round – θ is not a random
variable – under classical inference it is a
fixed but unobservable quantity. It is the
variables a and b that are the random
variables, since they are computed from the
random sample of observations – and so
the probability statement is made about the
random quantities a and b.

In situations where θ is not a scalar, one
may specify confidence regions from the
data. For example, if θ is two-dimensional,
we could represent it as a point in the plane.
A confidence region is some sub-region of
the plane determined from the sample data
that has a 1 −α probability of containing the
true θ .

11.2.2. Other issues for classical
inference

In the section on ‘Hypothesis testing’ it
was assumed that the quantity α could be
easily calculated. In some situations this
is not the case, because the probability of
the test statistic, although known, cannot
be manipulated analytically – making α

impossible to compute directly. In such
situations, a Monte Carlo (Metroplois and
Ulam, 1949) approach may be more helpful.
In this approach, a large number of random
numbers are drawn from the probability
distribution of the test statistic that would
apply under the null hypothesis, and the
observed value of the statistic is compared
against this list (see Manly (1991) for some
examples). It may be checked that the
percentage rank of the observed test statistic
when it is merged with the list of randomly
generated test statistics is itself a significance
level. Thus, provided we may generate
random numbers from the distribution of
the test statistic, this provides an alternative
approach to the classical significance test –
albeit one with a very different computational
approach. This approach may also be used to
generate confidence intervals.

Another important observation is that
the derivation of the test statistics hinges
on the model for the distribution of the
observational data being known – at least
up to the parameters being estimated.
Sometimes this is not the case. Attempts
to draw inference from data when this
is the case are known as non-parametric
statistics (see, for example, Siegel (1957)).
One particular non-parametric approach is
the so-called permutation test. This is a
technique used to test relationships between
pairs of variables, or more generally data sets
in which the order of the observations is of
some consequence. For example, if we have
data taken from two samples, say S1 and S2

with respective sizes n1 and n2 – then we
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could write the data as one long list, with
all of the observations in S1 followed by
those in S2:

{
x1, x2, . . ., xn1, xn1+1, . . ., xn1+n2

}
. (11.3)

In this case the ordering of the observations
is of some consequence in the sense that
an observation with an index greater than
n1 must have come from S2. Now suppose
we wish to test the hypothesis that both sets
of observations come from distributions with
the same mean. Consider the quantity:

d =
1
n1

i=n1∑

i=1

xi −
1
n2

i=n2∑

i=n1+1

xi. (11.4)

Suppose a null hypothesis that S1 and
S2 come from the same distribution. Then,
there is no difference between the processes
generating the observations in {x1, . . . , xn1}
and {xn1+1, . . . , xn1+n2} – so that in fact any
ordering of {x1, . . . , xn2} is equally likely.

Then, regardless of the distributions of S1

and S2 we would expect sample mean of d

to be zero. We could use this quantity as a
test statistic, although we do not know its
distribution. However, if the null hypothesis
were true, we may make use of Monte Carlo
methods. We simply randomly permute the
ordering of the data set a large number
of times, and obtain a corresponding set
of values of d. We then compare the observed
value of d against this set, to obtain a
value of α as before. This in essence is
the randomization test. Here, it was shown
in the context of a test of difference of
means, although it may be used to test any
kind of statistic dependent on the ordering
of the observations. The advantage of this
approach is that it allows tests to be made
when one has no strong evidence of the

distribution generating the data. A price
paid for this is that the computational
overhead is much higher – and typically
nonparametric tests are not as powerful as
the simpler parametric equivalents, provided
the assumptions underlying the parametric
tests hold. A final point is that there is
a subtle difference between randomization
tests and standard classical tests, in that they
are conditional on the exact set of observed x

values, i.e., the null hypothesis only considers
the same values of xi in different orders
unlike, for example, a t-test which considers
a sampling frame that could generate any real
values of xi.

11.2.3. Simple classical inference
in action

To illustrate some of the above ideas a simple
example is given. Here, the data consists
of a number of sale prices of houses from
two adjacent districts in the greater London
area in 1991. The location of the districts in
the context of greater London as a whole is
shown in Figure 11.1, as are the locations
of the houses in the sample. There are
220 houses in district 1 and 249 in district 2
(the district to the west).

If we assume that house prices in both
districts have independent normal distribu-
tions with equal variances, we may test the
hypothesis that the mean house price is the
same in each district. This null hypothesis,
together with the assumptions set out above,
lead to the use of t-test as set out in
equation (11.1). The values of the relevant
quantities are set out in Table 11.2.

Since we are interested in detecting
differences in the mean value of either
sign, we use the absolute value of t which
is 2.37. However, from tables, the critical
value of t for (two-tailed) α = 0.05 is
1.96 – suggesting we should reject the null
hypothesis at the 5% level. Thus, with a
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Location of study area Location of houses in sample

Figure 11.1 The location of study area (LHS) and the houses in the samples (RHS).

Table 11.2 Two sample t -test

District 1 District 2

n1 220 n2 249

x1 77.7 x2 86.4

s1 37.3 s2 41.5

s2 39.6

ν 467

t −2.37

5% chance of making an incorrect statement
if the null hypothesis is true, we reject the
null hypothesis – and state that there is a
difference in average house price between
two zones.

11.2.4. Bayesian Inference

The Bayesian approach views θ in a very
different way. Whereas classical inference
regarded θ as a deterministic but unknown
quantity, Bayesian inference regards it as
a random variable. The idea is that the
probability distribution of θ represents the
analyst’s knowledge about θ – so that,
for example, a distribution with very little
variance suggests a great deal of confidence
in knowing the value of θ . If we accept that
θ is a random quantity, as is x, the observed

data, we can consider the joint probability
density of the two items given model M, say
f (x, θ | M). Standard probability theory tells
us that:

f (x, θ | M) = f (x | θ, M) f (θ | M)

= f (θ | x, M) f (x | M) (11.5)

where f (x |.) and f (θ |.) denote marginal dis-
tributions of x and θ , respectively. Dropping
the M from the notation – as is conventional
because everything is conditional on model
M applying – we may write:

f (θ | x) = f (x | θ) f (θ )/f (x). (11.6)

Assuming we have a given observed data
set x, we may regard f (x)−1 as a normalizing
constant and write:

f (x | θ ) ∝ f (x | θ ) f (θ ). (11.7)

This is essentially Bayes’ theorem, and is
the key to the inferential model here. If we
regard f (θ ) as the analysts knowledge about θ

regardless of x, then multiplying this by the
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probability of observing x given theta (that
is, f (x | θ ), gives an expression proportional
to f (θ | x). Note that in this framework,
f (x | θ ) is our process model, as set out
in section 11.1. We can interpret this last
expression as the knowledge the analyst has
about θ given the observational data x. Thus,
we have updated knowledge about θ in the
light of the observations x – this is essentially
the inferential step.

In standard Bayesian terminology f (θ ) is
referred to as the prior or prior distribution

for θ and f (x | θ ) is referred to as the
posterior or posterior distribution for θ .
Thus, starting out with a prior belief in the
value of θ , the analyst obtains observational
data x and modifies his or her belief in the
light of these data to obtain the posterior
distribution. The approach has a number of
elegant properties – for example, if individual
data items are uncorrelated and if data
is collected sequentially, one can use the
posterior obtained from an earlier subset of
the data as a prior to be input to a later set of
data. However, the approach does require a
major change in world view. The requirement
of a prior distribution for θ from an analyst
could be regarded as removing objectivity
from the study. Where does the knowledge
to derive this prior come from?

One way of overcoming this is the use
of non-informative priors which represent
no knowledge of the value of θ prior to
analysis. For example, if θ were a parameter
between 0 and 1, then f (θ ) = 1 − a uniform
distribution – would be a non-informative
prior since no value of θ has a greater prior
probability density than any other. Some-
times this leads to problems – for example
if θ is variable taking any real value. In this
case, f (θ ) = const. is not a well-defined
probability density function. However, this
shortcoming is usually ignored provided the
posterior probability thus created is valid
(typically the posterior in this case could be
regarded as a limiting value of an infinite

sequence of posteriors derived from well-
defined priors – for example if a sequence
of priors with variances increasing without
bound were supplied). A prior such as this is
termed an improper prior.

Having arrived at a posterior distribution
f (x | θ ) we may begin to address the two key
inferential questions:

(1) Estimate the value of θ or some function of

θ , f(θ ). Since we have a posterior distribution

for θ we can obtain point estimates of θ using

estimates of location for the distribution –

such as the mean or median. Alternatively,

we can obtain interval estimates such as

the inter-quartile range derived from this

distribution. Typically, one would compute

an interval [θ1, θ2] between which θ has a

0.95 probability of lying. Note that this is

subtly different from the confidence interval of

classical inference. The 95% in a confidence

interval refers to the probability that the

randomly sampled data provides a number

pair that contains the unobserved, but non-

random θ . Here we treat θ as a random

variable distributed according to the posterior

distribution obtained from equation (11.7). To

emphasize that these Bayesian intervals differ

from confidence intervals, they are referred to

as credibility intervals.

(2) Infer whether some statement about θ

is likely to be true. If our statement is

of the form a < θ < b where either a or

b are infinite, then this may be answered

by computing areas underneath the posterior

density function. For example, to answer the

question ‘is θ positive?’ one computes:

∝∫

0

f (θ |x ) dθ

and obtains the probability that the statement

is true. However, questions of the form

addressed by classical inference – such as

‘is θ zero?’ where typically one is concerned
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with exact values of θ present more difficulties.

Since the output is a probability density, the

probability attached to any point value is zero.

There are a number of workarounds to this.

One quite sensible approach is to decide how

far from zero θ could be for the difference to

be unimportant, and term this ε. If this is done,

we may then test the statement −ε < θ < ε

using the above approach. Other approaches do

attempt to tackle the exact value test directly –

see Lee (1997) for further discussion.

Some final notes
Note that in the above sections θ is regarded
as a univariate and continuous variable;
however, the arguments may be extended to
multivariate and discrete θ . In the discrete
case, integrals are replaced by sums – and
point hypothesis testing is no longer an issue.
In the multivariate case, single integrals are
replaced by multiple integrals – and instead
of simple ranges for credibility intervals,
regions in multidimensional parameter space
may be considered.

11.2.5. Bayesian inference
in action

In this section, we revisit the house price
example, this time applying a Bayesian
inferential framework to the problem.
As before, we assume that house prices are
independently normally distributed in each
of the two districts. If we regard our list
of house prices as x, then θ = (µ1, µ2)
the respective means of the house price
distribution for districts 1 and 2, and f (x | θ )
is just the product of the house price
probability densities for each observed
price. Here we are interested in the quantity
µ1 − µ2. In this case we have a non-
informative prior in µ1 and µ2 and also in
log σ where σ is the standard deviation of
house prices in both districts. The choice
of the prior for σ may seem strange, but

essentially stems from the fact that this is a
scale parameter, rather than one of location –
see Lee (1997) for example. In this case, it
can be shown that the posterior distribution
for the quantity δ = µ1 − µ2 is that of the
expression:

(x̄1 − x̄2) − s

(
1
n1

−
1
n2

)1/2

t (11.8)

where all variables are as defined in
equation (11.1) except for t, which is a
random variable with a t distribution with
ν degrees of freedom (again ν is as defined
earlier). The posterior distribution for δ is
shown in Figure 11.2.

Here, the hypothesis under test differs from
that of the classical test. Rather than a simple
test of whether δ = 0 – which makes little
sense given the posterior curve above, we
test whether | δ | < G where G is defined
as some quantity below which a difference
in means would be of little consequence.
This is very different from the standard
classical approach. In that framework, if a
test were sufficiently powerful, differences
in mean house prices of pennies could
be detected. However, in terms of housing
markets such a difference is of no practical
importance. For this example we choose G

to be £1,000 (UK). If this is the case, the
probability that | δ | < G corresponds to the
shaded area in Figure 11.2. This is equal
to 0.014 – alternatively one could state that
the probability that | δ | exceeds £1,000 is
1 − 0.014 = 0.986. Thus, from a Bayesian
perspective, it seems very likely that there
is a non-trivial difference between the mean
house prices for the two districts. Another
possibility is to compute the probability that
district 2 has a higher mean than district 1.
This is just the posterior probability that
δ > 0, which, from the curve is equal to
0.99 – again suggesting this is highly likely.



216 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

0
.0

0

−20 −10

δ(1000’s Pounds)

0 10

0
.0

2
0
.0

4
0
.0

6

P
o
st

e
ri

o
r 

D
e
n
si

ty

0
.0

8
0
.1

0

Figure 11.2 Posterior distribution for δ = µ1 − µ2.

11.2.6. Bayesian approaches –
some closing comments

The Bayesian approach is regarded by some
as very elegant. Certainly the simplicity
of the underpinning equation (11.7) and
the natural way that hypotheses may be
assessed, and parameters estimated from the
posterior distribution do have a directness
of appeal. However, there is a sting in
the tail. Equation (7) gives the posterior
distribution up to a constant – implying
that the expression for probability distribu-
tion can only be obtained by integrating
its un-normalized form. Herein lies the
problem – in many cases the integral is
not analytically tractable. At the time of
writing, this presents fewer problems than
in the past – as numerical quadrature
techniques may be used to estimate the
integrals. Alternatively, techniques based on
Monte Carlo simulation and the Metropolis
algorithm allow random values of θ to
be generated according to the posterior

distribution. In this case, hypotheses about θ

are investigated by generating large numbers
of random values, and investigating their
properties.

Advances of the kind described above are
not made without a great deal of research
to answer important operational questions
such as:

• How accurate are the quadrature results?

• How large should the samples of random

numbers drawn using the Metropolis

algorithm be?

• How can very large-scale simulations be

computed efficiently?

Thus, the computational approach to Bayesian
methods is an issue of great importance.
However, in recent years this area has been
the focus of much research, and this com-
bined with increasing trends in the speed and
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capacity of computers have led to an increase
in the popularity of Bayesian methods.

11.3. WHY GEOGRAPHY MATTERS
IN STATISTICAL INFERENCE

In the above section, two of the most common
approaches to formal statistical inference
were discussed. However, this was done in a
general sense – nothing stated in the previous
section applied exclusively to geographical
data. As hinted in the introduction, working
with spatial data introduces a few specific
problems.

This raises a number of issues:

1 What happens if one ignores spatial effects?

2 Does one need to modify the above ideas of

inference when working with spatial data?

3 If some spatial effects are present, can they be

represented as spatial patterns or images?

All of these issues lead to important
questions – but none have unique answers.
First, consider issue 1 – if there are no
serious problems encountered when ignoring
spatial effects then there is little that spatial
analysis can add to the ‘usual suspects’ list
of standard statistical methods. However,
it is argued here that there are indeed
serious consequences arising from ignoring
such effects. There are many examples
of such consequences – see, for example,
Fotheringham et al. (1998), who follow
the work of Rees (1995) in modelling
the relationship between limiting long-term
illness (LLTI) as defined in the 1991
UK census of population, and a number
of predictor variables: Unemployment rate,
Crowding, Proportion in Social Class 1,
Population Density, and Proportion of Single
Parent Families. Full definitions of these

variables may be found in Fotheringham
et al. (1998). The study area consists of
the four counties Tyne and Wear, Durham,
Cleveland and North Yorkshire, in the north-
east of England. Of particular interest here is
the population density variable. An ordinary
least squares regression model was fitted to
the data, giving a coefficient of −5.6. A t-
test based on principles of classical inference
showed this to be significantly different
from zero. In general, this suggests that an
increase in population density leads to a
decrease in LLTI. This is perhaps counter-
intuitive. Normally one associates higher
morbidity rates with urban areas, which have
higher population densities. However, the
study went on to consider geographically
weighted regression (GWR) (Brunsdon et al.,
1996) – a technique using an underlying
model in which regression parameters vary
over space. When this was carried out, it
was found that the regression parameter for
population density was at its most negative
in areas in the region around the coalfields
of east Durham. Here, it is likely that LLTI
is linked to employment in the coalfields,
and that most people in such employment
lived in settlements near to the coalfields,
where population density is low. However,
those people living in urbanized areas in
that part of the region are less likely to
be employed in occupations associated with
high LLTI. Thus, in that locality a negative
relationship between population density and
LLTI holds. However this is unusual in
general, and in other parts of the study area
(west Durham, North Yorkshire), there is a
positive relationship. Here, low population
density corresponds to a more typical rural
environment, and in these places a more
conventional urban/rural trend occurs. The
key point here is that the global model told
only one story, while the spatially-oriented
GWR identified two different processes
occurring in different parts of the study area.
The ‘moral’ here is that ignoring geography
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can lead to mis-interpretation. This example
is a cautionary tale about the consequences
of ignoring spatial effects in an inferential
framework.

So ignoring geography can lead to infer-
ential problems. How can this difficulty be
overcome? In particular this raises another
key question – ‘Does one need to modify the
above ideas of inference when working with
spatial data?’ To answer this, we return to the
four aspects of statistical inference listed in
section 11.1 once again: both Bayesian and
classical inferential frameworks can handle
the key inferential tasks of hypothesis eval-
uation and parameter estimation for spatial
processes. However, for spatial data the
process model must allow for geographical
effects. Finally, it is also the case that the
computational approach must also be altered
on some occasions. These two key issues will
be considered in turn.

11.3.1. Process models for
spatial data

The process models for spatial data can
differ from more commonly used ones in a
number of ways. The two most common ones
are that they exhibit spatial non-stationarity

and spatial autocorrelation. Spatial non-
stationarity is essentially the characteristic
of the LLTI example above. The unknown
parameter θ is not a constant, but in fact
a function of spatial location. In this case,
a technique like GWR may be used to
estimate θ at a set of given localities.
Using this approach, one can apply the
classical inferential framework to obtain
estimates of θ , and test hypotheses such
as ‘is θ a global fixed value’. A classical
inferential framework for GWR is detailed
in Fotheringham et al. (2002).

The phenomenon of spatial autocorrelation
occurs when each of the observed x values
are not drawn from statistically independent

probability distributions, but are in fact
correlated. In the geographical context, the
correlation is generally related to proximity –
nearby x values are more correlated than
values located far apart. Typical examples
are the SAR (spatial autoregression) and
CAR (conditional autoregression) models.
Unlike GWR, these regression models do
not assume that the regression parame-
ters vary over space – however they do
assume that the dependent variables are
correlated. Typically here, each record of
variables is associated with a spatial unit,
such as a census tract, and the spatial
dependence occurs between adjacent spatial
units. As well as the regression coefficients
and the variance of the error term, CAR
and SAR models have an extra parameter
controlling the degree to which adjacent
dependent variables are related. In the
classical inference case, parameter estimation
is typically based on maximum likelihood,
with the parameter vector θ containing the
extra parameter described above as well
as the usual regression parameters. There
is much work on the classical inferential
treatment of such models: see, for example,
Cressie (1991). LeSage (1997) offers a
Bayesian perspective.

11.3.2. The computational
approach

Computational issues for geographical data
are generally complex. The whole field
of geocomputation has grown to address
this. As well as problems of data storage,
data retrieval and data mining, there are
many computational overheads attributable
to inference in spatial data, for a number
of reasons. In some cases, the issue is
related to Monte Carlo or randomization
methods – this is particularly true of the
Monte Carlo Markov Chain approach to
Bayesian analysis. In others, it is linked
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to developing efficient algorithms to access
large geographical data sets – this can be an
issue in localized methods such as GWR. In
each case, it is true than specific algorithms
may need to be created to handle the
geographical situation. A very good example
is found in Diggle et al. (1998). Another
example of this is shown graphically in
figures 11.3 and 11.4. Figure 11.3 shows a
map of crime rates. The intention here is
to test whether the spatial autocorrelation
(as measured by Moran’s I) is zero. This
is done by randomly permuting the rates
to geographical zones. The distribution after
1000 simulations is shown in figure 11.4 – the
observed value is far greater than any of these
simulations, suggesting a highly significant
(p < 0.001) result.

The final question in the earlier list
also raises some interesting problems. The
formal (Bayesian or classical) approach to
hypothesis testing is essentially founded on
the notion of testing a single hypothesis.
However, many geographers would like
answers to more complex hypotheses. In the
spatial context, one of the key questions is
‘Is there an unusually high or low value
of some quantity in region R?’ Typically
this quantity might be the average price
of a house, or an incidence rate of some
disease. This phenomenon is often termed
clustering (see the chapter by Jacquez in
this volume for more discussion on this
topic). In some situations R is known in
advance – for example it may represent
the catchment area of a particular school in
the house price example. If it is known in
advance the approach is relatively simple.
One creates a proximity measure to reflect
how close to R each observation is, or
creates a ‘membership function’ of R for each
observation, and then builds this into a model,
using a parameter that may vary the influence
of this new variable. Then one goes on to
test the hypothesis that this parameter is zero
(or whatever value of the parameter implies

that proximity to R has no influence on the
quantity of interest).

This approach fits in well with conven-
tional theory – there is one single hypothesis
to test, and it may be tested as set out
above. However, on many occasions we
have no prior knowledge of R, possibly
even on whether R is a single region or a
number of disjoint areas. On such occasions,
a typical approach would be to carry out
a test such as that described above on
every possible region, and map the ones that
have a significant result. This is essentially
the approach of the Geographical Analysis
Machine (GAM; Openshaw, 1987) – here
the Rs are circular regions of several radii
centred on grid points covering the study
area. However, there is a difficulty with
this approach. Suppose we carry out a
significance test on each of the Rs. There
could be a large number of tests, possibly
hundreds. Even if no clustering were present,
the chance of obtaining a false positive is α,
the significance level of the test. If α = 0.05
as is common practice, we would expect to
find Nα significant results even when no
clustering occurs, where N is the number of
regions to be tested. For example, if N = 200
and α = 0.05, we would expect to find 10
significant regions even when in reality no

clustering occurs. Thus, in an unadjusted
form, this procedure is very prone to false
positive findings. Essentially this is a problem
of multiple hypothesis testing. Because the
test has a positive probability of incorrectly
rejecting the null hypothesis, carrying out
enough tests will give some positive results
even if in reality there are no effects to detect.
A typical way of tackling the problem is
to apply the Bonferroni adjustment to the
significance levels of the test. For example,
this is done by Ord and Getis (1995) for
assessing local autocorrelation statistics.

The correction is derived by arguing that
to test for clustering, we wish to test that
none of the regions R have a significant
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cluster centred on them. Thus, the probability
of a false positive overall is the probability
that any one of the regions has a false
positive result. If it is assumed that each test
is independent, then it can be shown that
this probability (which will be called α′) is
given by:

α′ = 1 − (1 − α′)N . (11.9)

Now, if we wish to develop an overall
test for clustering, with say α′ = 0.05 then
equation (11.9) may be solved for α – giving
a significance level for the individual tests
needed in order to achieve the overall level of
significance. For example, if N = 200 and we
require α′ = 0.05 then α = 0.000256. This is
a fairly typical result. To counter the risk of
false positives, the individual tests must have
very low values of α.

However, one thing of note about the
above approach is that the assumption that
the tests are independent is often incorrect
for geographical studies. Typically, a large
number of regions R are used, and many
overlap, sharing part of the sample data
used for the local tests – and for this
reason the results of these tests cannot be
independent. It is usually argued that the
Bonferroni procedure provides conservative
tests3 – and in the situation where the tests are
correlated the estimate of α in equation (11.9)
is an underestimate. In an attempt to avoid
false positives, we insist on very strong
evidence of clustering around each of the test
regions. Thus, we will be insisting on much
stronger evidence than is actually necessary
to detect clustering and there is some chance
that genuine clustering is overlooked. In
a nutshell this is a typical dilemma when
looking for clusters – ignoring multiple
hypothesis testing leads to false positives,
but overcompensation for this could lead to
false negatives. There are no inferential free
lunches!

11.4. FURTHER ISSUES

In the previous sections, the two most
common approaches to formal inference were
discussed, and following this, some of the
particular issues encountered when applying
these principles to spatial data and spatial
models were discussed. In this final section,
other matters arising will be considered.

11.4.1. Population versus process

Throughout this chapter, the concept of
inference has been applied to processes.
However, another view is that one makes
inferences about Populations given samples
taken from these populations. In many
respects, there are similarities between the
two situations. In reality, every population
is finite, and therefore the population that
items in a sample are drawn from is discrete.
Therefore, strictly speaking tests such as the
t-test are inappropriate in this situation, as
they assume observations are drawn from a
normal distribution – which is continuous.
However, when the population is very large,
this distribution (or in some cases another
continuous distribution) is a very good
approximation of reality – for example in
the UK a population of around 20 million
would represent every household – but a
continuous distribution for household income
may well be quite close to the real situation of
a discrete distribution with around 20 million
values!

Thus, it is argued here that the random
process of drawing from a normal (or other
continuous) distribution is a very good
approximation to drawing from a very
large population – and that in many cases,
hypothesis tests related to the population can
be reasonably proxied by hypotheses relating
to such an approximating process. Given this
argument, all of the arguments based on
the concept of process inference here may
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be applied to making inferences about large
populations.

For smaller populations, the discrete nature
of the sampling frame may suggest that
such continuous approximations are not
valid. Here, we are faced with two choices.
First, if we assume that this population
really is the item of interest, and it is not
particularly large, then one approach might
be to collect observations for the entire

population. In this case, the conventional
framework for statistical hypothesis testing
becomes meaningless – to test a hypothesis
relating to the population simply look at the
data and see if it is true or not!

A second alternative is to assume that
the population itself is of less interest than
the process generating it. In this case, we
return to the process hypothesis framework.

Note that on some occasions, we may have
the entire population represented in our
data, but even so it may be of interest to
understand the process(es) that brought about
that data. For example, we look at daily
records of rainfall from a one month period
of the previous century. In this case, the list
of rainfall measurements is our population,
but the process of generating these can be
modelled as a random process – and we
may wish to test hypotheses about whether
average levels are similar to those in the
present day. In this case, we wish to test
the (process-based) hypothesis that the mean
daily rainfall is equal to some given level. It is
the author’s opinion that in most cases when
an entire population may be measured, it is
the underlying process and not the values of
the population itself that is of most interest.

Columbus OH:residential burglaries and vehicle
thefts per thousand households, 1980

under 19.02
19.02 – 29.33
29.33 – 39.03
39.03 – 53.16
over 53.16

Figure 11.3 Crime rate distribution: vehicle thefts and residential burglaries per
1000 households (1980).
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11.4.2. Other types of inference

Although classical and Bayesian methods are
both covered in this chapter, these are not
the only possible approaches. For example
Burnhan and Anderson (1998) outline ways
in which Akaike’s An Information Criterion
(AIC; Akaike 1973) may be used to compare
models. This approach is quite different
in terms of its inferential task – rather
than testing whether a statement about a
particular model is true – or assuming a
specific model holds and then attempting
to estimate a parameter of that model, this
approach takes several models and attempts
to identify which one is ‘best’ in the sense
that it best approximates reality. The AIC
is an attempt to measure the ‘nearness’ of
the model to reality – obviously the true
model is not known, but the observations
have arisen from that model, and this is
where the ‘clues’ about the true model come
from. This is very different from the other
approaches because it regards all potential
models as compromises – none is assumed to
be perfect – and attempts to identify the best
compromise. This area may prove fruitful in
the future – for example Fotheringham et al.
(2002) use a method based on this idea to
calibrate GWR models. The idea of finding
a ‘best approximation’ also sits comfortably
with the idea of approximating a large finite
sample with a continuous distribution put
forward in the previous section.

Of course, exploratory data analysis can
be thought of as yet another inferential
framework, albeit a less formal one. Although
this can provide a very powerful framework
for discovering patterns in data, it could
be argued that this is an entire subject in
its own right, and that there will be many
examples elsewhere in this book, where the
production of maps and associated graphics
by various software packages provide excel-
lent examples exhibiting the power and utility
of graphical data exploration.

11.4.3. Software

No chapter about inference would be com-
plete without some discussion of software.
Having argued that making inferences about
data is central to knowledge discovery in
spatial analysis, one has every right to expect
that software for inferential procedures will
be readily available. However, as mentioned
in the introduction, most readily available
GIS packages do not currently contain code
for many of the procedures outlined here.
Unfortunately, although several commercial
statistics packages do contain code for
carrying out general inferential procedures,
such as the t-test example discussed earlier
in the chapter, they offer less support for
more specific inferential tasks developed for
spatial data. Until recently, for a number
of spatial inferential tasks one was forced
to write one’s own code. However this
situation is now improving. A number
of packages that are either dedicated to
the analysis of spatial data or sufficiently
flexible that they may be extended to
provide spatial data analysis now exist.
Although by no means the only option, the
statistical programming language R provides
good spatial analysis options – all of the
examples (most notably the spatial one)
in this chapter were based on calculations
done in R. There are a number of spatial
data analysis libraries written in R, enabling
this kind of geostatistical computation. For
example:

• sp provides basic spatial data handling facilities;

• maptools provides map drawing functionality as

well as the ability to import geographical data

in a number of common formats, such as ArcGis

shapefiles;

• spdep provides a number of hypothesis tests

and model calibration facilities relating to models

allowing for spatial dependencies; and
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Monte Carlo Simulation Results
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Figure 11.4 Results of Monte Carlo tests on I .

• spgwr provides a number of tools for Geo-

graphically Weighted Regression (GWR) analysis.

The package is also ‘Open Source’ so it
provides an easy entry option for anyone
wishing to experiment more with inferential
approaches for geographical data.
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NOTES

1 See http://stat.fsu.edu/brouchure/stat/whystat.htm
for additional details.

2 These principles are the significance test, and
the confidence interval respectively.

3 Conservative here means that the test has a
significance level of 5% or lower.
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12
Fuzzy Sets in Spatial Analysis

V i n c e n t B . R o b i n s o n

12.1. INTRODUCTION

Shortly after the theory of fuzzy sets was
introduced by Zadeh (1965) researchers
began to argue that fuzzy sets theory
could serve as an appropriate foundation
for spatial analysis (Gale, 1972). It was
argued early on that fuzziness is a major
factor contributing to the uncertainty of
spatial behavior. Thus, achieving exactitude
in representing, analyzing, and predicting
spatial behaviors, over space and through
time is difficult, or impossible, to accom-
plish in a fuzzy environment characterized
by ambiguous or incomplete information
and inexact cognitive and decision-making
processes. Although many of the earliest
works focused on spatial behavior, policy,
and planning (Leung, 1983; Lundberg, 1982;
Pipkin, 1978), it was not long before its
relevance was recognized in other areas
of spatial analysis such as soil science

(McBratney and Odeh, 1997) and the then
developing field of geographic information
science (Robinove, 1989; Robinson and
Strahler 1984; Robinson, 1988).

For many spatial phenomena there are no
crisp boundaries that can be identified to
differentiate regions or zones. For examples,
the boundary between beach and fore-
shore, between woodland and grassland, and
between urban and rural areas may be gradual
rather than defined by a crisp boundary.
It is well known that when we use remotely
sensed imagery to extract spatial objects of
interest, there are pixels that may contain sub-
pixel objects, trans-pixel objects, boundary
pixels, and/or natural intergrades (Foody,
1999). The mixture of spectral information
at the sub-pixel scale can lead to uncertain
classification and indeterminate boundaries.
This is not unrelated to the general region
classification problem highlighted in Leung’s
(1983) evaluation of fuzzy sets in spatial



226 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

analysis and planning. In addition, it is often
the case that concepts, or parameters, in spa-
tially explicit models are inherently inexact.
These, and other problems of uncertainty,
have led many to use techniques based on
fuzzy set theory. Ironically, fuzzy sets can
be used to help make analyses less fuzzy
because the inexactness is managed explicitly
rather than implicitly. However, like other
efforts at formalization, it can help lay bare
assumptions and force us to be explicit about
their meaning.

The basic idea underlying fuzzy set theory
is that an element can be classified as
being a member of more than one set
and to varying degrees hold membership in
each class. In the usual Boolean, or crisp,
set theory, membership of an element x

in a set A, is defined by a characteristic
function that indexes the degree to which
the object in question is in the set. It
should be noted that it is customary, but
not strictly necessary, for the index to range
from 0, for full non-membership, to 1.0
for full membership. Hence, the member-
ship function is the fundamental element
necessary to use fuzzy sets. A membership
function measures the fractional truth value
a statement such as ‘Object Y is a member
of set S’.

A variety of other works contain in-depth
explanations of the relevant fundamental
concepts of fuzzy set theory. Studies such as
that by Klir et al. (1997), Buckley and Eslami
(2002), and Zimmerman (2001) cover many
aspects of fuzzy sets in considerable depth
with applications as examples. More relevant
to those interested in spatial analysis is the
geographic information systems (GIS) text-
book by Burrough and McDonnell (1998).
Other informative perspective pieces have
appeared in the social sciences (Verkuilen,
2005), soil science (McBratney and Odeh,
1997) and GIS (Robinson, 2003). Hence
there are many sources that one can turn
to for background on the fundamentals of

fuzzy sets and their relevant use in spatial
analysis.

This chapter will first briefly review some
of the more noteworthy accomplishments
using fuzzy sets in spatial analysis. Then
it will discuss the issue of assigning fuzzy
membership and how it has been approached
for use in spatial analysis. Finally, it will
briefly discuss some issues and challenges of
using fuzzy sets in spatial analysis.

12.2. FUZZY SETS AND SPATIAL
ANALYSIS: SOME
ACCOMPLISHMENTS

Spatial analysis is a broad field not rele-
gated to just social science, ecology, soil
science, geography, or engineering. Fuzzy
set theory has been specifically noted as
being a more natural way of representing and
analyzing phenomena in such diverse areas as
social science (Ragin and Pennings, 2005),
soil science (McBratney and Odeh, 1997),
ecology (Schaefer and Willson, 2002) as well
as geographical analysis and engineering.
Thus, there are many areas in which it
has been shown to be of value in spatial
analysis. Some of the more recent and
important accomplishments are noted in this
section.

Fundamental to some types of spatial anal-
ysis is the generation of a surface from data
that generally contains some level of uncer-
tainty. These data are generally represented
as a set of points. Not only may there be
uncertainty regarding the data measurement,
but there may be duplicate data records
in the spatial database that may confound
an analysis. Torres et al. (2004) present
an asymptotically optimal algorithm for
eliminating duplicates that incorporates the
handling of fuzzy uncertainty. The generation
of surfaces from point data entails some form
of interpolation. In this regard there have
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been several promising approaches presented
for the interpolation of spatial surfaces from
point data (Anile et al., 2003; Gedeon et al.,
2003; Lodwick and Santos, 2003).

Sampling of spatial data is fundamental
to spatial analysis. Fuzzy set theory has
been used relatively rarely in this regard.
It has been shown how a combination of
fuzzy clustering and regionalized variables
can be used to estimate the optimal spacing
of sample collection sites for soils map-
ping (Odeh et al., 1990). Developments
in mapping systems that integrate mobile
computing, GIS, and one or more sensors to
take physical measurements (Arvanitis et al.,
2000) suggest that it is becoming realistic
to think in terms of spatial data collection
agents that use fuzzy logic in an adap-
tive spatial sampling strategy. Simulation
results of a prototypical system for adaptive
sampling along a transect suggest that the
fuzzy adaptive sampler usually produced
better results and on average required fewer
sampling locations (Graniero and Robinson,
2003).

When using spatial analysis in support of
spatial decision making, it is sometimes noted
that the results of using a crisp, or nonfuzzy,
approach to provide an information space
for making decisions virtually guarantees
that an analysis will ignore potentially
useful information (Morris and Jankowski,
2005; Oberthur et al., 2000; Yanar and
Akyurek, 2006). Thus, a nonfuzzy, or crisp,
approach may have the effect of hiding
important spatially explicit information from
decision makers, hence increasing the risk
of incurring additional costs by forgoing
an opportunity because it was not known
to the decision maker. This feature of
fuzzy versus crisp approaches has been
noted in studies as varied as landfill site
selection (Charnpratheep et al., 1997), real
estate evaluation (Zeng and Zhou, 2001),
and soil erosion potential (Ahamed et al.,
2000).

Often spatial decision making is repre-
sented using decision tables (DT). However,
the problem of strict, crisp boundaries is
viewed as a significant problem in the use
of DTs for locational decision making and
spatial analysis. Witlox and Derudder (2005)
have demonstrated how fuzzy decision tables
can be formulated and used effectively. They
show that it is possible to explicate the
imprecision involved in the decision-making
process using FDTs. However, like DTs,
when the number of conditions becomes large
then knowledge-based techniques may be
more effective and manageable.

The use of fuzzy sets in spatial analysis
has been shown to improve the accuracy of
representing spatial phenomena in a variety
of domains. Often times this improvement
is also coincident with a reduction in cost.
Using a fuzzy similarity approach, Hwang
and Thill (2005) found that the rate of
success of a typically used georeferencing
procedure went from 86% up to 94% of all
fatal accidents. This may not sound like a
great many instances, but in a mission-critical
application such as locating fatal accidents,
this represents a significant gain in accuracy.
In a different domain, the soil–land inference
model (SoLIM) based on fuzzy set theory
(Zhu et al., 2001; Zhu, 1997) has been
estimated to have increased the accuracy
of spatially explicit soils data by as much
as 20% at a third of the cost of tradition
techniques (Zhu, 2004). A similar result of
lower cost and higher accuracy when using
a fuzzy logic-based methodology has been
suggested by work on ecological landscape
mapping (MacMillan et al., 2003; MacMillan
et al., 2000).

For spatial analysis, map comparison is
useful for purposes of studying dynamic
processes such as land cover change, compar-
ing simulation model results with empirical
data, map creation/revision and translating
between maps using different semantics.
Translating between map products from
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differing sources with differing semantics
is a problem when assembling spatial
data for analysis. To address this prob-
lem, Ahlqvist (2005) used rough fuzzy
sets to analyze the semantic similarity of
map products having differing classification
semantics. Fritz and Lee (2005) used a
fuzzy logic based methodology to compare
two land cover datasets and found the
fuzzy agreement approach superior to the
nonfuzzy approach in identifying areas of
severe disagreement. Using a hierarchical
fuzzy pattern matching technique, Power
et al. (2001) were able to convincingly
demonstrate the superiority of the use of
fuzzy logic to address the problems of map
comparison. They noted the deficiencies of
using a map comparison statistic such as
the Kappa measure that relies on crisp,
nonfuzzy categories. This has subsequently
been addressed by Hagen and others in
their development of the K-fuzzy (or fuzzy
kappa) (Hagen-Zanker et al., 2005) that
takes into consideration the fuzziness of
both location and attribute quality (Hagen,
2003). This is one of the more promis-
ing approaches to comparing spatial fields
(Wealands et al., 2005).

A variety of multi-criteria decision making
efforts have used fuzzy techniques to address
spatially explicit problems. A methodology
for assessing land for allocation to restoration
projects demonstrated that the additional
information afforded by fuzzy classification
can be of significance in avoiding misallo-
cations that would result in unnecessary cost
(Guneralp et al., 2003). Similar conclusions
could be drawn from an earlier study on
allocation of land for industrial use. Jiang and
Eastman (2000) showed that results can vary
significantly as a function of the method of
aggregation. In their review of fuzzy-based
approaches Kahraman et al. (2003) suggest
that nonfuzzy, conventional approaches to
the facility location problem tend to be less
effective in dealing with the imprecise nature

of linguistic assessments that are often part
of the qualitative criteria.

It is not uncommon for fuzzy set theory
applications to be incorporated in a compo-
nent of a larger decision support system. For
example, in the DISCUSS system of spatially
disaggregating cost–benefit analyses fuzzy
logic is used in only one component. The
fuzzy spatial disaggregation method uses
standard membership curves operating on
spatial variables. If the initial method of
spatial disaggregation is not accepted, then
a fuzzy disaggregation method is used that is
based on membership functions on distance
variables and fuzzy addition. Using fuzzy
sets this work has shown how cost benefit
analyses can be spatially disaggregated,
something that has rarely been accomplished
in the past (Paez et al., 2006).

In some cases, when compared with more
traditional methods that are statistics-based,
fuzzy techniques have provided superior
results. For example, when they replaced
their principal components model with a
fuzzy set analysis. Taylor and Derudder
(2004) noted that the fuzzy-based analysis
provided an exceptionally clear picture of
regional and hierarchical tendencies among
world cities. In a similar vein, Katz et al.
(2005) concluded that regression analysis
did not provide meaningful results while
fuzzy set analysis did provide meaningful
results. In quite a different domain, Kuo
et al. (2003) incorporated a fuzzy analytical
hierarchical process (AHP) to support the
locational decision for convenience stores.
Since the mean standard error (MSE) for
the fuzzy AHP was 0.0173 as opposed
to 0.091 for the regression model, Kuo
et al. (2003) concluded that fuzzy AHP
plus artificial neural network (ANN) decision
support system provided more accurate
results than did a regression model. In
geographical soil science, Oberthur et al.
(2000) showed that nonfuzzy approaches
severely misclassified land while fuzzy
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approaches were much more successful. In
particular, Boolean classification allocated
nearly 2,000 hectares of land to the group
with low potential for plant recovery than
did the fuzzy approach. Hence, leading to
a result where less land was erroneusly
shown to have a high potential for plant
recovery. In another physical science domain,
Fisher et al.’s (2005) multi-scale fuzzy-based
analysis provided significant insights over
more conventional, nonfuzzy, analysis of
the accumulation and erosion of material as
reflected in elevation changes.

In addition to Taylor and Derudder’s
(2004) application of fuzzy clustering to
world cities, Heikkila et al. (2003) used
a two-pass Bayes classification method to
assign membership values to urban objects
that are ultimately used in the context of
Kosko’s (1992) fuzzy hypercube. They claim
that the main contribution of their fuzzy
urban set formulation is the introduction
of a unifying conceptual framework for
measures of urbanization. This is made
possible by the representation of an entire
study area as a single point within a fuzzy
hypercube. In a fuzzy hypercube each axis
corresponds to the membership of a particular
fuzzy set. Hence, each axis is defined on
the interval [0, 1]. A fuzzy system with
n sets would generate a fuzzy hypercube of
dimension [0, 1]n.Using three dichotomies
with fuzzy set interpretations, they exploited
the geometric interpretation of fuzzy sets
afforded by the fuzzy hypercube to show
how study area could be ‘located’ within
a three-dimensional hypercube. Aggregate
measures were used to calculate the degree
of membership a study area has in each of
the three aggregate measures. These are used
to locate the study area as fuzzy set in the
hypercube.

In some spatially explicit applications
hand-drawn sketch maps are used as a
means of collecting spatial data. However,
the inherent uncertainty of such maps is

self-evident. Therefore, an important step
towards automating the analysis of such
spatial data is represented by Skubic et al.
(2004) who use force histograms and fuzzy
rules to generate a linguistic description
from hand-drawn sketch maps. The use of
force histograms combined with fuzzy set
theory has been shown to be able to extract
directional as well as topological information
about spatial objects with relative ease
(Matsakis and Nikitenko, 2005).

In addition to the forgoing applications
of fuzzy sets to spatial analysis, there have
been reformulations of nonfuzzy techniques
for spatial analysis. One of the early refor-
mulations was that of fuzzy kriging which
can be used for analysis or interpolation
of spatial data (Bardossy et al., 1989). The
formulation of fuzzy kappa (Hagen-Zanker
et al., 2005) has already been mentioned and
is an important step towards using fuzzy tech-
niques for analyzing fuzzy spatial data. One
of the most widely used reformulations, or
extensions, is the fuzzy c-means (also known
as k-means) algorithm that is a fuzzification
of the nonfuzzy c-means clustering algorithm
(Bezdek et al., 1984;Wilson and Burrough,
1999).

As simulation models have become more
commonly used to address spatially explicit
problems, fuzzy sets has been used in a
number of ways to address the uncertainties
inherent at various levels of such models. Not
only is there uncertainty in the spatial data
that may affect the model, but uncertainty
surrounding the precise value of a parameter
can affect the outcome of the modeling
exercise. Wu (1998) and Bone et al. (2006)
are examples of using fuzzy sets in cellular
automata for urban and ecological modeling
respectively. Bossomaier et al. (2005) and
Robinson and Graniero (2005) use fuzzy
sets in individual-based modeling of housing
transactions and animal dispersal movements
respectively. Not only have fuzzy sets
improved the ability of simulation models
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to formally accommodate uncertainty, it has
also been shown to enable model self-
evaluation thus avoiding semantic errors in
complex process models that unknowingly
compromise the integrity of an analysis
(Mackay and Robinson, 2000).

With the advent of GIS the representation
and query of uncertain spatial to support
spatial analysis has developed substantially.
Cross and Firat (2000) discuss the issues
involved in construction of fuzzy spatial
objects with specific reference to GIS. Morris
(2003) describes a fuzzy object-oriented
framework to model spatial objects with
uncertain boundaries. Another object-based
effort is that of Bordogna et al. (2006) who
developed a fuzzy object-based data model
as a tool for supporting spatial analysis. It
is based on the management of a linguistic
granule.

Verstraete et al. (2005) presented detailed
techniques for modeling fuzzy spatial infor-
mation represented as triangular irregular
networks (TINs) and raster (grid) layers.
They show how processing, as well repre-
sentation, can be carried out using fuzzy
set theory to represent the uncertainty in
spatial data. One of the significant aspects
of this work is its presentation of the
use of type-2 fuzzy sets. In other words,
it detailed how to formally represent and
process uncertainty not just about the spatial
data, but also uncertainty about the fuzzy
membership functions themselves.

12.3. ASSIGNING FUZZY
MEMBERSHIPS

Crucial to any spatial analysis using fuzzy
sets is the assignment of membership. With
regard to fuzzy membership, it is important
to realize that fuzzy memberships have
special characteristics. First, although fuzzy
membership values are typically normalized

to fall between 0.0 and 1.0, they are
not probabilities. Probabilities and fuzzy
membership values measure very different
things. For example, one of the most impor-
tant properties of probability is additivity.
There is no such inherent restriction on
fuzzy memberships. In fact, the sum of
membership values is interpreted as fuzzy
cardinality (i.e., the size of a fuzzy set).
Second, membership values are not a simple
quantitative variable of the interval level. It
is because the end points (i.e., 0 and 1) have
more meaning than just being artifacts of
the membership function. Verkuilen (2005)
suggests it is really a generalization of the
case of dichotomous dummy variables that
are often used to represent ordinary crisp sets.

In the spatial analytic and GIS literature
it is common to refer to either the Semantic
Import (SI) or Similarity Relation (SR) model
(Burrough and McDonnell, 1998; Robinson,
1988). However, it may be more useful
to consider that fuzzy memberships are
usually a function of a direct assignment
(DA), indirect assignment (ID), or an assign-
ment by transformation (AT) methodology
(Verkuilen, 2005).

12.3.1. Direct assignment

Studies where membership functions are pro-
vided directly by an ‘expert’ is characteristic
of the direct assignment (DA) method. It is
also common in the DA method of assign-
ment to make use of standard membership
functions such as the triangular, trapezoidal,
bell, and others (Robinson, 2003). For exam-
ple, in consultation with experts, DeGenst
et al. (2001) made use of a standard curve
to describe a basic spatial relation in their
study of squirrel dispersal. Often, as in
Braimoh et al. (2004), and Zeng and Zhou
(2001), the choice of membership function
is based on ‘the literature’, ‘common-sense’,
and/or expert opinion. Sometimes these
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membership functions are available as part
of a geographic information system so that
experts can specify them directly in an
automated geospatial environment (Yanar
and Akyurek, 2006). Neverthless, they are
still directly assigned by an expert. It should
be noted that this approach is sometimes
criticized because of these deficiencies:

1 Interpretation is difficult because rarely is there

anything tangible underlying the number.

2 It may be too difficult for the expert(s) to do

reliably, especially if they are not well-versed in

fuzzy set theory.

3 Can be biased. In particular, subjects may

systematically be biased towards the end points

(Thole et al., 1979).

4 Difficulty in combining assignments from multiple

experts. This is especially difficult when the

assignments are at extreme variance from one

another (Verkuilen, 2005).

Despite these deficiencies, direct assign-
ment remains a commonly used strategy for
assigning membership values.

12.3.2. Indirect assignment

Indirect assignment elicits responses of some
kind from experts and applies a model
to the judgments to generate membership
values. There have been a number of
approaches used to formalize the process
of generating fuzzy set memberships from
expert knowledge. One of the simpler
approaches showed how an intelligent, inter-
active question/answer system could be used
to generate fuzzy representations of a spatial
relation such as ‘near’. In this approach the
expert need only provide a yes/no answer to a
question posed by the software. From those

crisp answers the system generates a fuzzy
representation of a spatial concept (Robinson,
2000). This approach may be useful to gen-
eralize for obtaining fuzzy representations
of individual concepts; it is not suitable for
use in studies where more complex expert
knowledge representations are required.

One of the reasons indirect assignment
is less often used is the difficulty of the
knowledge elicitation process. Zhu (1999)
used personal construct theory to formu-
late a rigorous methodology for eliciting
expert knowledge about soils. Part of the
process included the expert interacting with
a graphical user interface (GUI) to assist
in formalizing the relations. The result of
this intensive knowledge elicitation process
was used to populate a fuzzy soil similarity
model. This is one of the rare studies in
the geographical literature where knowledge
consistency and validation were explicitly
incorporated into the knowledge elicitation
process. Although the process is rigorous
and thorough, the interviews with the expert
that are essential to the process can be very
tense and often frustrating for the expert
as well as the knowledge engineer. Hence,
it can be difficult to secure an expert’s
cooperation. This is perhaps why there are so
few studies in the spatial analytic literature
where a rigorous indirect assignment process
is followed.

Paired comparisons have been used in
conjunction with fuzzy sets and spatial
analysis, but generally not in the construction
of membership functions/values themselves.
For example, Charnpratheep et al. (1997)
used paired-comparison analytic hierarchy
process (AHP) methodology to arrive at
weights that were subsequently used in a
convex combination model of fuzzy aggre-
gation. However, their membership functions
were by direct assignment. In another
instance, Kuo et al. (2003) used a fuzzy
AHP methodology that made use of a ques-
tionnaire to acquire data on store location
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decisions from 16 business ‘experts.’ The
results of this questionnaire exercise provided
enough information to estimate the weight
assigned to each factor (e.g., the competition
dimension received the highest single weight
of 0.1922). They show that weights provided
by fuzzy AHP can be applied as criteria for
selecting important factors to subsequently be
used in an artificial neural network location
analysis. These works are suggestive of a
linkage to discrete choice modeling (e.g.,
Fotheringham, 1988; Train, 2003). Some
work in the transportation field has explored
the use of fuzzy sets in modeling route
choice (Vythoulkas and Koutsopoulos, 2003).
Since preferences play an important role
in discrete choice modeling, Ridwan (2004)
introduced a model of route choice based
on fuzzy preference relations. The elements
the fuzzy relations were specified as fuzzy
pairwise comparisons between alternative
routes. Since the use of logit models are
commonly used to estimate the probability
of alternatives being chosen, it is interesting
to note that Henn (2000) presents a fuzzy
formulation that suggests the logit model
is a special case of his fuzzy based model
when the similarity measure has a given
shape.

Questionnaires have been reportedly used
in some studies as an instrument for
constructing fuzzy memberships. Although
details are not given, Lin et al. (2006)
describe a process using results of a ques-
tionnaire survey to construct a fuzzy rule
base. They were able then to make some
tentative statements about changes in activity
centers in relation to a subway line. Simi-
larly, Fritz et al. (2000) used a web-based
questionnaire where distances specified by
respondents were used to construct fuzzy
sets for defining the concepts near, medium
and far for visible features and close and
far away for nonvisible features. They then
detailed a methodology that combined the
resulting fuzzy rules to aid in mapping of

wild lands. Although, respondents detailed
what distances represented concepts like
‘near,’ the use of a default triangular
membership function meant that the actual
membership function was not obtained
directly from respondent data. Neverth-
less, it does represent a more formalized
approach for proceeding from questionnaire
responses to construction of a fuzzy set or
rule base.

12.3.3. Assignment by
transformation

In this approach a numerical variable is
taken and mapped into membership val-
ues by some transformation. There are
many different approaches that assign
fuzzy membership using some version of
assignment by transformation. In this section
many of the approaches used to address
problems in spatial analysis are briefly
discussed.

Among the more typical approaches to
assignment is the use of a fuzzy clustering
algorithm. Perhaps the most commonly
used method across the spatial sciences for
assigning membership is based on the fuzzy
c-means algorithm originally developed by
Dunn (1973) later generalized by Bezdek
(1974, 1981). It is also known as the
fuzzy k-means (FKM) or fuzzy ISODATA
algorithm. It is derived to minimize an objec-
tive function with respect to the membership
functions and centroids of c clusters. Hence
it is useful for clustering multivariate data
into a finite number of fuzzy sets (Brown,
1998; Cheng et al., 2002; Irvin et al.,
1997; McBratney and Odeh, 1997; Stefanakis
et al., 1999). In spatial analytic studies
each spatial object would be classified as a
member of all classes but to varying degrees.
Although used in numerous studies since
the algorithm was published (Bezdek et al.,
1984), it continues to figure prominently in
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applications in physical geography (Bragato,
2004; Burrough et al., 2001; Scull et al.,
2003). In addition, it has been used to
address spatially explicit problems in fields
as diverse as wildlife ecology (Schaefer
et al., 2001), marketing (Wanek, 2003)
and urban geography (Taylor and Derudder,
2004).

Since the objective function does not
take into consideration spatial dependence
between observations, ‘noisy’ spatial data
can adversely affect the performance of the
algorithm. Few attempts to incorporate spa-
tial information in an FCM algorithm have
been published outside the image analysis
community. Liew et al. (2000) presented
a modification of the FCM whereby the
normed distance computed at each pixel
within an image was replace with the
weighted sum of distances from within a
neighborhood of the pixel. Pham (2001)
followed with a more general solution
that uses penalty functions to constrain
the membership value of a class to be
negatively correlated with the membership
values of the other classes at neighboring
pixels. Both approaches produced promising
results. It remains to be seen if, or when,
these adaptations of FCM will develop
and be applied outside the image analysis
community.

Another problem is that the number of
classes needs to be specified a priori. In
their extension of the FCM to the spatio-
temporal domain, Liu and George (2005)
address the number of clusters problem using
the Xie–Beni validity index to develop a
stopping condition. Given a starting number
of clusters, their technique will successively
merge clusters until a stopping condition
based on the Xie–Beni validity index is met.
They illustrate its use on spatio-temporal
meteorological data where it is able to detect
interesting climatic phenomena.

Another approach that has been used to
map from data to a fuzzy membership is

characterized by the application of artificial
neural network (ANN) methods adjusted
so that the output is a fuzzy membership
value. Note that this differs from the use
of ANN by Kuo et al. (2003) in that they
used fuzzy AHP to develop the weights that
were used by ANN to produce nonfuzzy
results. Here ANN is considered as a method
that is used to directly produce a fuzzy
classification (Foody and Boyd, 1999) or to
extract a fuzzy rule base from data (Zheng
and Kainz, 1999). In either case, ANNs are
composed of a set of simple processing units,
or nodes, that are interconnected by some
predefined architecture which can be trained.
The processing nodes are generally arranged
in a layered architecture where the first layer
is the input, or fuzzification, layer where there
is one node per input channel (i.e., input
variable). The second, or implication, layer(s)
is comprised of a number of processing
units. These processing nodes do most of
the thinking of the ANN. The third layer
is the output, or defuzzification, layer. In
general, there is one output node associated
with each class to be output. Each node
in a layer is connected to every node
in an adjacent layer by a weighted link.
The weights are typically set randomly and
iteratively adjusted during a training phase
during which the ANN attempts to generate
a model capable of correctly assigning class
membership.

Related to ANN is the adaptive neuro-
fuzzy inference system (ANFIS) (Jang,
1993). Using a given input/output data set
the objective is to construct a fuzzy inference
system whose membership functions best
suit the data set. Using a back-propagation
algorithm or a least-squares method, the
membership parameters are tuned in a
training exercise similar to ANN (The
Math Works Inc., 2002). ANFIS has been
used for map revision (Teng and Fairbairn,
2002) and land cover classification (Peschel,
2002).
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These neural network approaches have
advantages and disadvantages. The advan-
tages include an ability to learn from training
data and they can handle noisy, incomplete
data. Once trained, an ANN can respond to
a new set of data instantly. However, they
can take a long time to train, especially
since training is still largely by trial and
error complicated by the fact that incomplete
training data can cause the network to provide
incorrect results. Perhaps the most important
disadvantage is that it is difficult to explain
the specific reasoning leading to the output
product. Hence it can be a kind of black-box
approach.

The presence, or absence, of an asso-
ciation, interaction or interconnectedness
between elements of two or more sets is
represented by a crisp relation. Rather than
presence/absence of association, degrees of
association can be represented by member-
ship grades in a fuzzy relation in much the
same way as degrees of set membership are
represented in a fuzzy set. Thus, the classical
notion of relation can be generalized into
matter of degree as a fuzzy relation. Fuzzy
relations have been used to formally rep-
resent fuzzy regions and their relationships
(Zhan and Lin, 2003). In addition, Kahraman
et al. (2003) present an example of using
fuzzy relations in a model of group decision
making for the facility location selection
problem.

Statistical data analysis has been suggested
as another way to choose fuzzy membership
functions and form fuzzy rules (Hanna
et al., 2002). However, it has not been
used widely in spatial analysis. An example
of its application to a spatially explicit
problem is illustrated by the problem of
estimating parameters to use in a regional
ecohydrological simulation model. Mackay
et al. (2003) use a two stage methodology
where in the first stage many simulations are
run in which parameters affecting stomatal
conductance are assigned values using Monte

Carlo sampling. Then each simulation result
is evaluated by regressing simulated evap-
orative fraction from RHESSys and surface
temperature from thermal remote sensing
data. For each regression, the coefficient
of determination (R2) is calculated and
used as a fuzzy measure of the goodness-
of-fit for its respective simulation result.
Hence the fuzzy set is composed of the
set of R2 measures for all simulations, to
which an information-theoretic tool based on
ordered possibility distributions is applied
to form a restricted set in which only
‘good’ simulations retained. A restricted
set is used as an ensemble solution in
the second stage of parameter estimation.
Note that a separate ensemble solution is
produced for each hillslope (Mackay et al.,
2003).

12.4. COMBINING MEMBERSHIPS

A common requirement of fuzzy spatial
analysis is the combination of several fuzzy
sets in a desirable manner to produce
a single fuzzy set (Klir et al., 1997).
This combination is often accomplished
using aggregation operators. In fuzzy set
theory there are many aggregation opera-
tors from which to choose with the most
common being the min (intersection) and
max (union) operators (Robinson, 2003).
The choice of operator depends on the
nature of the underlying decision model.
For example, in their fuzzy-base cellular
automata model of insect infestation, Bone
et al. (2006) used a compensatory operator
rather than the noncompensatory operators
(max or min) because the compensatory
aggregation operator allows for the influence
of each set to contribute to the final
result.

The basic aggregation operators have
been further developed using various
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weighting schemes. Both the convex
combination and a modified ordered
weighted averaging operator (OWA) have
been used in various studies (Charnpratheep
et al., 1997; Oberthur et al., 2000; Zeng and
Zhou, 2001). However, use of the weighted
aggregation models has highlighted the
subjectivity inherent in the weighting
scheme, hence care should be taken when
formulating the weighting scheme as small
differences in subjective weights can lead
to large variations in the results (Jiang and
Eastman, 2000).

Another common method is to use fuzzy
rules that have the general structure of
the form:

IF(antecedent)THEN(consequent).

To evaluate the rule base and arrive at
an answer requires the application of an
inference, or implication, method. One of
the most common inference methods is
known as Mamdani-type inference. Whether
named, or not, it is often the one used for
spatial analytic studies because it supports
outputs as fuzzy sets. The use of fuzzy rule
bases in spatial analysis include applications
for the conflation of vector maps (Cobb
et al., 1998), real estate evaluation (Zeng
and Zhou, 2001), land fill location (Charn-
pratheep et al., 1997), and prediction of
weed infestation (Chiou and Yu, 2001). The
alternative Takagi–Sugeno type inference
model tends to produce a single, crisp value
as output rather than a fuzzy set. This is
why many applications have avoided its
use (e.g., Power et al., 2001). However,
such a characteristic may be useful for
spatial interpolation purposes. For example, a
Takagi–Sugeno rule base has been used in the
spatial interpolation of solar radiation (Botia
et al., 2001).

12.5. CHALLENGES AND RESEARCH
ISSUES

Although this chapter has detailed a varied set
of accomplishments using fuzzy sets in fields
allied with spatial analysis, there remain
many significant challenges and research
issues. All the areas of accomplishment noted
above remain open to further studies to refine
research issues in their work.

Even though there has been substantial
research on the representation and processing
of spatial data (Bordogna et al., 2006;
Verstraete et al., 2005), especially in a GIS
context, the specification of fuzzy member-
ship remains a challenge. Although a variety
of methods for assigning fuzzy memberships
have been presented, there remains much
to be done in formalizing the process. In
the field of spatial analysis, there is still a
need for the development of methodologies
for the acquisition of fuzzy memberships
from experts. Perhaps an even more pressing
challenge is that posed by formalizing the
acquisition of fuzzy memberships directly
from spatial data in such a way as to
have meaning in the context of the problem
domain.

Another chapter of this book deals with
the topic of spatial autocorrelation. In spatial
analysis spatial autocorrelation is usually
presented as a special topic in the statistical
analysis of spatial data. With a few excep-
tions, it is a topic that has for the most
part been neglected in many applications of
fuzzy sets to spatial analysis. For example, in
image analysis it is known to affect the fuzzy
clustering results, hence its incorporation in
some fuzzy clustering algorithms. However,
there are few, if any, investigations of
the degree to which spatial autocorrelation
affects fuzzy-based results in areas such
as soil science, geodemographics, landscape
ecology, etc.

An issue that has not been fully developed
in spatial analysis is the linkage between



236 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

fuzzy sets and mainstream spatial analysis.
There are examples of the fuzzification of
mainstream methods such as in the case of
kriging and the kappa statistic. However,
other aspects of fuzzy statistics have yet to
be explored in depth for the analysis of spa-
tial data. For example, although regression
analysis is often used in spatial analyses
the use of fuzzy regression techniques is
virtually unheard of in spatial analysis
even though fuzzy regression techniques
address the case where the relations of the
variables are subject to fuzziness or where
the variables themselves are fuzzy (Taheri,
2003).

Many efforts in spatial analysis are
concerned with the testing of hypotheses.
Mainstream methods rely upon classical
statistics to determine whether a hypothesis
should be rejected. Little investigation of
fuzzy hypothesis testing has been done in
the context of spatial analysis. However,
as Smithson (2005) points out, fuzzy sets
and statistics work better together. There
are a few cases where this is demonstrated
mostly in relation to the process of assigning
membership values (Ahn et al., 1999; Brown,
1998; Mackay et al., 2003), not in the explicit
testing of hypotheses.

There are several broad issues that will
face researchers attempting to use fuzzy
sets in spatial analysis. Perhaps, the most
fundamental issue is when, or when not,
to use fuzzy-based analysis. This is not
easily answered and demands considerable
knowledge of both the problem at hand as
well as both mainstream methods as well as
fuzzy-based methods. However, fuzzy-based
approaches are showing great promise, yet
are still not as widely known, or understood,
as many of the mainstream approaches
detailed in other chapters of this book.
Another issue is whether or not a fuzzy-
based spatial analysis should be evaluated
against nonfuzzy-based techniques or are
they now developed enough to stand on their

own. This implies that they are competing
paradigms when they may be more properly
viewed as complementary paradigms of
analysis.
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13
Geographically Weighted

Regression

A . S t e w a r t F o t h e r i n g h a m

13.1. INTRODUCTION

Spatial data contain locational informa-
tion as well as attribute information. It
is increasingly recognized that most data
sets are spatial in that the attribute being
measured is typically recorded either at
some specific location or as a representation
of a general area. It is also increas-
ingly recognized that spatial data exhibit
special properties which distinguish them
from aspatial data and which necessitate
the development of specialized statisti-
cal techniques. For instance, spatial data
almost invariably exhibit some form of
spatial dependence whereby locations in
close proximity tend to have more similar
attributes than do locations further apart.
This tends to invalidate the assumption
of the independence of error terms, a

fundamental property of classical aspatial
statistical inference. Another property of
many spatial data sets, perhaps slightly less
recognized but becoming increasingly well-
known, is that the processes generating
the data might exhibit spatial heterogeneity

or nonstationarity. That is, the processes
generating observed attributes might vary
over space rather than being constant as is
assumed in the use of most traditional types
of statistical analysis.

Nowhere is this more evident than in the
use of what is undoubtedly the most fre-
quently used statistical modelling approach
in the analysis of spatial data – that of
regression. In a typical linear regression
model applied to spatial data we assume
a stationary process (often without giving
this any thought!). That is, we assume that
the same relationships hold throughout the
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entire study area we are investigating and
that the same stimulus provokes the same
response in all parts of the study region.
In a linear framework, we can represent
these relationships with the following general
model:1

yi = β0 + β1 x1i + β2 x2i + · · · βn xni + εi

(13.1)

where yi is the value of the dependent vari-
able observed at location i, x1i, x2i, . . ., xni

are the values of the independent variables
observed at i, β0, β1, . . ., βn are parameters
to be estimated, and εi is an error term which
is assumed to be normally distributed.

The parameter estimates obtained in the
calibration of such a model are constant over
space and are obtained from the following
estimator:

β ′ = (XT X)−1 XTY. (13.2)

That is, for each relationship between y and
an x variable, a single parameter is estimated
which is assumed to be constant across
the study region. Consequently, if there is
spatial nonstationarity, the resulting single
parameter estimate would then represent an
average of the different processes operating
over space and we would only get an
inkling of this through the residuals of the
model. We might map these to determine
whether there are any spatial patterns. Or
we might compute an autocorrelation statistic
for the residuals or we might even try to
‘model’ the error dependency with various
types of spatial regression models. However,
spatial dependency in the residuals can result
from other processes apart from spatial
heterogeneity so examining the residuals is
not an ideal solution. It seems much more
obvious to allow the parameter estimates in

the model to vary over space rather than to
calibrate a stationary model and then trying
to examine a possible error in the model
through the spatial patterning of the residuals.
The specification of a model that allows
the parameter estimates to vary over space
is the essence of geographically weighted
regression (GWR).

13.2. GWR MECHANICS

The geographically weighted version of
the regression model described in equa-
tion (13.1) is:

yi = β0i + β1i x1i + β2i x2i + · · · βni xni + εi

(13.3)

where i refers to a location at which data
on y and x are measured and at which local
estimates of the parameters are obtained. In
this model, the parameter estimates are now
local to location i instead of being global
constants. The estimator for the parameters
is then:

β ′(i) = (XTW(i) X)−1XTW(i)Y (13.4)

where W(i) is a matrix of weights specific
to location i such that observations nearer to
i are given greater weight than observations
further away. The matrix W(i) has the form:

W(i) =





wi1 0 . . . . . . 0
0 wi2 . . . . . . 0
0 0 wi3 . . . 0
· · · ·
0 0 0 . . . win




(13.5)
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where win is the weight given to data point
n for the estimate of the local parameters at
location i.

There are many possible weighting func-
tions that could be specified which relate
the weighting of an observed value at
location j to the distance location j is
from the regression point i but they tend
to be Gaussian or Gaussian-like, reflecting
the nature of many spatial processes. The
operation of a typical weighting function is
shown in Figure 13.1.

Data points that are located close to
the regression point are weighted highly
whereas data points that are far from the
regression point get a very low weight.
Hence, the weighting matrix will change
every time the regression point changes.
GWR thus produces a model that effectively
answers the question ‘what do the relation-
ships in my model look like around this
location?’ The question can be answered

for many different locations as we will
see below.

Although the exact specification of the
weighting function can take many forms,
there are two broad categories of weighting
functions: fixed or adaptive. An example of
a fixed spatial weighting function is shown
in Figure 13.2. In this case, the specified
weighting function or kernel is constant
across the study area and therefore has the
undesirable property that in areas where data
points are relatively sparse, the resulting local
parameter estimates will have high standard
errors attached to them reflecting the added
uncertainty in the estimates caused by the
relative lack of data.

There are many functions that could be
used to represent a fixed spatial weighting
function. One is a Gaussian expression:

wij = exp [− ½ (dij/h)2] (13.6)

1

0

x

x Regression point

Data point Distance between regression point i and data point j

dij

dij

Bandwidth

wij

wij Weight of data point j at regression point i

Figure 13.1 A typical spatial weighting function.
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x

x Regression point

Data point

x

wij

wij

Figure 13.2 A fixed spatial weighting function.

x

x Regression point

Data point

x

wij

wij

Figure 13.3 A spatially adaptive weighting function.

where dij is the distance between locations i

and j, and h is a parameter often referred to as
the bandwidth – as h increases, the gradient of
the kernel becomes less steep and more data
points are included in the local calibration.

An alternative, and generally preferred,
alternative is an adaptive kernel where the
spatial extent of the kernel is dictated by
the underlying density of data points. In
areas where data are plentiful, the kernel
is relatively tightly defined around the
regression point; in areas where the data are
relatively sparse, the kernel has to extend

outwards in order to capture more data. The
operation of an adaptive kernel is shown in
Figure 13.3.

Again, there are several functions that one
could use to produce a spatially adaptive
weighting function. One, for example, is the
following:

wij = [1 − (d2
ij/h2)]2 if j is one of the N th

nearest neighbours of i

= 0 otherwise (13.7)
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where h is the bandwidth and N is a
parameter to be estimated.

The results of GWR appear to be relatively
insensitive to the choice of weighting func-
tion as long as it is a continuous distance-

based function but whichever weighting
function is used, the results will, however,
be sensitive to the degree of distance-
decay. Therefore an optimal value of either
h or N has to be obtained. This can be
found by minimizing a cross-validation score
(CV) or the Akaike information criterion
(AICc) where:

CV =
∑

i

[yi − y %= i∗(h)]2 (13.8)

where y %= i∗(h) is the fitted value of yi

with data from point i omitted from the
calibration and:

AICc = Deviance + 2k[n/(n − k − 1)]
(13.9)

where n is the number of data points and k

is the number of parameters in the model.
Lower values of both statistics indicate better
model fits.

Optimal bandwidth selection is a trade-off
between bias and variance:

• too small a bandwidth leads to a large variance

in the local estimates because of the relatively

small number of data points used in the local

calibration;

• too large a bandwidth leads to large bias in

the local estimates because data are drawn

from locations further away from the regression

point.

As the bandwidth → ∞, the local model
will tend to the global model with number of
parameters = k.

As the bandwidth → 0, the local model
‘wraps itself around the data’ so the number
of parameters = n.

The number of parameters in local models
therefore ranges between k and n and
depends on the bandwidth. This number
need not be an integer and is referred to
as the effective number of parameters in the

model.

13.3. GWR OUTPUT

The main output from GWR is a set of
location-specific parameter estimates that
can be mapped and analysed to provide
information on spatial nonstationarity in
relationships. However, any diagnostic from
regression can be replicated in geographically
weighted format so within the GWR frame-
work we can also:

• estimate local standard errors;

• derive local t statistics;

• calculate local goodness-of-fit measures;

• calculate local leverage measures;

• perform tests to assess the significance of

the spatial variation in the local parameter

estimates; and

• perform tests to determine if the local model

performs better than the global one, accounting

for differences in degrees of freedom.

13.4. A SIMULATION EXPERIMENT

Consider the following model:

yi = αi + β1i x1i + β2i x2i (13.10)
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and data on x1 and x2 drawn randomly for
2500 locations on a 50×50 matrix subject to
the correlation between x1 and x2, r(x1, x2),
being controlled. In fact, the results of this
experiment can be shown to be independent
of r(x1, x2) so we will ignore this feature of
the experiment here.

13.4.1. Experiment 1 (parameters
spatially invariant)

In this experiment, we set the three para-
meters in the model to known, constant
values:

αi = 10 for all i

β1i = 3 for all i

β2i = −5 for all i.

With everything on the right-hand side of
equation (13.10) now known, we can derive a
value of yi at each location and then use these
data to calibrate the model both by ordinary
least squares regression and by GWR. The
results are as follows:

Global model calibrated by OLS

Adj. R2 = 1.0

AIC = −59,390

K = 3

α(est.) = 10

β1(est.) = 3

β2(est.) = −5

In this case, where there is no spatial
nonstationarity (the parameters are the same
everywhere), the global model is clearly
appropriate and replicates the y variable
perfectly and the estimated parameters are
equal to their known values. K represents
the number of parameters estimated in the
model. The results are not surprising – the
processes being modelled are stationary so
the global model works well. The question
is, how well does the GWR model perform
in this situation? The results of the GWR
calibration are given below.

Local model calibrated by GWR

Adj. R2 = 1.0

AIC = −59,386

K = 6.5

N = 2,434

αi(est.) = 10 for all i

β1i(est.) = 3 for all i

β2i(est.) = −5 for all i.

Reassuringly, the GWR model attempts
to make itself as similar to the global
model as possible. N , the number of nearest
neighbours used to calibrate each local
model, is optimized at 2434 data points out
of the 2500. That is, the kernel is trying to
become as broad as possible to use all the
data on each local calibration. Consequently,
the local parameter estimates are the same
everywhere and the model replicates the
y variable almost perfectly. The AIC values,
another goodness of fit measure, are almost
identical. Notice that k, here the effective

number of parameters, is not an integer and
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is 6.5. This is the equivalent number of
independent parameters used in the model.

These results are useful because they
demonstrate that the GWR model is not
picking up spurious nonstationarity when the
processes are stationary and the global model
is appropriate. However, what happens if the
processes being examined are nonstationary?

13.4.2. Experiment 2 (parameters
spatially varying)

Given that the locations of the data points lie
on a 50 × 50 grid, we can use this to assign
spatially varying values to each of the three
parameters in our model. If the coordinates
of a representative grid point are defined
as (i, j), we know:

0 ≤ i ≤ 50, 0 ≤ j ≤ 50

so that we can make the parameters functions
of i and j. In this case, we chose the following
relationships:

αi = 0 + 0.2i + 0.2j (13.11)

so that αi ranges between 0 and 20:

β1i = −5 + 0.1i + 0.1 j (13.12)

so that β1i ranges between −5 and 5; and:

β2i = −5 + 0.2i + 0.2 j (13.13)

so that β2i ranges between −5 and 15.
Values of yi are then obtained as before

and the data used to calibrate the model by
global regression and by GWR. The results
are as follows.

Global model calibrated by OLS

Adj. R2 = 0.04

AIC = 17,046

K = 3

α(est.) = 10.26

β1(est.) = −0.1

β2(est.) = 5.28.

These are close to the averages of the local

estimates (10; 0; 5).

In this case, the OLS calibration performs
very poorly because it is trying to fit a global
model to a situation in which the processes
are nonstationary. The resulting parameter
estimates are very close to the averages of
the spatially varying local values but this
‘average’ model is not representative of any
situation across the study region and hence
the model cannot replicate the y data at
all well. In addition, of course, the model
provides no indication on how the processes
being examined vary spatially.

Local model calibrated by GWR

Adj. R2 = 0.997

AIC = 2,218

K = 167

N = 129

αi(est.) range = 2 to 18.6

β1i(est.) range = −4.3 to 4.7

β2i(est.) range = −3.9 to 13.6.
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The local model clearly captures the spatial
nonstationarity in relationships extremely
well. The y variable is replicated accurately
with the adjusted r-squared statistic being
close to 1.0 and the AIC value being much
lower than the comparable value from the
global model (2,218 versus 17,046). In this
case, the local model is trying to make
itself as local as possible and the number of
nearest neighbours in each local regression
is only 129. Recall also that the data on
these 129 observations are not weighted as 1
but will have a weight somewhere between
0 and 1 depending on their distance from
the regression point. The effective number
of parameter estimates is 167 reflecting the
spatially varying nature of the processes
underlying the model and the ranges of
local parameter estimates are close to their
known values. The local parameter estimates
are geocoded and can easily be mapped to
display the nature of their spatial variation.

The conclusion from these two experi-
ments is that calibration of local models
by GWR allows the identification of spatial
nonstationarity where it exists. Further, the
GWR calibration procedure does not appear
to introduce any spurious nonstationarity
in situations where a global model is
appropriate.

13.5. SOFTWARE FOR GWR

Software for running GWR (GWR 3.1) is
available from the author and runs on any
Windows platform. It has a very simple
point-and-click interface which makes it very
easy to calibrate models by GWR. The
user can select from a Gaussian, Poisson,
or binary logit GWR models. The current
restrictions on data size are a maximum
of 80,000 observations and 50 variables.
The software also calibrates a global model
for comparison and the output consists of

various model diagnostics plus geocoded
local parameter estimates, their local standard
errors, local t-values and local goodness-of-
fit measures.

An example of the interface is shown
in Figure 13.4. The user is asked to input
a data file from which the variable names
are stripped off and loaded into the GWR
model editor for placement in the appropriate
model form. The user defines the dependent
variable and a set of independent variables
for the model from the variable list. The x

and y coordinates of the data locations must
also be designated. A kernel type (either fixed
or adaptive), a calibration criterion (either
CV or AICc), and an output format for the
geocoded information must then be selected
before the model is saved and run. The output
is presented in both a listing file on the
screen and an output file which is saved for
subsequent processing – generally mapping
of the output to see the spatial variation in
local parameter estimates and goodness-of-fit
statistics.

The model editor also allows extra
computations. The user can select a Monte
Carlo simulation exercise to examine the
significance of any spatial variability in local
parameter estimates and various other diag-
nostics can be chosen. The user also has the
facility to by-pass the optimization routine
for the bandwidth and input his/her own
bandwidth. This can be useful to examine
the effects of scale on the output: large
bandwidths essentially perform regional
calibrations on the data; small bandwidths
perform very local calibrations.

The software is distributed on a self-
loading CD which also contains sample data.

13.6. RESEARCH TOPICS

Although the initial development of GWR
took place over a decade ago and it is
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now becoming a relatively well-established
technique, being used in many disciplines,
much research remains to be done. For
instance, the investigation of how the GWR
format can be linked with that of spatial
regression models would seem quite fruitful.
One of the advantages of using GWR is
that it generally accounts for much of the
spatial autocorrelation in the residuals often
found in global modelling. In the past, such

autocorrelation has necessitated the use of
various spatial regression techniques, some
of which are quite complex and which
has possibly hindered their adoption. This
raises the question ‘to what extent is the
spatial autocorrelation of residuals often
seen in the application of global models,
a result of assuming a stationary process
when the relationships being examined vary
over space?’ There are other reasons why

Figure 13.4 The model editor in GWR 3.1.
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the residuals from global models applied
to spatial data might be autocorrelated but
we now have the means of examining the
relative contributions of different processes
to such autocorrelation. That said, there is
still a potentially useful merger of spatial
regression models and GWR – one could
have, for example, a GWR version of
a spatial regression model. If the spatial
regression model were an autoregressive
model, for example, this would provide
an easy way of calibrating local spatial
autocorrelation statistics which are free from
covariate effects.

A second research area is that of the
development of what are termed ‘mixed’
or ‘semi-parametric’ GWR models where
some of the parameters are allowed to vary
spatially whilst others are fixed globally. In
some instances, for example, there is no
reason to suspect that a particular relationship
would be spatially varying and it makes
sense to set such a parameter in the model
as ‘fixed’. The calibration of such models,
however, is somewhat more complex than the
full GWR model.

This topic leads into a related one
which concerns variable selection in GWR.
It should be realized that simply because a
variable is insignificant at the global level,
does not mean it might not be impor-
tant locally. Consequently, variable selection
should ideally be at the level of the GWR
model and not at that of the global model.
Following from the above, however, vari-
ables could either be: unimportant at the local
level, important but with a stationary effect,
or important with a spatially varying effect.
Consequently, variable selection, along the
lines of stepwise regression, is considerably
more complex in GWR.

Another topic that needs further research
is that of statistical inference in GWR. It is
necessary to distinguish the degree of spatial
variation in local parameter estimates that
could reasonably be attributed to sampling

variation from that which is likely to be
attributable to something more interesting.
Currently, this is done via Monte Carlo
simulation but more formal methods might
be developed. One aspect of inference that is
well known in these situations is that of the
multiple hypothesis testing problem which
suggests that the traditional cut-off points
on a statistical distribution for rejecting a
null hypothesis is too liberal. Bonferroni-
type adjustments should be made although
recognizing that the hypothesis tests in GWR
are not independent. Probably the ratio of
the effective number of parameters in the
GWR model to the number of parameters
in the global model should be used as the
adjustment factor rather than the number
of tests.

Although the primary rationale for cali-
brating a GWR model is to uncover facets
of possible nonstationarity in the processes
being examined, a common question is to
what extent can the methodology be used
for prediction? To answer this, research is
currently being undertaken to compare GWR
as a prediction method with various forms
of kriging. The results so far suggest GWR
provides much better estimates of unknown
values than do many types of kriging and
about the same level of predicative ability as
universal kriging with external covariates. Of
course, the advantage of GWR is that much
more information is yielded on the processes
at work.

Finally, the most powerful aspect of GWR
is the concept of geographically weighting
models. Anything that can be weighted can
be geographically weighted. The models
need not be linear nor even in a regression
format. One can generate, for example,
GW versions of any descriptive spatial
statistic or GW versions of any multivariate
statistical method such as GWR PCA or GW
discriminant analysis. The task in these latter
cases is probably to handle the large volumes
of output that will be generated.
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13.7. SUMMARY

GWR appears to be a useful method to
investigate spatial nonstationarity – simply
assuming relationships are stationary over
space is no longer tenable and is easily
testable. GWR can be likened to a ‘spatial
microscope’ in that it allows us to see
variations in relationships that were pre-
viously unobservable. It provides a whole
new ‘geography of relationships’ that needs
explanation.

GWR can be viewed as both a model
diagnostic tool or as a method to identify
interesting locations for further investigation.
In doing so, it conforms to two previ-
ously disparate philosophical views. From
a post-modernist view relationships can be
intrinsically different across space caused
by differences in attitudes, preferences or
different administrative, political or other
contextual effects and GWR helps identify
such differences. From a positivist view,
global statements about relationships can be
made but our models might not be properly
specified to allow us to make them. GWR
is then a good indicator of when and in
what way a global model is mis-specified and
how it can be improved. If the assumption
that global statements can be made is correct
and a global model fails to make them, then
clearly the model is mis-specified. GWR can
thus be a useful model-building tool.

Finally, GWR is a good example of a
spatial statistical method. It uses locational

information as well as attribute information
as input, it employs a spatial weighting
function with the assumption that near places
are more similar than distant ones, and it
produces outputs that are location-specific
and geocoded so they can easily be mapped
and subject to further spatial analysis. The
concept of GW can be extended to many
statistical techniques and there is still a great
deal of work to be done.
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NOTE

1 Note that the model need not be a linear
one but this is used here for convenience and
because it is probably the most frequently encoun-
tered type of regression. The software described
subsequently allows geographically weighted Poisson
regression models and geographically weighted
binary logit models to be calibrated and in theory
there is no limit to what model forms can be
geographically weighted.





14
Spatial Regression

L u c A n s e l i n

14.1. INTRODUCTION

Spatial regression deals with the specifi-
cation, estimation, and diagnostic checking
of regression models that incorporate spa-
tial effects. Two broad classes of spatial
effects may be distinguished, referred to as
spatial dependence and spatial heterogeneity
(Anselin, 1988b). In this chapter, attention
will be limited to the former, since spatial
heterogeneity is addressed in Chapter 13,
on Geographically Weighted Regression. The
focus will be on ways to incorporate spatial
correlation structures into a linear regression
model, and the implications of this for
estimation and specification testing.

Early interest in the statistical implica-
tions of estimating spatial regression models
dates back to the pioneering results of the
statistician Whittle (1954), followed by other
by now classic papers in statistics, such
as Besag (1974) and Ord (1975), and the

book by Ripley (1981). It was introduced
in quantitative geography through the works
of Cliff and Ord (1973, 1981) and Upton
and Fingleton (1985). Paralleling this was the
development of the field of spatial econo-
metrics, started by regional scientists who
were concerned with spatial correlation in
multiregional econometric models (Paelinck
and Klaassen, 1979; Anselin, 1980). By
the late 1980s and early 1990s, several
compilations had appeared that included
technical reviews of a range of models,
estimation methods and diagnostic tests,
including Anselin (1988b), Griffith (1988)
and Haining (1990). In addition, the publi-
cation of the text by Cressie (1993) provided
a near-comprehensive technical treatment of
the statistical foundations for the analysis of
spatial data.

In recent years, the interest in spatial
analysis in general and spatial data analysis
in particular has seen an almost exponential
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growth, especially in the social sciences
(Goodchild et al., 2000). Spatial regression
analysis is a core aspect of the ‘spatial’
methodological toolbox and several recent
texts covering the state of the art have
appeared, such as Haining (2003), Waller
and Gotway (2004), Banerjee et al. (2004),
Fortin and Dale (2005), Schabenberger and
Gotway (2005), and Arbia (2006). There
have also been a number of edited volumes,
dealing with more advanced topics, such as
Bartels and Ketellapper (1979), Anselin and
Florax (1995a), Anselin et al. (2004), Getis
et al. (2004), and LeSage and Pace (2004).
In addition, several journal special issues
have recently been devoted to the topic,
and they provide an excellent overview of
important research directions. Such special
issues include Anselin (1992, 2003), Anselin
and Rey (1997), Pace et al. (1998), Nelson
(2002), Florax and van der Vlist (2003),
Pace and LeSage (2004b), and LeSage
et al. (2004).

This chapter provides a concise overview
of some of the central methodological
issues related to spatial regression analy-
sis. It consists of four sections, starting
with a treatment of the specification of
spatial dependence in a regression model.
Next, specification tests are considered to
detect the presence of spatial autocorre-
lation. This is followed by a review of
the estimation methods, including maximum
likelihood, instrumental variables/method
of moments and semi-parametric methods.
The chapter closes with some concluding
remarks.

The treatment in this brief chapter is
not intended to be comprehensive, but
instead aims to provide a guide to both
the current state of the art as well as
to ongoing research and remaining gaps.
A number of topics are not included,
since they are (partially) addressed in
other chapters in this volume, such as
Bayesian techniques (Chapter 17). The focus

is therefore entirely on regression mod-
els in a simple cross-sectional setting,
leaving out other promising applications,
such as the spatial econometrics of panel
data (Elhorst, 2001, 2003; Anselin et al.,
2008), the spatial econometrics of origin-
destination flow models (LeSage and Pace,
2005; Fischer et al., 2006), the analysis
of spatial latent variables (Pinkse and
Slade, 1998; LeSage, 2000; Beron et al.,
2003; Fleming, 2004), and spatial gener-
alized linear mixed models (Gotway and
Stroup, 1997; Zhang, 2002; Gotway and
Wolfinger, 2003). Finally, it should be
pointed out that this chapter derives from
several earlier and more technical reviews
dealing with various methodological aspects
of spatial regression analysis, specifically,
Anselin and Bera (1998), and Anselin
(2001a, b, 2002, 2006). A more in-depth
technical discussion can be found in those
reviews.

14.2. SPECIFYING THE SPATIAL
REGRESSION MODEL

The point of departure is the familiar
specification of a linear regression model,
where for each observation (location) i,
with i = 1, . . . , N , the following relation-
ship holds:

yi =
∑

k

xikβk + εi, (14.1)

where yi is an observation on the dependent
variable, xik an observation on an explanatory
variable, with k = 1, . . . , K (including a
constant term, or 1), βk as the matching
regression coefficient, and εi is a random
error term. For ease of notation, the K

explanatory variables and matching coeffi-
cients are expressed as a K × 1 vector,
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respectively xi and β, such that the regression
becomes:

yi = xiβ + εi. (14.2)

In the classic regression specification, the
error terms have mean zero (E[εi] = 0, ∀i),
and they are identically and independently
distributed (i.i.d.). Consequently, their vari-
ance is constant, Var[εi] = σ 2, and they are
uncorrelated, E[εiεj] = 0, for all i, j.

In matrix notation, the N observations on
the dependent variable are stacked in an N×1
vector y, the observations on the explanatory
variables in an N × K matrix X, and the
random error terms in an N × 1 vector ε,
such that:

y = Xβ + ε (14.3)

with E[ε] = 0 (an N ×1 vector of zeros), and
E[εε] = σ 2I (with I as the identity matrix).

Spatial dependence is introduced into
this specification in two major ways, one
referred to as spatial lag dependence, the
other as spatial error dependence (Anselin,
1988b). While the former pertains to spatial
correlation in the dependent variable, the
latter refers to the error term. Spatial
autocorrelation can also be introduced in
the explanatory variables, in so-called spatial
cross-regressive models (Florax and Folmer,
1992). However, in contrast to the lag and
error models, cross-regressive models do not
require the application of special estimation
methods. They will therefore not be further
considered here.

14.2.1. Spatial lag models

A spatial lag model is a formal representation
of the equilibrium outcome of processes
of social and spatial interaction. Since the

observations are for a single point in time,
the actual dynamics of the interaction among
agents (peer effects, neighborhood effects,
spatial externalities) cannot be observed, but
the correlation structure that results once the
process has reached equilibrium is what can
be modeled (Brock and Durlauf, 2001, 2004).
This is also referred to as a spatial reaction
function (Brueckner, 2003). In the spatial
regression equation, this is accomplished
by including a function of the dependent
variable observed at other locations on the
right-hand side:

yi = g(yJi , θ ) + xiβ + εi (14.4)

where Ji includes all the neighboring loca-
tions j of i, with j %= i. The function g can be
very general (and non-linear), but typically is
simplified by using a spatial weights matrix
(see also Chapter 8 in this volume). The
N × N spatial weights matrix W has non-
zero elements wij in each row i for those
columns j that are ‘neighbors’ of location i.
The notion of neighbors is very general, and
not limited to geographical concepts, but can
readily be extended to neighbors in social
network space (Leenders, 2002).

A so-called mixed regressive, spatial
autoregressive model (Anselin, 1998b) then
takes on the form:

yi = ρ
∑

j

wijyj + xiβ + εi (14.5)

where ρ is the spatial autoregressive coef-
ficient, and the error term εi is i.i.d.
Alternatively, in matrix notation:

y = ρWy + Xβ + ε. (14.6)

With a row-standardized spatial weights
matrix (i.e., the weights standardized
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such that
∑

j wij = 1, ∀i), this amounts to
including the average of the neighbors as
an additional variable into the regression
specification. This added variable is referred
to as a spatially lagged dependent variable, or
a spatial lag. For example, in a model for tax
rates of local communities, this would add
the average of the tax rates in the neighboring
locations as an explanatory variable.

The inclusion of the spatial lag is similar to
an autoregressive term in a time series con-
text, hence it is called a spatial autoregressive
model, although there is a fundamental differ-
ence. Unlike time dependence, dependence in
space is multidirectional, implying feedback
effects and simultaneity. More precisely, if
i and j are neighboring locations, then yj

enters on the right-hand side in the equation
for yi, but yi also enters on the right-hand
side in the equation for yj (the neighbor
relation is symmetric). This endogeneity
must be accounted for in the estimation
process.

The proper solution to the equations for
all observations is the so-called reduced
form, which no longer contains any spatially
lagged dependent variables on the right-
hand side. After some matrix algebra, this
follows as:

y = (I − ρW)−1Xβ + (I − ρW)−1ε

(14.7)

a model that is nonlinear in ρ and β and has
a spatially correlated error structure (more
precisely, a spatial autoregressive structure,
see below). More importantly, this reveals
the spatial multiplier, i.e., the notion that
the value of y at any location i is not only
determined by the values of x at i, but also
of x at all other locations in the system.
This can be seen after a simple expansion
of the inverse matrix term (for | ρ | < 1 and
with a row-standardized W), and using the

expected value (since the errors all have
mean zero):

E[y|X]=Xβ+ρWXβ+ρ2W2Xβ+··· ·
(14.8)

The powers of ρ matching the powers of the
weights matrix (higher orders of neighbors)
ensures that a distance decay effect is
present.

Even when the spatial lag specification is
not necessarily the result of a process of
interaction among agents, it remains a useful
model to deal with spatial autocorrelation,
and can be interpreted as a filtering model.
More precisely, moving the spatial lag term
to the left-hand side reveals:

y∗
i = yi − ρ

∑

j

wijyj = xiβ + εi (14.9)

i.e., a standard regression model in a
dependent variable y∗

i from which the spatial
correlation has been removed (filtered).
Unlike detrending time series data, however,
the ρ parameter cannot take on the value
of 1 and must be estimated jointly with the
other parameters of the model. The spatial
filtering interpretation is often useful when
there is a mismatch between the spatial
scale of observations and the spatial scale at
which the phenomenon of interest manifests
itself. For example, this would be the case
when a regional phenomenon (e.g., a labor
market or housing market) is measured at
a subregional scale, resulting in a high
degree of positive spatial autocorrelation
(very little change across the sub-regional
scale). In that situation, the estimation of the
spatial lag model will yield estimates for
the β parameters that properly control for
the spatial autocorrelation.
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14.2.2. Spatial error models

In spatial error models, the spatial auto-
correlation does not enter as an additional
variable in the model, but instead affects
the covariance structure of the random
disturbance terms. The typical motivation
for this is that unmodeled effects spill
over across units of observation and hence
result in spatially correlated errors. For
example, in hedonic house price models, it
is often assumed that neighborhood effects
that are hard (or impossible) to quantify
are shared by houses in similar locations
and thus appear as spatially correlated
errors (Dubin, 1988). More recently, a
theoretical framework based on common
shocks has been suggested as a mecha-
nism to motivate spatially correlated errors
(Andrews, 2005).

Spatial error autocorrelation is a special
case of a non-spherical error covariance
matrix, in which the off-diagonal elements
are non-zero, i.e., E[εiεj] %= 0, for i %= j,
or, in matrix notation, E[εε] = ". The value
and pattern of the non-zero covariances
are the outcome of a spatial ordering.
In a cross-section, it is impossible to
extract this ordering from the data directly,
since there are potentially N × (N − 1)/2
covariance parameters and only N obser-
vations to estimate them from. Hence, it
is necessary to impose structure and to
obtain estimates from a more parsimonious
specification.

The spatial covariance structure can be
obtained in a number of ways. One of
the earliest suggestions was a so-called
direct representation. In this, each covariance
between a pair of observations i − j is
specified as a parameterized function f (with
parameter vector φ) of the distance dij

between them, or, E[εiεj] = σ 2f (dij, φ).
Early applications of this approach were
Cook and Pocock (1983) and Mardia
and Marshall (1984). More recently, it is

commonly used in analyses of real estate
markets, as reviewed in Dubin et al.
(1999).

The choice of the function and of the
distance metric needs to be made very
carefully, in order to ensure that the result-
ing variance–covariance matrix is positive
definite. A common choice is a negative
exponential distance decay function. This
results in an error variance–covariance matrix
of the form:

E[εε] = σ 2[I + γ(] (14.10)

where the variance is accounted for in the first
term, γ is a non-negative scaling parameter,
and the off-diagonal elements of ( are
4ij = e−φdij .

A second approach obtains structure for
the error covariance matrix by specifying a
spatial process for the random disturbance.
A number of processes may be considered,
each yielding a different covariance structure,
expressed as a function of one or two
parameters. The most common choice is a
spatial autoregressive process, or SAR:

εi = λ
∑

j

wijεj + ui (14.11)

with λ as the autoregressive parameter and
ui as a random error term, typically assumed
to be i.i.d. In matrix notation, this is
equivalent to:

ε = λWε + u. (14.12)

Solving this for the full vector or errors ε

yields:

ε = (I − λW)−1u (14.13)
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with E[uu] = σ 2I, so that the complete error
variance–covariance matrix follows as:

E[εε] = σ 2(I − λW)−1(I − λW′)−1.

(14.14)

Even though the spatial weights matrix
W may contain only a few neighbors for
each observation, the variance–covariance
structure that results from the SAR process
is a non-sparse matrix, representing a global

pattern of spatial autocorrelation. Moreover,
unless the number of neighbors is constant
for each observation, the diagonal elements
in the variance–covariance matrix will not
be constant, resulting in heteroskedasticity.
This induced heteroskedasticity is a distin-
guishing characteristic for spatial processes,
and it complicates specification testing and
estimation. More precisely, since many of the
theoretical asymptotic results in time series
analysis are based on assumptions of constant
variance, they do not translate directly to
spatial processes; for technical details, see,
e.g., Anselin (2006).

Other spatial processes used to provide
structure to the error variance–covariance
matrix include a conditional autoregressive
process (CAR) and a spatial moving average
process (SMA). The CAR model is often
used as a prior in hierarchical Bayesian spec-
ifications, whereas the SMA specification
is appropriate for local patterns of spatial
autocorrelation (for details, see Anselin,
2006).

Error component models have been sug-
gested as well, and some recent theoretical
results provide the basis for a wide range
of structures for error spatial autocorrelation.
In Kelejian and Robinson (1992), an error
decomposition was proposed that combined
a local or location-specific component with
a spillover component, yielding an error
variance–covariance structure similar to that

of an SMA (see also Anselin and Moreno,
2003). The common shocks framework
outlined in Andrews (2005) can encompass
general factor structures yielding different
specifications for the range and strength of
spatial autocorrelation. This approach has
seen increased application in recent work on
spatial autocorrelation in panel data models
(Pesaran, 2005).

A final approach to provide structure to
spatial error variance–covariance matrices is
based on a non-parametric rationale, which
is particularly appropriate for local patterns
of spatial autocorrelation. Using the formal
properties for a kernel estimator of spatial
autocovariance established by Hall and Patil
(1994), a general non-parametric covariance
matrix estimator has been suggested by
Conley (1999), and, more recently, by
Kelejian and Prucha (2007).

14.3. HIGHER ORDER MODELS

In addition to the basic spatial lag and spatial
error models just reviewed, higher order
models can be specified as well, by including
multiple weights matrices, by combining
lag and error structures, and by including
specification for spatial heterogeneity jointly
with spatial dependence. An extensive review
of these specifications can be found in
Anselin (2006).

14.4. SPECIFICATION TESTS

In empirical practice, there are often no
strong a priori reasons to consider a
spatial lag or spatial error model in a
cross-sectional situation. Instead, the need
for such a specification follows from the
result of model diagnostics. Specifically,
diagnostic tests derived from the residuals of
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a regression carried out by means of ordinary
least squares (OLS) may point to violations
of the underlying assumptions, including the
uncorrelatedness of errors.

Ignoring spatial autocorrelation when it is
in fact present has different consequences,
depending on whether the correct model is
a spatial lag or a spatial error specifica-
tion. Ignoring a spatially lagged dependent
variable is equivalent to an omitted variable
error, and will yield OLS estimates for
the model coefficients that are biased and
inconsistent. On the other hand, ignoring
spatially correlated errors is mostly a problem
of efficiency, in the sense that the OLS coeffi-
cient standard error estimates are biased, but
the coefficient estimates themselves remain
unbiased. However, to the extent that the
spatially correlated errors mask an omitted
variable, the consequences of ignoring this
may be more serious.

The problem at hand is the extent to
which any systematic spatial patterning in the
residuals provides evidence to reject the null
hypothesis of uncorrelated errors. There are
two complications in this respect. One is that
the null hypothesis pertains to the error terms,
which are not observable. Instead, one has to
deal with residuals. OLS regression residuals
are already correlated by construction, since
they are derived from a common set of data.
Hence, simply concluding from correlated
residuals that the errors are also correlated
may be spurious. Another complication is that
the rejection of the null hypothesis does not
necessarily suggest a given spatial model as
the proper alternative. Both spatial lag and
spatial error alternatives will, when ignored,
lead to OLS residuals that are spatially
correlated. In addition, since several spa-
tial processes also result in heteroskedastic
errors, distinguishing true heteroskedasticity
from this type of induced heteroskedasticity
will constitute an added complication.

Specification tests against spatial auto-
correlation are either based on a specific

alternative model, referred to as focused
tests, or are diffuse, in that the alternative
is an unspecified form of spatial correlation.
In the remainder of the section, diffuse or
spatial autocorrelation tests are considered
first, followed by focused tests based on the
maximum likelihood principle. The section
concludes with a discussion of the practice
of a specification search.

14.4.1. Spatial autocorrelation
tests

Arguably the best known test statistic against
spatial autocorrelation is the application of
Moran’s I statistic for spatial autocorrela-
tion (Moran, 1948) to regression residuals
(Moran, 1950), popularized in the work of
Cliff and Ord (1972, 1973, 1981). This
statistic corrects the well known Moran’s I

for the fact that the random variable under
consideration is a regression residual. As a
result, inference is based on analytical and
asymptotic results, but should not rely on the
familiar permutation approach (Anselin and
Rey, 1991; Schmoyer, 1994).

Moran’s I for regression residuals is then:

I =
e′We/S0

e′e/N
(14.15)

where e is a N × 1 vector of OLS residuals
y − Xβ̂, W is a spatial weights matrix, and
S0 =

∑
i

∑
j wij, a normalizing factor.

In practice, inference in Moran’s I test
can be based on a normal approximation,
using a standardized value, or z-value. This
is obtained by subtracting the mean under the
null and dividing by the square root of the
variance. The first two moments were derived
in Cliff and Ord (1972) as:

E[I] = tr(MW)/(N − K) (14.16)



262 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

and:

Var[I] =

tr(MWMW′) + tr(MWMW) + [tr(MW)]2

(N − K)(N − K + 2)

− (E[I])2 (14.17)

where tr is a matrix trace operator and
M = I − X(X′X)−1X′. The normality of the
z-value is an approximation, which works
well in large samples. Alternatives are to
use exact inference (under the assumption of
Gaussian error terms, as in Tiefelsdorf and
Boots, 1995), or a saddlepoint approximation
(Tiefelsdorf, 2002).

Moran’s I has been shown to have certain
optimal properties, similar to the Durbin–
Watson test against serial correlation in the
time domain (King, 1981). Also, it turns
out to be asymptotically equivalent to a
likelihood ratio (LR) test and to a Lagrange
multiplier (LM) test (Cliff and Ord, 1972;
Burridge, 1980), and therefore shares the
asymptotic properties of these statistics.

Moran’s I has power against any alter-
native of spatial correlation, including spa-
tial lag dependence, as demonstrated in a
large number of Monte Carlo simulation
experiments (see, e.g., Anselin and Rey,
1991; Anselin and Florax 1995b; Florax and
de Graaff, 2004). In addition, not unlike
the Durbin–Watson statistic, the test has
power against heteroskedasticity as well
(Anselin and Griffith, 1988). In practice,
this complicates specification testing in that
without further evidence, it will be difficult
to conclude whether a spatial model, a
heteroskedastic model, or a combination of
the two is the proper alternative.

Moran’s I test statistic is very general and
can be applied in many contexts other than
the classic regression model. For example, in
Anselin and Kelejian (1997) it is extended
to residuals from a two stage least squares

(2SLS) regression estimation. Kelejian and
Prucha (2001) formulate a general framework
to obtain the asymptotic properties of the
statistic in a wide range of contexts. Ellner
and Seifu (2002) use Moran’s I as a model
diagnostic to select the proper bandwidth for
kernel estimators in semi-parametric models.
In this application, the weights matrix does
not pertain to geographic locations, but to
locations in ‘variable space’.

An alternative to Moran’s I as a test
statistic against an unspecified form of spatial
autocorrelation was suggested by Kelejian
and Robinson (1992). Theirs is a large sample
test, which does not require an assumption
of normality and can be applied in nonlinear
models as well. In Kelejian and Robinson
(1998, 2004), this principle is extended to
include both heteroskedasticity and error
autocorrelation as the alternative.

14.4.2. Maximum likelihood
based tests

In contrast to diffuse spatial autocorrelation
tests, focused tests are constructed with a
specific alternative in mind, such as a spatial
lag or a spatial error specification. In general,
they boil down to a test of restrictions
on the parameters of a spatial regression
model. For example, for a spatial lag model,
the null hypothesis would be H0 : ρ = 0,
such that the restricted model would then
be y = Xβ + ε. The alternative hypothesis
is then that H1 : ρ %= 0, such that the
unrestricted model is y = ρWy + Xβ + ε.
The three classic test statistics obtained under
maximum likelihood (ML) estimation are
the Wald, likelihood ratio, and Lagrange
multiplier (or, Rao score) tests.

The Wald, or asymptotic t-test is simply a
significance test on the spatial autoregressive
parameter in a spatial lag or spatial error
model, based on the results of estimation
by means of maximum likelihood of the
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unrestricted (spatial) model. This requires
both the point estimate of the parameter as
well as an estimate of the asymptotic variance
matrix (for technical details, see Anselin,
1988b, Ch. 6).

The likelihood ratio test statistic is
obtained in the standard manner as well,
as twice the difference between the log-
likelihood of the unrestricted (i.e., the spatial)
model, and that of the restricted model
(i.e., the standard regression without spatial
autocorrelation). This thus requires the esti-
mation of two models, and an assumption
of normality for the OLS regression. The
statistic is asymptotically distributed as χ2(1)
(see Anselin, 1988b, Ch. 6).

The Lagrange multiplier (LM) test only
requires estimation of the model under the
null hypothesis of no spatial dependence. It
therefore lends itself well to specification
searches in practice, since the extra step of
estimating a spatial lag or spatial error model
can often be avoided. In the spatial case,
the LM statistic does not follow the standard
result from econometrics, where in many
instances it can be obtained as a measure
of fit in an auxiliary regression. Instead, it
needs to be derived explicitly, as in Burridge
(1980) and Anselin (1988a) (for extensive
technical details, see also Anselin and Bera,
1998; Anselin, 2001a).

Even though the LM statistic is constructed
from the OLS residuals, a complete alter-
native model must be specified. In some
instances, two different alternatives yield the
same LM statistic. These are called locally
equivalent alternatives (Godfrey, 1981). SAR
and SMA error processes fall into this cate-
gory. As a result, a LM test statistic against
spatial error autocorrelation cannot distin-
guish between these two different processes.
In practice, this affects the interpretation of
the results, since SAR is a global spatial
process, while SMA is local.

The LM error statistic is very similar to
Moran’s I . As shown in Burridge and (1980)

and Anselin (1988a), the statistic is:

LMλ =
[e′We/(e′e/N)]2

tr[W′W + WW]
(14.18)

where e is a N × 1 vector of OLS residuals,
and tr stands for the trace operator (the sum
of the diagonal elements of a matrix). Except
for the scaling factor in the denominator, this
statistic is essentially the square of Moran’s I .
It is asymptotically distributed as χ2(1).

Using similar principles, the LM lag
statistic follows as:

LMρ = [e′Wy/(e′e/N)]2/D (14.19)

with e as the OLS residuals, and the
denominator term:

D = [(WXβ̂)′[I − X(X′X)
−1

X′](WXβ̂)/σ̂ 2]

+ tr(W′W + WW) (14.20)

where the estimates for β̂ and σ̂ 2 are from
OLS. The test statistic is asymptotically
distributed as χ2(1).

A related test statistic, also based on the
maximum likelihood principle, applies the
idea of double length artificial regressions
(DLR, Davidson and MacKinnon, 1984,
1988) to tests for spatial error and spatial
lag dependence (Baltagi and Li, 2001a).
The DLR approach consists of expressing
the regression model as a function of
standard normal error terms. In the spatial
models, this follows as a simple standard-
ization (for technical details, see Baltagi and
Li, 2001a).

The LM principle can be applied to
alternatives other than the SAR/SMA error
processes or the spatial lag model. Test
statistics can be derived for higher-order
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processes (multiple orders of contiguity), and
for different error models, such as spatial
error components or direct representation
(Anselin, 2001a; Anselin and Moreno, 2003).

So far, only a single alternative has been
taken into account. However, in practice,
it is often more reasonable to consider an
alternative hypothesis that contains both a
spatial lag and spatial error autocorrelation:

y = ρWy + Xβ + ε (14.21)

with:

ε = λWε + u (14.22)

a SARSAR model, or, with:

ε = λWu + u (14.23)

a SARMA model.
In this more general case, there are

three ways to proceed. One is as before,
considering a one-directional alternative only
and ignoring the other form of spatial
autocorrelation. For example, the LM error
test above has the null hypothesis H0 : λ = 0,
irrespective of the value of ρ, which is
considered to be a nuisance parameter. This
is referred to as a marginal test.

A problem with the marginal approach is
that the LMλ and LMρ test statistics are no
longer χ2(1) in the presence of local mis-
specification in the form of the other type
of spatial dependence, but they become non-
central χ2. In other words, in the presence of
spatial lag dependence, the LMλ test against
error correlation becomes biased, and, in the
presence of spatial error dependence, the
LMρ test against lag dependence becomes
biased. Using a result of Bera and Yoon

(1993), robust versions of these test statistics
have been developed in Anselin et al.
(1996) (see also Anselin and Bera, 1998,
pp. 273–278).

A second strategy is that of a joint test,
where the null hypothesis is to set all spatial
parameters equal to zero. For example, for the
spatial lag model with a SAR or SMA error
term, H0 : ρ = λ = 0. In contrast to standard
results in the econometric literature, the joint
test statistic is not simply the sum of the
marginal test statistics, i.e., LMλρ %= LMλ +
LMρ , but it takes on a far more complex form
(Anselin, 1988a).

A third strategy is a so-called conditional

approach, where a test on the null hypothesis
ρ = 0 is carried out in a model with λ %= 0,
and vice versa. This can no longer be based
on OLS estimates, but requires estimation of
the proper spatial model by means of ML.
Using the same principles as before, but now
with the residuals of the ML estimation, a
test statistic for H0 : λ = 0 in the spatial
lag model (i.e., with ρ %= 0) can be derived.
Similarly, a test statistic can be constructed
for H0 : ρ = 0 in the spatial error model
(i.e., with λ %= 0). While straightforward, the
derivations are quite tedious and the resulting
test statistics complex (for technical details,
see Anselin, 1988a; Anselin et al., 1996;
Anselin and Bera, 1998).

The LM principle can also be extended
to multiple sources of mis-specification, such
as spatial dependence and heteroskedasticity
(Anselin, 1988b), or spatial dependence
and functional mis-specification (Baltagi and
Li, 2001b).

14.4.3. Specification search

In practice, the sheer number of available
test statistics can seem overwhelming and a
strategy needs to be developed to move from
the null model to a superior alternative (when
appropriate). Given that tests may be based
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on marginal, joint, or conditional approaches,
the results of a specification search may be
subject to the order in which tests are carried
out, and whether or not adjustments are made
for pre-testing (see, e.g., Florax and Folmer,
1992; Anselin and Florax, 1995b; Florax and
de Graaff, 2004).

Based on a large number of simulation
results, an ad hoc decision rule was suggested
in Anselin and Rey (1991) for the simple case
of choosing between a spatial lag or spatial
(SAR) error alternative. There is considerable
evidence that the proper alternative is most
likely the one with the largest significant LM
test statistic value. This was later refined in
light of the robust forms of the statistics
in Anselin et al. (1996). In a recent paper
by Florax et al. (2003), this classic forward
stepwise specification search is compared to
a ‘general-to-simple’ model selection rule
(for further discussion, see also Florax et al.,
2006; Hendry, 2006).

14.5. ESTIMATION

The estimation problems associated with
spatial regression models are distinct for the
spatial lag and spatial error case. Spatial error
models are special instances of specifications
with a non-spherical error. As a result, OLS
may still be applied, as long as the estimated
standard errors are adjusted to take into
account the error correlation. In contrast,
the inclusion of a spatially lagged dependent
variable in a regression specification yields
a form of endogeneity. As a result, for
most spatial weights used in practice, OLS
in the spatial lag model is not an appro-
priate method, and the simultaneity must
be accounted for explicitly. An exception
to this general rule is when the weights
represent subgroups in the data (i.e., all the
observations in the same group are neighbors
of each other), in which case OLS turns

out to yield consistent estimates (Lee, 2002;
Kelejian and Prucha, 2002).

Two general sets of methods have been
developed to address the estimation of
spatial regression models, one based on the
maximum likelihood (ML) principle, the
other on the (general) method of moments
(GMM). Each will be considered in turn,
followed by a brief overview of semi-
parametric methods.

14.5.1. Maximum likelihood
estimation

The point of departure for maximum likeli-
hood estimation in spatial regression models
is an assumption of normality for the error
term. In general, allowing for heteroskedas-
ticity and/or error correlation, the N ×1 error
vector has a multivariate normal distribution,
ε ∼ N(0, 6θ ), with the subscript θ denoting
that 6 may be a function of a p × 1 vector θ

of parameters. In the commonly considered
i.i.d. case, this simplifies to ε ∼ N(0, σ 2I),
with θ = σ 2.

To move from the likelihood for the
error vector to a likelihood for the observed
dependent variable, a Jacobian of the
transformation needs to be inserted, which
corresponds to the determinant |I − ρW|
in the spatial lag model, and |I − λW|
in the spatial error model. The presence
of the Jacobian term constitutes a major
computational complication.

Using the standard result for a multivariate
normal distribution, and taking into account
the Jacobian term, the log-likelihood for the
spatial lag model follows as:

L=−(N/2)(ln2π )−(1/2)ln|6θ |

+ln|I−ρW|−(1/2)(y−ρWy−Xβ)′

×6−1
θ (y−ρWy−Xβ). (14.24)



266 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

Maximizing the log-likelihood is not

equivalent to minimizing weighted least
squares (the last term in L), as in the
standard linear regression model. The
main difference is in the presence of the
log-Jacobian term ln|I−ρW|. This illustrates
informally how weighted least squares will
not yield a consistent estimator in the
spatial lag model, due to the endogeneity
in the Wy term. The log-Jacobian also
implies constraints on the parameter
space for ρ, which must be such that
|I − ρW| > 0.

Maximum likelihood estimates for β,
ρ, and θ are obtained as solutions to
the usual first-order conditions, requiring
numerical optimization (for technical details,
see Ord (1975), Cliff and Ord (1981),
Anselin (1980, 1988b, 2006), Anselin and
Bera (1998), among others). Inference is
based on an asymptotic variance matrix,
the inverse of the information matrix (see
Anselin, 1980, 1988b).

Even though the principles of ML esti-
mation in a spatial lag model were laid out
more than 30 years ago by Ord (1975), it was
only very recently that the formal proofs were
developed that established the conditions
under which consistency and asymptotic
normality of this estimator are obtained
(Lee, 2004).

Maximum likelihood estimation of the
parameters in models with spatially depen-
dent error terms follows as a special case
of the results in Magnus (1978). For a
general non-spherical error term 6θ , with
θ as the parameters, the ML estimator for
β is the familiar generalized least squares
expression:

β̂ML = (X′6−1
θ X)−1X′6−1

θ y. (14.25)

This follows as the solution of the
first-order conditions, applied to the log-

likelihood:

L = −(N/2) ln (2π ) − (1/2) ln |6θ |

− (y − Xβ)′6−1
θ (y − Xβ). (14.26)

With a consistent estimate for the parame-
ters θi, consistent estimates for β are obtained
through feasible generalized least squares
(FGLS).

Each spatial error process will result in a
specialized form for 6θ . For example, for
a SAR error process without heteroskedas-
ticity, the corresponding parameter vector is
θ = [σ 2, λ]. The FGLS estimator in this
model simplifies to:

β̂ML = [X′(I − λ̂W)′(I − λ̂W)X]−1

× X′(I − λ̂W)′(I − λ̂W)y (14.27)

or, a regression of spatially filtered yL =
y−λ̂Wy on spatially filtered XL = X−λ̂WX.
This is referred to as spatially weighted least
squares. Unlike the time series counterpart, a
consistent estimate for λ cannot be obtained
from a simple auxiliary regression, but the
first-order condition must be solved explicitly
by numerical means. As for the spatial
lag model, asymptotic inference is based
on the inverse of the information matrix
(for technical details, see Anselin, 1988b,
Chapter 6).

Maximum likelihood estimation in spatial
regression models involves the application
of nonlinear optimization techniques to the
log-likelihood function. A main computa-
tional obstacle follows from the presence
of the log-Jacobian term ln|I − ρW| in
the log-likelihood. In addition, the first-
order conditions and information matrix
involve the traces of matrix products such as
W(I − ρW)−1. For even medium-sized data
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sets, the computation of these terms by ‘brute
force’ is impractical.

An early solution was suggested by Ord
(1975), who exploited the decomposition of
the Jacobian in terms of the eigenvalues of
the spatial weights matrix. This facilitates
computation greatly, since the eigenvalues
only need to be calculated once. The trace
terms used in the information matrix can be
expressed in terms of the eigenvalues as well
(Anselin, 1980).

The computation of eigenvalues becomes
impractical and computationally unstable for
medium and large-sized data sets (n > 1000).
This precludes the application of the Ord
approach. Several alternatives have been
suggested that either approximate or bound
the Jacobian or log-Jacobian term (e.g.,
Martin, 1993; Griffith and Sone, 1995; Barry
and Pace, 1999; Pace and LeSage, 2002,
2004a), or exploit the sparse nature of spatial
weights (Pace and Barry, 1997a, b; Smirnov
and Anselin, 2001).

A second important computational prob-
lem pertains to the presence of terms like
tr[W(I −ρW)−1]2 in the information matrix.
The calculation of these inverse matrices is
impractical in large data settings. As a result,
most large data ML methods developed so far
have not based inference on the asymptotic
variance matrix, but instead use a sequence
of likelihood ratio tests. Recently, Smirnov
(2005) developed a solution to this problem,
based on the use of a conjugate gradient
approach.

14.6. INSTRUMENTAL
VARIABLES/METHOD OF
MOMENTS ESTIMATION

An alternative to maximum likelihood esti-
mation is the use of the method of moments
(including instrumental variables, general-
ized method of moments, and generalized

moments). This approach does not require an
assumption of normality and it avoids some
of the computational problems associated
with ML for very large data sets.

The spatial lag model can be formu-
lated as a linear model that contains an
endogenous variable (Wy) and exogenous
variables (X):

y = Zγ + ε (14.28)

with Z = [Wy, X] and γ = [ρ, β]. A classic
solution to the endogeneity problem is to use
instrumental variables. A matrix of additional
variables Q (N × q) is used to obtain an
instrument for the spatially lagged dependent
variable:

Ŵy = Q(Q′Q)−1
Q′ Wy (14.29)

such that Ẑ = [Ŵy, X], resulting in the
spatial two-stage least squares estimator
(S2SLS):

γ̂S2SLS = [ẐẐ]−1Ẑy. (14.30)

Inference on the γS2SLS is based on the
asymptotic variance matrix:

AsyVar[γ̂S2SLS] = σ̂ 2[Z′Q(Q′Q)−1
Q′Z]−1

(14.31)

with σ̂ 2 = (y − Zγ̂S2SLS)′(y − Zγ̂S2SLS)/N .
The application of instrumental variables

to the spatial lag model was initially outlined
in Anselin (1980, 1988b, pp. 82–86), where
some ad hoc suggestions were made for the
selection of the instruments (see also Land
and Deane (1992) for an early discussion).
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Specifically, the choice of a spatial lag of
the predicted values of the y (using only
the exogenous variables) or of spatially
lagged exogenous variables was considered.
In Kelejian and Robinson (1993), proof is
provided of the consistency of γ̂S2SLS and
the selection of instruments is couched in
terms of the reduced form. This suggests
the use of a subset of columns from
{X,WX,W2X,W3X, . . . } as the instruments
(see also Kelejian and Prucha, 1998).

Recent work has focused on the selection
of optimal instruments (Lee, 2003; Das
et al., 2003; Kelejian et al., 2004), and
on establishing formal proofs of consistency
and asymptotic normality. In Lee (2007), the
S2SLS estimator is compared to a GMM
method with superior asymptotic properties.
Extensions of the instrumental variables
approach to systems of simultaneous equa-
tions are considered in Rey and Boarnet
(2004) and Kelejian and Prucha (2004).

Moment methods have been developed to
address spatial error autocorrelation as well,
both in isolation as well as in combination
with a spatial lag model (the SARSAR
model). The basic results were obtained
by Kelejian and Prucha (1998, 1999), who
initially treated the spatial autoregressive
coefficient in the error SAR process as a
nuisance parameter. Specifically, attention
focused on obtaining a consistent estimate
for the nuisance parameter as the solution of
a set of moment conditions. This consistent
estimate could then be used in a second
step of a FGLS estimation. One drawback
of the nuisance parameter approach is that
no inference can be carried out on the
spatial autoregressive parameter, since no
result existed on its asymptotic variance. In
recent work by Lin and Lee (2005) and
Kelejian and Prucha (2006), this problem has
been alleviated, in the context of an extended
set of moment conditions that account for
both spatial autoregressive errors as well as
heteroskedasticity of unspecified form. Their

results also yield an asymptotic variance
matrix, so that tests of significance can be
carried out on the spatial parameters as well.

14.6.1. Semi-parametric methods

Semi-parametric methods provide a compro-
mise between a full parametric specification
and a non-parametric approach where the
parameters are completely determined by
the data, with very little prior structure.
The combination of a full specification of
the parts where theory or previous results
provide a strong support for the model and
relaxing the functional and distributional
assumptions for the rest has become very
attractive, especially when large data sets
provide ample information (for a recent
review, see Horowitz and Lee, 2002).

While by far the predominant paradigm
in spatial regression analysis is the para-
metric approach, the use of semi-parametric
techniques has seen a recent increase and
is an area of very active research, both
theoretical as well as applied. A semi-
parametric approach has seen application in
four main areas in spatial regression analysis.

One is as an alternative to specifying
a specific spatial process for the error
term. Instead, the error covariance may
be estimated in a non-parametric fashion.
This follows along the lines of the work
in econometrics by White (1980) on a
heteroskedastic-consistent approach, and its
extension to both heteroskedasticity and
serial correlation by Newey and West
(1987), and others. The incorporation of
spatial dependence in this framework was
first considered by Conley (1999) in the
context of GMM estimation, and recently
elaborated upon in Kelejian and Prucha
(2007) (see also Chen and Conley (2001),
for a related approach). The basic idea is to
avoid specifying a particular spatial process
or spatial weights matrix and to extract
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the spatial covariance terms from weighted
averages of cross-products of residuals,
using a kernel function. This yields a so-
called heteroskedastic and spatial autocorre-
lation consistent (HAC) estimator. The HAC
approach is asymptotic and in finite samples
a major practical problem is to ensure that
the estimated variance–covariance matrix is
positive semidefinite. A number of sugges-
tions have been formulated, but considerable
research remains to be done to obtain insight
into finite sample properties (see Kelejian
and Prucha (2007), for some technical
details).

In a second approach, the focus is on
relaxing the requirements to specify a spatial
weights matrix W in the construction of
the spatially lagged dependent variable in a
spatial lag model. In Pinkse et al. (2002), a
model is considered of the form:

yi =
∑

j %=i

g(dij)yj + xiβ + εi (14.32)

in which the unspecified function g relates
the values of y at other locations j to that
at i through a distance measure dij. The
function g is approximated by a polynomial
series expansion in distance measures, the
coefficient of which are estimated jointly with
the other parameters in the model.

In a third approach, suggested in the work
of Gress (2004a) (see also Gress (2004b), and
Basile and Gress (2005), for applications),
the spatial weights specification is kept in the
spatial lag part, but the other variables enter
into the model in a non-parametric way. For
example, a semi-parametric spatial lag model
takes the form:

y = ρWy + g(X) + ε (14.33)

where g is an unspecified function, to
be estimated in a non-parametric way.

A semi-parametric spatial error model is
considered as well, using residuals from a
non-parametric regression of y on g(X), as
a special application of local linear weighted
least squares (Henderson and Ullah, 2005).

A fourth approach is akin to spatial
filtering, and purports to model unspecified
spatial spillover effects non-parametrically,
in a so-called smooth spatial effects (SSE)
estimator. In Gibbons and Machin (2003), the
model considered is:

yi = xiβ + g(ci) + εi (14.34)

where g is an unknown function, intended
to capture all spatial correlation, and ci

represents the location of i. The model is
estimated by means of the classic two-step
procedure suggested by Robinson (1988).
In the SSE estimator, both the dependent
variable and the explanatory variables are
replaced by deviations from the conditional
expectation, which is obtained as a spatial
kernel smoother. OLS can be applied to the
transformed regression to obtain consistent
estimates for β, (for a recent application, see
Day et al., 2004).

14.7. CONCLUSION

The methodological toolbox for spatial
regression has reached a certain maturity
when it comes to the classical linear
regression model. However, much less has
been accomplished beyond this context and
the development of new models, estimation
techniques and specification tests is a very
active area of research, both in statistics
as well as in econometrics. Given space
constraints, it was impossible to review all
these efforts in a comprehensive way, but it
is hoped that through the references provided
an entry into this field has been facilitated.
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Considerable theoretical research is ongo-
ing to develop the formal conditions and
proofs needed to obtain the asymptotic
properties of estimators and tests in various
settings. New techniques are being developed
to deal with spatial effects in panel data,
count models, probit and tobit, and other
specifications that are the mainstay of
applied empirical regression analysis. The
growth in applications is encouraging as
well, providing a greater empirical basis
to document the importance of location
and distance in explaining socioeconomic
phenomena. Lastly, while in the past the lack
of software may have been an impediment
to the dissemination of spatial regression
methods, this is no longer the case, as attested
by several active open source developments
(for a recent review, see Anselin, 2005,
pp. 101–106).
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15
Spatial Microsimulation

D . B a l l a s a n d G . P . C l a r k e

15.1. INTRODUCTION

Much modelling in human geography and
related disciplines takes an aggregate or
meso-scale approach to the issue of spatial
resolution. That is, characteristics of individ-
uals or households are summed to provide
zonal population or demand totals and, if
appropriate, individual companies or firms
are similarly aggregated on the supply side
of the economy. In spatial econometrics
or regional science those zones can be
as large as entire cities or regions. The
most obvious reason for doing this is that
detailed disaggregate data on persons or
firms are typically not regularly available
below the level of the region (especially
economic or household survey data). In
most countries census data are available
to help disaggregate population totals to
smaller geographical regions but the level
of detail available for researchers is then
limited by what is published in two- or

three-dimensional tables (although special
requests for different combinations can be
made in certain countries but at additional
expense). Models built on these more aggre-
gate data sets are widespread and have proved
very fruitful in many areas of policy analysis
(see, for example, Fotheringham et al., 2000;
Longley and Batty 2002; Stillwell and Clarke
2004). However, such modelling techniques
often need to be highly disaggregated for
real world applications and they also provide
very little information concerning the inter-

dependencies between household structure
or type and their lifestyles, including the
events they routinely participate in and hence
their ability to raise and spend various types
of income and wealth. For social policy
evaluation such micro models allow analysts
to monitor the effects of changes in taxa-
tion, family credit, property or council tax,
pensions, social security payments, etc. (the
actions of local and national governments)
at the household level (and hence at any
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more aggregate spatial scale). For area-
based policy evaluation such models allow
differential impacts between and within areas
to be analysed more effectively. The necessity
of predicting the impacts of social and area-
based policies at the local or micro-level
has also been emphasized by Openshaw
(1995, p.60). ‘Governments need to predict
the outcomes of their actions and produce
forecasts at the local level’.

For these reasons Wilson (2000, p. 98)
identified microsimulation as one the most
important methods in regional science mod-
elling: ‘Simulation is a critical concept in the
future development of modelling because it
provides a way of handling complexity that
cannot be handled analytically. Microsimula-
tion is a valuable example of a technique that
may have increasing prominence in future
research’.

This chapter reviews the history of spatial
microsimulation and spells out a research
agenda for the further exploitation of the
technique. First, the semantics of microsimu-
lation are revisited and we describe the differ-
ent types of microsimulation models and how
they can be formulated (section 15.2). We
then provide a brief overview of applications
of microsimulation models which includes
use in economics, social policy, geography
and regional science (section 15.3). Then,
we spell out a research agenda for spatial
microsimulation (section 15.4) and offer
some concluding comments in section 15.5.

15.2. WHAT IS SPATIAL
MICROSIMULATION?

Microsimulation can generally be defined as
a methodology that is concerned with the
creation of large-scale population microdata
sets to enable the analysis of policy impacts
at the micro-level. The approach dates
back to the work of Orcutt (1957) and

Orcutt et al. (1961) who argued for a
new type of socio-economic system and
described a simple model of demographic
transitions based on micro-analytical simula-
tion. In particular, microsimulation methods
aim to examine changes in the characteristics
or lifestyles of individuals within households
and to analyse the impact of government
policy changes on these individuals or
households. Microsimulation models can be
distinguished between two main types. First,
there are static models that are based on
simple snapshots of the current circumstances
of a sample of the population at any one time.
Second, there are dynamic models that vary
or age the attributes of each micro-unit in a
sample to build up a synthetic longitudinal
database forecasting the sample members’
lifestyles into the future.

The first geographical application
of microsimulation was developed by
Hägerstrand (1967) who employed micro-
analytical techniques for the study of spatial
diffusion of innovation. Nevertheless,
it can be argued that the basis for
spatial microsimulation of households

and individuals was founded in the 1970s. In
particular, Wilson and Pownall (1976) were
among the first to address the aggregation
difficulties that were associated with
traditional comprehensive spatial models of
urban systems. They suggested a new spatial
modelling framework for representing the
urban system based on the micro-level
interdependence of household and individual
characteristics. Further, they concentrated
on the spatial distribution of population
and its activities and suggested that persons
and their associated attributes should be
defined separately in the form of lists, rather
than represented in the form of matrices. In
this manner, there is no loss of information
and the storage is computationally efficient.
In their representational framework, they
were interested in estimating all the
characteristics of the individuals that
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comprise the urban population. Formally,
they defined variables for each person in the
system separately by adding a person label
r to each person attribute x1, x2, x3, . . . , xn.
The person attributes would therefore
become xr

1, xr
2, xr

3, . . ., xr
n for the rth person of

the population. This means that if there are M

people in the population, there will be N ∗ M

variables in total. After suggesting the above
framework for representing individuals,
Wilson and Pownall (1976) proposed a
modelling procedure to estimate each
characteristic for each person in turn. They
formally expressed this procedure as follows:

xr
j = (xr

j (Pj(x/. . .)Rr
j , τ )

where Pj(x/. . .) is the probability of xj taking
the value x conditional on variables yet to be
specified, Rr

j is a random number selected for
person r and characteristic j, and τ represents
a relevant constraint set (Wilson and Pownall,
1976). One of the most significant properties
of the above model is its causal structure,
which is largely reflected in the order in
which the characteristics are estimated for
each person.

Almost a decade later, Birkin and Clarke
(1988) built a synthetic spatial information
system for urban and regional analysis.
It can be argued that this model is the
first comprehensive spatial microsimulation
model in the UK. Birkin and Clarke (1988)
discussed the difficulties of performing
micro-level spatial analysis using the existing
published data sources and they proposed a
methodology for generating synthetic micro-
data from a number of different aggregate
sources. This microsimulation methodology
was underpinned by a technique known as
iterative proportional fitting (IPF) (see Birkin
and Clarke (1988) and Ballas (2001) for a
more detailed discussion of this technique).
Birkin and Clarke (1988) briefly discuss
the theoretical properties of IPF and they

demonstrate how they applied the method
to estimate joint probability distributions
of household attributes. The IPF procedure
adopts a synthetic reconstruction method
which calculates conditional probabilities
of having particular attributes and it then
assigns these attributes on the basis of
random sampling procedures (Monte Carlo
simulation). Table 15.1 depicts the steps
that need to be followed in the procedure
for allocating economic activity status for
example.

More recently researchers have argued
that reweighting existing survey data can
produce more robust results than these
synthetic probabilistic reconstruction models,
which involve the use of random sam-
pling (Williamson et al., 1998; Huang and
Williamson, 2001; Ballas et al., 2005). Two
well-used reweighting procedures are:

• Reweighting probabilistic approaches, which

typically reweight an existing national microdata

set to fit a geographical area description on

the basis of random sampling and optimization

techniques

• Reweighting deterministic approaches, which

reweight a non geographical population micro-

data set to fit small area descriptions, but without

the use of random sampling procedures

These new methods involve the reweight-
ing of an existing microdata sample (which
is usually only available at coarse levels of
geography), so that it would fit small area
population statistics tables. For instance, an
existing microdata set such as the British
Household Panel Survey (BHPS) described
in Table 15.2 can be reweighted to ‘populate’
small areas.

The BHPS provides a detailed record for
a sample of households and all of their
occupants (Taylor et al. 2001). Reweighting
methods aim to sample from all the microdata
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Table 15.1 Microsimulation procedure for the allocation of economic activity status (after
the similar example of tenure allocation procedure given by Clarke, 1996: 3)

Head of household (hh)

Steps 1st 2nd

. . .

Last

Age, sex and marital status and

location (ED level) (given)

Age: 16–29

Sex: Male

Marital status: SWD

GeoCode: DAFA01

Age: 75–84

Sex: Female

Marital status: married

GeoCode: DAFA02

. . .

Age: 30–44

Sex: Male

Marital status: married

GeoCode: DAGK45

Probability of hh of given age, sex,

and location (ED level) being

economically active

0.7 0.4

. . .

0.7

Random number 0.55 0.5

. . .

0.45

Economic activity assigned to hh on

the basis of random sampling

Economically active Economically inactive

. . .

Economically active

Probability of economically active hh

being an employee

0.6

. . .

0.5

Probability of economically active hh

given age, sex, marital staus, and

location (ED level) being

self-employed

0.2

. . .

0.3

Probability of economically active hh

given age, sex, marital staus, and

location (ED level) being on a

government scheme

0.05

. . .

0.15

Probability of economically active hh

given age, sex, marital staus, and

location (ED level) being

unemployed

0.15

. . .

0.05

Random number 0.4

. . .

0.6

Economic activity category assigned

on the basis of random sampling

Employee

. . .

Self-employed

records to find the set of household records
that best matches the population described
in the Small Area Statistics or Census Area
Statistics tables for the small area under
study. First, a series of small area tables
(e.g., from the Census or other sources)
that describe the small area of interest must
be selected. For example, a reweighting
method would sample from the BHPS to find
a suitable combination of households that
would fit the data described in Table 15.3.

This first stage of population estima-
tion at the household level is primarily

a data-fitting exercise. However once built
the model can be used for static what-if

simulations, in which the impacts of alter-
native policy scenarios on the population
are estimated: for instance if there had been
no poll tax in 1991 which communities
would have benefited most and which
would have had to have paid more tax
in other forms? Second it can be used
for dynamic modelling, to update a basic
micro-dataset and future-oriented what-if

simulations: for instance if the current
government had raised income taxes in
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Table 15.2 A population microdata example

Person AHID PID AAGE12 Sex AJBSTAT . . . AHLLT AQFVOC ATENURE AJLSEG . . .

1 1000209 10002251 91 2 4 . . . 1 1 6 9 . . .

2 1000381 10004491 28 1 3 . . . 2 0 7 −8 . . .

3 1000381 10004521 26 1 3 . . . 2 0 7 −8 . . .

4 1000667 10007857 58 2 2 . . . 2 1 7 −8 . . .

5 1001221 10014578 54 2 1 . . . 2 0 2 −8 . . .

6 1001221 10014608 57 1 2 . . . 2 1 2 −8 . . .

7 1001418 10016813 36 1 1 . . . 2 1 3 −8 . . .

8 1001418 10016848 32 2 −7 . . . 2 −7 3 −7 . . .

9 1001418 10016872 10 1 −8 . . . −8 −8 3 −8 . . .

10 1001507 10017933 49 2 1 . . . 2 0 2 −8 . . .

11 1001507 10017968 46 1 2 . . . 2 0 2 −8 . . .

12 1001507 10017992 12 2 −8 . . . −8 −8 2 −8 . . .

Note: The British Household Panel Survey data were made available through the UK Data Archive. The data were originally
collected by the ESRC Research Centre on Micro-social Change at the University of Essex, now incorporated within the
Institute for Social and Economic Research.
Person Person number.
AHID Household identifier (number of household to which the listed individual belongs).
PID Person identifier (a unique number to identify the individual).
AAGE12 Age at 1/12/1991.
Sex Sex
AJBSTAT Current labour force status (e.g., self-employed, in paid employment, unemployed, family care, etc.) in 1991.
AHLLT Health status in 1991.
AQFVOC Vocational qualifications in 1991.
AJBSEG Socio-economic group (e.g., employers, managers, professionals, skilled manual, unskilled, etc.) in 1991.
ATENURE Tenure status in 1991.
AJLSEG Socio-economic group: last job (in 1991).

Table 15.3 An example of small area data
Small area table 1 (household type) Small area table 2 (economic

activity of household head)

Small area table 3 (tenure status)

Area 1 Area 1 Area 1

60 Married couple households 70 Employed/ self-employed 60 Owner occupier

20 Single-person households 10 Unemployed 20 Local Authority or Housing Association

20 Other 20 Other 20 Rented privately

Area 2 Area 2 Area 2

40 Married couple households 50 Employed/ self-employed 60 Owner occupier

20 Single-person households 20 Unemployed 20 Local Authority or Housing Association

40 Other 30 Other 20 Rented privately

1997 what would the redistributive effects
have been between different socio-economic
groups and between central cities and their
suburbs by 2007?

We shall explore applications based on
these principles in the next section.

15.3. APPLICATIONS

15.3.1. Introduction

As mentioned above, microsimulation has
been mainly developed and used by a
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Microsimulation studies

Economics (41%)

Geography (3%)

Environment/tra (2%)

Health (5%)Population (6%)

Transportation (16%)

Medicine (25%)

Other (2%)

Figure 15.1 Distribution of microsimulation academic studies in the period 1967–2003.
(Source: http://www.sciencedirect.com/; Accessed 15 October 2003; after Ballas et al., 2005:
p. 11).

variety of social sciences. Figure 15.1 shows
the results of a basic keyword search in
the Sciencedirect academic journal database,
searching the word ‘microsimulation’ in the
titles or abstracts of papers in the last
30 years. As can be seen, the majority of
the papers were in economics (41%) with
very few papers in geography (3%), although
spatial applications may also lie in fields
such as population, transport and health.
There is also a relatively high number of
microsimulation applications in medicine.
However these are applications of a different
nature, as their main focus is the effectiveness
of medicines (e.g., simulating the impact of
medicines on human well-being, etc.)

The rest of this section explores some
well-known examples of microsimulation for
certain types of policy work. This includes
static models (simply run for one period
of time) and dynamic models (where the
attributes of the population are updated
constantly or over yearly totals).

15.3.2. Tax and income modelling

A large number of papers in economics on
microsimulation relate to work on household
finance. Indeed, amongst the first applied
microsimulation models was TAX, devel-
oped at the US Treasury department in the
1960s (Nelissen, 1993). Since then there
have been many models built to examine the
impacts on individual households of various
tax or welfare changes (Bekkering, 1995;
Falkingham and Lessof, 1992; Falkingham
and Hills, 1995a, b; Glennerster et al., 1995;
Propper, 1995).

The first task in the modelling of
household income is to link households
with job type. Birkin and Clarke (1989)
used the SYNTHESIS model to generate
incomes for individuals. They used an IPF
based microsimulation approach to estimate
earned income at ward level for the Leeds
Metropolitan District by assigning each
household a job and an occupation using
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information from the ‘New Earnings Survey’
to allocate an income variable accordingly.
In addition, they estimated income from
transfer payments such as the Family Income

Supplement for each household. This was
probably the first successful attempt to
generate income at the small area level in
the literature. Ballas and Clarke (2001a)
extended this work by increasing the number
of transfer or welfare payments included
in the model (such as detailed work on
child benefits) and also including household
taxation levels. Williamson and Voas (2000)
report ongoing research to provide more
robust and reliable estimates of income at
the small area level. They argue that income
estimation at the small area level may be
seen as a multilevel analysis problem where
variables at individual and area levels may
interact.

Work in the US has tended to extend
such work to include not only house-
hold income but also household wealth.
In particular, Caldwell and Keister (1996)
present CORSIM, which is a dynamic
microsimulation model that has been under
development at Cornell University since
1986. CORSIM has been used to model
wealth distribution in the United States
over the historical period 1960–1995 and to
forecast wealth distribution over the future
(Caldwell and Keister, 1996). It is noteworthy
that over 17 different national microdata files
have been used to build the model, which
incorporated 50 economic, demographic and
social processes by means of approximately
900 stochastic equations and rule-based
algorithms (Ibid.). Furthermore, Caldwell
et al. (1998) review the geography of wealth
in the USA and show how CORSIM has
included many variables relating to assets
and debts.

As mentioned in the previous section,
microsimulation models can be even more
powerful when they become dynamic. In
particular, once a microsimulation database

is built, dynamic microsimulation procedures
can be introduced in order to update these
databases. Amongst the first applied dynamic
microsimulation models was DYNASIM
(DYNAmic Simulation of Income Model;
see Orcutt et al., 1961; Wertheimer et al.,
1986), which was the base for later, more
sophisticated, models such as CORSIM.
One of the descendants of DYNASIM
was DYNASIM2, which was developed
and maintained at the Urban Institute in
Washington D.C. (Wertheimer et al., 1986).
DYNASIM2 comprised two sub-models: a
Family and Earnings History (FEH) model
and a Jobs and Benefit History (JBH) model
(Wertheimer et al., 1986).

Work on income and taxation can be
more focused onto particular problems.
Currently in many Western countries there
is a problem relating to pensions given
that an ageing population will need more
financial support from a declining workforce
population. Notable here is the work of
Hancock et al. (1992), who built PENSIM.
This is a microsimulation model designed
for the simulation of pensioners’ incomes
up to the year 2030. Hancock et al.
(1992) point out that the simulation of
pensions is another good example of the
application of dynamic microsimulation tech-
niques, given that pension rights accumulate
over a long period of time and their
estimation requires the processing of data
pertaining to individuals’ entire working
lives. PENSIM aims at predicting aggregate
income by source within certain subsets
of the pensioner population under different
alternative assumptions. These assumptions
pertain to the rules controlling the treatment
of pensioners by the social security system,
pension entitlement regulations, projected
demographic movements and movements in
aggregate economic variables such as unem-
ployment and inflation. Davies and Joshi
(1992) also focused on modelling pensions.
In particular, they employed microsimulation
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modelling techniques to simulate lifetime
earning and pension entitlements in Britain.
They used a microsimulation model to
construct illustrative individuals and examine
the treatment of pensions after divorce.
They also modelled lifetime earnings upon
which pensions depend and they simulated
dated earnings for each partner before and
after dissolution of the marriage and they
explored how pension entitlement varied with
the duration of the marriage. Among the
variables that they estimated were age, sex,
age at marriage, qualifications and age at
divorce. Models of income and wealth also
feed significantly into models of social policy
change (see section 15.3.4).

15.3.3. Modelling household
activity patterns

Introduction
Wilson and Pownall (1976) provided an early
example of how microsimulation models
could be employed to build urban micro-
analytical models based on the interdepen-
dencies between individual characteristics.
In these examples they investigated the
interdependency of the person and household
characteristics that are listed in Table 15.4.

Table 15.4 Attributes of individual
micro-unit examined by Wilson and
Pownall (1976)

Person Attributes

Wage

Job location

Residential location

Journey to work costs

Housing expenditure

Shopping expenditure

Journey to shop costs

Shopping location

Other expenditure

As can be seen, this framework starts
to model activity patterns of individuals or
households (activity normally undertaken in
more meso-scale models). Hence, there have
been a number of examples of building
links between these household data sets
and trip making behaviour or activities. We
shall explore a sample of these types of
application in this section. Simulated small
area micro data sets can also allow for a
household demand function to be specified
(likely type of supermarket, school, etc.) at
the small area level given that household’s
socio-economic profile. This can then be
fed into a household interaction model
(or variant of discrete choice model) in order
to add place of work, shopping destination,
GP location, children’s school, etc. to the
household database contained within a spatial
microsimulation model.

Labour and housing markets
As Table 15.4 suggests, one key link is
between households and their job locations.
By adding a journey to work model house-
holds can be allocated a job destination
(by age, sex, occupation, social class, etc.).
Ballas and Clarke (2001b) showed how it was
possible to build a journey to work model
for Leeds which linked individual households
to particular firms. Then, the impacts of the
closure of a major manufacturing firm in east
Leeds could be modelled in terms of which
households would be most affected and in
terms of their consequent reduction in income
and expenditure. This ‘local’ analysis showed
that most of the impacts occurred within
5 miles of the firm’s location – analysis in
stark contrast to outputs from typical regional
input–output models.

Hooimeijer (1996) suggests a geographical
microsimulation framework to analyse the
linkages between supply and demand in
the housing market and labour market
simultaneously. He argues for the modelling
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of spatial mobility of households and firms
in three different time sets (daily commuting,
relocation, and lifetime mobility). The prob-
lem associated with this type of modelling is
the order in which processes are modelled.
It could be argued for example, that labour
force participation is dependent on family
status and attributes or that the family
formation procedure is dependent on the
labour market situation of each individual. As
Falkingham and Lessof (1992) put it:

. . . while a woman’s labour force status can
depend on the number of children she has and
on her marital status, it cannot also influence
the probability of the woman having a child in
any year. The ordering of the modules necessarily
involves making assumptions about the direction
of causality in relationships between variables.
(Falkingham and Lessof, 1992: 9)

Their LIFEMOD model is based on
the assumption that demographic variables
determine labour-force participation and
that labour-force participation influences
health, although it is pointed out that
evidence suggests causality in either direction
(Falkingham and Lessof, 1992).

Transport and land-use models
Wegener and Spiekermann (1996) explore
the potential of microsimulation for urban
models, focusing on land-use and travel
models. They argue that a new generation
of travel models has emerged which requires
more detailed information on household
demographics and employment character-
istics at the small area level. They also
point out that there are new neighbourhood-
scale transport policies aimed at promoting
public transport, walking and cycling. These
policies require detailed information on the
precise location of the population and its
activities. Wegener and Spiekermann (1996)
also stress the need for urban models to
predict not only the economic but also the
environmental impacts of land-use transport

policies. In order to model the environmental
impacts there is a need for small-area
forecasts of emissions from stationary and
mobile sources as well as of emissions
in terms of the affected population. After
outlining the main characteristics of a micro-
analytic theory of urban change, Wegener
and Spiekermann (1996) report on modelling
efforts carried out at the University of
Dortmund to integrate microsimulation into
a comprehensive urban land-use transport
model (see also Veldhuisen et al. (2000).

The links between households, housing
markets and labour markets have been
explored more recently in Ballas et al.
(2005).

Retail models
Traditional spatial interaction or discrete
choice models have been used to estimate
expenditure flows from households to each
store. It is argued by Nakaya et al. (2005) that
it is possible to improve the applicability of
the retail interaction model, not by increasing
the complexity of the model formulation,
but by integrating the interaction modelling
framework with spatial microsimulation. To
attain a high level of predictive accuracy,
models of retail interaction usually require
a high degree of disaggregation (Birkin
et al., 2002). Even if a survey of consumer
behaviour is conducted by randomly dis-
tributing a questionnaire to local residents,
response rates would vary by consumer type
and place of residence based on people’s
different levels of interest and tolerance of
such a survey. Consequently, survey data
of this type often contain bias in the type
of consumer behaviour measured, swayed
towards the behaviour of individuals who
least object to completing surveys. This prob-
lem of missing data tends to get worse as the
spatial units used in the analysis get smaller.
A solution to this problem is to generate data
through spatial microsimulation which can be
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used to generate estimates of expenditure on
groceries by each household. These estimates
can then be aggregated to any grouping
including lifestyle segments and residential
zones simultaneously. The end product is a
retail model with a more disaggregate and
useful set of demand variables and both
attractiveness and distance decay parameters
calibrated for different types of consumers.

15.3.4. Social policy change

From the end of the 1960s onwards
microsimulation became the dominant quan-
titative method for forecasting the impacts of
policy changes in the social welfare area in
the USA (Nelissen, 1993). This is the same
now in many developed countries. A good
example of dynamic microsimulation mod-
elling for economic and social policy analysis
is NEDYMAS (Netherlands Dynamic Micro-
Analytic Simulation model; see Nelissen,
1993). The latter is a dynamic cross-sectional
microsimulation model aimed at simulating
future social security benefits and contribu-
tions. In particular, NEDYMAS is a com-
prehensive model for the Dutch household
sector and comprises three main modules:
a demographic module, a labour market
and income formation module, and a social
security module. Demographic processes are
simulated explicitly, which means that the
size of the microdata base changes during the
simulation period. The NEDYMAS micro-
database included 204 household attributes.
Once the initial population has been deter-
mined the attributes of each individual can be
updated and the micro-population can be pro-
jected into the future. First, all demographic
transitions are made in the model. These
include events such as birth, death, immi-
gration, family reunification, emigration, first
marriage, remarriage, cohabitation, divorce,
etc. Once all the demographic transitions are
simulated, the next step is to consider labour

market transitions. These include education,
scholarship, transitions from school, transi-
tions from being unemployed, retirement,
etc. The final step in the NEDYMAS
microsimulation procedure is to simulate
attributes or transitions that are related to
social security. Nelissen (1993) describes
how sensitivity analysis was performed to
validate NEDYMAS and concludes that the
model is capable of reconstructing the long-
term socio-economic development at the
micro level.

It is interesting to note that the LIFEMOD
model described above has also been used to
estimate the effects of the welfare state over
the life-cycle of individuals (Falkingham and
Hills, 1995a, b, Falkingham et al., 1995),
as well as to estimate the degree to which
income is redistributed between people over
time, or across the life cycle (Fakingham
and Hills, 1995b). It has also been used
to investigate financing options for higher
education (Glennerster et al., 1995) and to
examine the dynamics of lone parenthood
(Evandrou and Falkingham, 1995). Further,
LIFEMOD has been used to explore the
lifetime distribution of health needs and use
of health services (Propper, 1995).

In the UK the work of Holly Sutherland
and her colleagues has been very influential
in terms of policy analysis using microsimu-
lation (Redmond et al., 1998; Mitton et al.,
2000; Hancock, 2000; Sutherland et al.,
2003). Sutherland and Piachaud (2001) for
example, developed and used a microsim-
ulation methodology for the assessment of
British government policies for the reduction
of child poverty in the period 1997–2001.
Their results suggest that the number of
children in poverty will be reduced by
approximately one-third in the short term
and that there is a trend towards further
reductions. However, they emphasized that
there is a need for more measures in order
to meet the government target of abolishing
child poverty in a generation.
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Another example is the research conducted
by Ballas et al. (2005) using SIMBRITAIN.
This model assumes that the initial simulation
of the future population of Britain could be
based on population projections (such as
those of the ONS) and on the assumption that
the trends in the changes to society to 2021
are similar to that of the previous decade.
However, alternative projections would also
be provided on the basis of hypothetical

social policy changes. They also examined
child poverty as a major application area.
For example, it is possible to use a dynamic
spatial microsimulation model to estimate
the degree of child poverty eradication within
the next 20 years under different policies and
assumptions, such as the onset of a major
recession or a redistribution of wealth, and
the model would provide projections in order
to suggest where current strategies are failing
to eradicate child poverty within a generation.

Microsimulation still has to gain credibility
amongst the social science community in
general and social policy researchers in par-
ticular. Thus, there is currently a major chal-
lenge to build on the work described above
in order to project the population into the
future to predict what would happen under
different macro-economic, micro-economic
and social policy scenarios. This will enable
an evaluation of the short and long-term
impacts that various government policies
are likely to have on different segments of
society and different geographical areas.

15.4. THE WAY FORWARD: THE
RESEARCH AGENDA

15.4.1. Towards a comprehensive
spatial microsimulation of
urban systems

We have seen in section 15.3 that progress
has been made on adding behavioural or

trip making models into microsimulation.
The obvious next step is to link all these
components into a more comprehensive
urban model. First, more linkage is required
between households and the supply-side
of the economy. For example it should
be possible to link all households to a
retail destination (by type of good) and a
destination for primary and secondary health
and education. By adding more information
on linkages or flows within the city it can be
argued that such modelling would offer major
new insights into urban deprivation or quality
of life. Many households will be identified as
having poor accessibility to major services.
However, multiple deprivation may well
exist in many areas where poor accessibility
exists to all major urban services. For
example, a neighbourhood may be a long way
from decent retail opportunities, a hospital
and a GP. In addition, although close to
a secondary school, that school may be
suffering from very low examination success
and hence access is constrained to only a
poor-performing school.

Once all the relevant demand-side and
supply-side databases are constructed, the
next step would be to perform what-if

policy impact analysis. In particular, it
will be possible to model what would
be the impact on the quality of life of
residents in different localities, under dif-
ferent scenarios. For instance, it would be
possible to estimate what would be the
socio-economic and spatial impact of a new
hospital in an area, new retail facilities,
new schools, etc. It will also be possible to
link these activities to events taking place
elsewhere in the city. For example, the
impact analysis of the factory closure that
has been given by Ballas and Clarke (2001b)
can be extended by estimating multiplier
effects and the loss of spending power
in the local community. Further, it would
be possible to estimate the downgrading
of service facilities as businesses close or
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relocate to more affluent areas. It would
then be possible to determine whether this
development leads to even poorer service
provision for those communities affected.
The possibility of individuals made redun-
dant finding new jobs in the area, migrating or
being retrained could also then be estimated.
Ballas et al. (2006) have made a start in this
direction.

The second major effort needed is to link
such models more into the local and regional
labour market through a framework which
combines spatial microsimulation models
and regional input–output models or regional
econometric models. It has long been argued
that the treatment of the household sector has
been ignored by most input–output modellers
who at best would model or aggregate
variables such as household income and
expenditure in aggregate form, making no
distinction between the behaviour of different
types of household defined in terms of socio-
economic status, employment profile, skill
level, etc. (Batey, 2003). It can be argued
that spatial microsimulation can address this
issue. For instance, the prediction of input–
output models for different sectors of the
local economy can be spatially disaggregated
with the use of a spatial microsimulation
model. Likewise, predictions of regional
econometric models for the whole region
can be disaggregated at the individual and
household level with the use of spatial
microsimulation. Jin and Wilson (1993)
made some progress here but data limi-
tations made it difficult to operationalize
their models. Microsimulation potentially
has the ability to provide much of that
missing data.

15.4.2. Linking microsimulation
and agent-based models

Microsimulation is closely linked to another
type of individual level modelling: agent

based models (ABM). ABM models are
normally associated with the behaviour of
multiple agents in a social or economic sys-
tem. These agents usually interact constantly
with each other and the environment they live
or move within. Thus their actions are driven
by certain rules. Although this methodology
sounds similar to microsimulation (where
agents could be the individuals within the
households) Davidsson (2000) notes that
ABM may offer a better framework for
including behavioural rules into the actions
of agents (including an element of random
behaviour) and for allowing interactions
between agents. There are a number of good
illustrations in a geographical setting (Batty
and Densham, 1996; Heppenstall et al.,
2006). Clearly there is a research agenda
to link these two complementary approaches
more effectively. Microsimulation could be
used to give the agents in ABM their
initial characteristics and locations whilst
ABM could then provide the capacity to
model individual adaptive behaviours and
emergence of new behaviours (see also the
discussion of Boman and Holm, 2004).
In addition, data from household panel
surveys such as the British Household
Panel Survey (BHPS) may be utilized to
formulate plausible assumptions regarding
these behaviours. For instance, it is possible
to use panel data from surveys such as
the BHPS to model the life paths of
particular individuals and households who
have moved into and out of work. Such
data can also be combined with information
from more qualitative analyses to simulate
the behaviour of workers made redundant
following plant closures and how they
fare in adapting to the changing labour
market and how long term unemployment
is increased for those unable to retrain
(Ballas et al., 2006). The findings of quali-
tative studies such these can provide useful
insights when formulating the ‘rules’ that
determine the likely behaviour of households
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in a combined ABM/spatial microsimulation
framework.

15.4.3. Spatial microsimulation
and remote sensing

Another interesting research possibility is
the combination of spatial microsimula-
tion model outputs with remotely sensed
data. One difficulty at present with spatial
microsimulation models is that most of
the probabilities are calculated from known
distributions (provided by data sources such
as the Census of Population) at the small
area level (e.g., the Census Output Area
(COA) level in the UK). That is, although
estimations are made at the level of the
individual household, it is not possible to
know precisely where within a small area
(such as the COA) a particular household is
actually located. For many policy purposes
that is not a major problem – it is the
overall effect on the locality that is most
important. However, it can be argued that
for certain applications this would be a
worthwhile addition – especially potential
business applications.

Using remote sensing techniques it is
possible to obtain a point data set of
houses which would contain the housing type
attribute. These point data sets can then be
linked to spatially disaggregated microsim-
ulated households in order to disaggregate
the simulated population at the COA level.
In other words, the task of this modelling
exercise would be to populate the remotely
sensed residential properties with attribute
data. Table 15.5 lists the attributes that can
be used as a link between the remote sensing
generated database and the microsimulation
output.

Further, Figure 15.2 depicts schematically,
and in a simplified manner, the geographical
databases that are typically generated by
microsimulation models and remote sensing

Table 15.5 Database attributes that can be
used for the linkage

Spatial microsimulation output Remotely sensed data

No. of residents in household

(as a proxy to house size)

Land use

House type Property size

Number of cars (as a proxy to

house size)

House type

Number of rooms in household

space (as a proxy to

house size)

. . .

. . .

methodologies and how these can be linked.
As can be seen, these databases can be joined
on the basis of the fields that they have in
common, such as the housing type and house
size. However, it can be argued that all the
attributes listed in Table 15.5 can be used
to build an index of similarity between a
remotely sensed house and a microsimulated
synthetic household.

Moreover, the linkage between the two
databases can be achieved with the use of
statistical matching or data fusion techniques.
It should be noted that although statistical
matching (also known as data fusion) has
a relatively long history, its theoretical
basis is somewhat narrow and there is
no established, tested and widely applied
methodology (Paas, 1986; Sutherland et al.,
2002).

The new framework would also offer
further potential for calibration and for
dynamic modelling. The visualization of the
area being modelled would provide useful
additional diagnostic information and would
allow new comparisons to be made between
simulated households and real households.
New images obtained from remote sensing
may provide a very valuable additional
source of information, highlighting new
construction, demolitions and major changes
in land use types. The second major benefit of
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Remotely sensed data Microsimulation model output
Household ID
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Figure 15.2 Combining spatial microsimulation and Remote sensing (Ballas et al., 2000).

the new framework comes when the potential
of microsimulation for business applications
is considered. Given the potential to create
lists of household attributes, it has long been
recognized that microsimulation could be
useful as a business tool. However, to date,
little progress has been made in exploring
this potential. In a sense, the database
underpinning the microsimulation model
offers the same kind of information cur-
rently in many geodemographic or lifestyle
data systems. Nevertheless, microsimulation
offers much greater flexibility than many
standard geodemographic systems. In most
cases, the geodemographic systems provide
only one label for each locality. This is
based on the greatest percentage of each
group represented in the locality. Unless
this percentage match is close to 100%
there are always ecological fallacy prob-
lems: i.e., the label does not capture all
consumer types resident in a particular
area. This has led a number of authors
to suggest ‘fuzzy geodemographics’, which

might involve giving numerous labels to each
locality. For more discussion on this see
Feng and Flowerdew (1998) and See and
Openshaw (2001). However, microsimula-
tion would potentially offer another route
to finding customers or consumer groups
of various types. From a main database of
say 100 household variables it is possible
to search for distributions made up of any
of these variables. The possible number of
combinations is very large indeed and the
user could ask for very specific combina-
tions of variables, adding great flexibility
to the task of finding customers. Second,
it would be possible to provide unique
classifiers for different localities. At the
moment the ‘underprivileged’ group may be
made up of key census variables clustered
in many different ways to end up with
this classification. A major research ques-
tion is whether the underprivileged groups
identified in Liverpool are the same as
those identified in the East End of London.
A more subtle look at the outputs of the
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microsimulation could offer new insights into
this issue.

Finally, the framework suggested here
would add much to the potential of remotely
sensed data. It would be possible to put
estimations on the types of buildings in
terms of housing types and characteristics of
their inhabitants. Clearly, it is not possible
to categorically say what types of families
were in each building. However, it may be
possible to give an estimation of the types
of families within blocks thus giving very
detailed portraits of small areas of our cities.

15.4.4. Spatial microsimulation,
spatial decision support
systems and virtual
decision-making
environments

Another area where spatial microsimulation
models can play an important role is in the
ongoing debates on the potential of new
technologies to promote local democracy
and electronic decision-making. It can be
argued that spatial microsimulation models
can be used not only to provide information
on the possible consequences and the local
multiplier effects of major policy changes
but also to inform the general public about
these and to enhance, in this way, the public
participation in policy making procedures.

An example of work moving towards
this direction is the Microsimulation
Modelling and Predictive Policy Analysis
System (Micro-MaPPAS) developed for
the Leeds City Council by researchers at
the Universities of Sheffield, Leeds and
Manchester (Ballas et al., 2004, 2006).
MicroMaPPAS is a planning support
system based on the SimLeeds geographical
microsimulation model mentioned above.
The SimLeeds software (Ballas, 2001) has
been run from a Command prompt and
required the ‘hard coding’ of parameters and

data tables together with some knowledge
of Java programming – not a desirable
task for the average policy or decision
maker. MicroMaPPAS provides a spatial
decision making interface which is much
more user-friendly and suitable for decision
makers who can utilize the power of the
spatial microsimulation methodology. The
MicroMaPPAS software also provides
some basic mapping functions such as
panning and zooming and symbology
editing. The mapping capability in the
software is provided by the GeoTools
(www.geotools.org) open source Java
mapping library, which has been written
by a group of researchers independent of
the MicroMaPPAS project. GeoTools is
a versatile Java library which conforms
to the Open GIS Consortium standard
specifications in relation to GIS open
operability. The library can be adapted to
work in any Java based GUI or web-based
Applet. The mapping controls allow the user
to select a microsimulated variable from a
query and map the results at a wide range
of different geographical scales (see Ballas
et al. (2004) and Ballas et al. (2006) for
more details).

It can be also argued that systems such as
MicroMaPPAS can have an ‘e-government’
dimension by allowing networking tech-
nologies including the Internet to be used
by policy makers as well as the gen-
eral public. In particular, these systems
can be converted into web-based GIS
to enhance public involvement and par-
ticipation in environmental planning and
decision making processes. Such systems
are typically referred to in the literature
as Public Participation GIS (PPGIS) and
are based on the belief that by providing
citizens with access to information and data
in the form of maps and visualizations,
they can make better informed decisions
about the natural and built environment
around them. It is possible to build on
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the existing infrastructure and knowledge in
order to combine GIS and PPGIS frameworks
to enhance e-government, local democracy
and public participation. In particular, GIS
and spatial microsimulation models can also
play a very important role in the ongoing
debates on the role of the potential of new
technologies to promote local democracy
and electronic decision-making. It can be
argued that a system such as MicroMaPPAS
developed in JAVA, can be put on the World
Wide Web and linked to Virtual Decision-
Making Environments (VDMEs). The latter
are Internet World Wide Web based systems
that allow the general public to explore
‘real world’ problems and become more
involved in the public participation processes
of the planning system (Evans et al., 1999;
Kingston et al., 2000).

15.4.5. New application areas

In addition to comprehensive models it is
useful to highlight other areas of economic
or social geography where microsimulation
has been under-utilized. One such area is
medical geography. A notable exception is
the work of Clarke and Spowage (1984), who
designed morbidity and mortality sub-models
for health care planning in West Yorkshire,
UK. They estimated the probabilities of
being ill or dying based on age, sex,
social class, ethnicity, etc. (by speciality
case). Another sub-model was constructed
to simulate hospital workloads and patient
throughput.

Recent concerns in UK public health
planning have focused on two main issues.
The first has been the concern to improve
health inequalities by investing more on
intervention strategies. The second has been
the concern to treat more patients within
the community. Microsimulation lends itself
well to addressing both these concerns. For
intervention strategies we need to understand

more about geodemographic variations in
demand for health services. Of particular
concern in the UK at the moment are the
problems of obesity (especially childhood
obesity), diabetes and smoking. The difficulty
is that little is known about the prevalence
of these health issues by household or
neighbourhood. Given age, sex, social class,
occupation, ethnicity, etc., microsimulation
models can estimate the incidence of such
problems (and be calibrated against any exist-
ing data). Once demand is better understood
and measured, the location of community
health services becomes easier in the sense
of finding locations to maximize access to
potential users. In addition, other what-if

scenarios are possible. For the location of
stop smoking services for example, it would
also be possible to simulate the success
across the city of services targeted at different
geodemographic groups (young adults, heavy
smokers aged 65 or over, pregnant mothers,
etc.). Similarly, for diabetes, it would be
possible to model the impacts of improving
access to fresh fruit and vegetables and hence
improving diet across households of different
types. Smith et al. (2006) give further details
on the research agenda for diabetes and
food access.

15.4.6. Improving model
calibration

Despite the benefits of the applications
described in this chapter, it should be noted
that caution is necessary when using spatial
microsimulation methodologies to perform
what-if policy analysis and evaluation. The
outputs of all microsimulation models, no
matter how good, are always simulations
and not actual data. The validity of the
simulated data will depend on the quality of
the original data that are used and on the
assumptions upon which the microsimulation
model is based. Moreover, it will depend
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on the specific microsimulation methodology
that is employed. In addition, spatial
microsimulation outputs generally depend
on subjective judgements associated with
the ordering of the conditional probability
tables that are used as inputs and/or with
the selection of the data sets that are used
as small area constraints. As Birkin and
Clarke (1995) point out, the modeller’s art
in microsimulation is to generate population
characteristics in an appropriate order so
that potential errors are minimized. These
aspects should always be taken into account
when using spatial microsimulation models
for policy impact assessment.

However, there is the related problem
of how to validate microsimulation outputs,
since there are no available micro-data sets
at the desired level of geographical scale
(hence the need for microsimulation in the
first place!). Model output validation is one
of the biggest problems of microsimulation
methodologies. As Williamson (1999) points
out, in the United States the National
Academy was commissioned to evaluate
the effectiveness of microsimulation for
tax-benefit analysis purposes. The National
Academy found that there is a general lack
of thorough validation for microsimulation
models and proposed a number of validation
measures such as external validity studies
in which model results are compared with
data from program administrative sources
(Williamson, 1999). Moreover, sensitivity
analysis and computer-intensive ‘sample
reuse technique methods’ to measure the
variance in model estimates were proposed.

Thus, further research is required, in
order to improve the performance of spatial
microsimulation models and to highlight the
sources of error. For instance, as Williamson
et al. (1998) point out, there are many
ways in which combinatorial optimization
methodologies can be fine-tuned, through the
evaluation of the use of more or different SAS
tables or by changing the model parameters

(also see Voas and Williamson (2000) for
a more detailed discussion and an in-depth
evaluation of combinatorial optimization
techniques). Further, there is a need to
build on existing work on the validity and
reliability of microsimulation models (such
as the work of Pudney and Sutherland (1994)
who investigated the role of sampling error
in a tax-benefit model and the work of
Voas and Williamson (2001) who present
new ‘goodness-of-fit’ measures for synthetic
microdata).

15.5. CONCLUSIONS

We hope that we have demonstrated that
spatial microsimulation is a useful technique
for estimating the characteristics of individ-
uals or households which can then be used
in a variety of what-if situations regarding
policy change. The key advantage of this
methodology is data fusion or linkage –
a variety of data sets can be combined
to provide new insights into household
characteristics and, ultimately, household
behaviour. Thus these models can help to
solve the problem of ‘missing data’ such
as, in the UK, household income, wealth,
tax payment, water demand, health problems,
crime, etc. Once built, these models can also
be linked to meso or macro models (such
as discrete choice models, spatial interaction
models, logit models, input–output models,
etc.) to show how households interact with
the supply side of the economy (where they
go to work, shop, visit the doctor, etc.).
The ability to change these circumstances
and assess the impacts of such actions is
another major advantage of this methodol-
ogy. Simulations can be ‘run’ which change
either the characteristics of the households
(population ageing, new job allowing greater
income to be earned, change of residence,
etc.) or the characteristics of the supply
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side (new retail centre, closure of a major
employer, new hospital, etc.). This ability to
examine both household dynamics and the
impacts of infrastructure change allow the
analyst to explore both social policy impacts
(tax or welfare changes for example) and/or
area-based policy impacts (new job creation,
new retail centre, etc.).

The research agenda outlined in the second
half of the chapter is clearly our personal one
but one that we hope other microsimulation
modellers would at least partially agree
with. The agenda has not been presented
in any particular order of importance but
the issue of how such models can support
traditional spatial modelling seems a key
task to address in the short term. As we
noted above, a start has been made in this
direction but perhaps the greatest challenge
is merging microsimulation with more macro
techniques such as input-output models. The
latter models are excellent for modelling
the interactions between key sectors of
the economy but not so good at spatially
disaggregating the outputs within cities and
regions. A methodology which could feed
individual households into the economic
system at both stages of the modelling
process (inputs and outputs) could be a
major advantage in future policy work. We
hope we can address this issue in the next
few years.
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16
Detection of Clustering in

Spatial Data

L a n c e A . W a l l e r

16.1. INTRODUCTION

It is human nature to seek pattern within
any complex display of information. We
organize stars into constellations, devour
mystery novels, and even give detailed
descriptions of ink stains to analysts. This
innate desire for order within chaos applies
spatially as well. Given a map of a set
of locations of an event, say, residences of
cases of a particular type of disease or the
locations of a particular type of crime, we
seek patterns that might reveal something
about the underlying process generating the
events, be that a common environmental
exposure or the habits of a particular
criminal. In short, our hope is that arrang-
ing what we know spatially might reveal
something about how the events arise in the
first place.

In this chapter, we review analytic methods
for detecting ‘clusters’ or ‘hot spots’ in
spatially-referenced data. We begin with a
discussion of what we mean conceptually,
geographically, and mathematically by the
term ‘cluster’, then discuss and illustrate
many standard approaches proposed and
applied in the literature within a variety of
scientific fields. Many analytic approaches
for detecting clusters have been summa-
rized in several texts (Elliott et al., 1992,
1999; Cressie, 1993; Bailey and Gatrell,
1995; Goldsmith et al., 2000; Lawson,
2001; Lawson and Denison, 2002; Diggle,
2003; Waller and Gotway, 2004; Eck et al.,
2005), so we do not attempt a complete
review here. Rather, we focus on developed
and developing conceptual and theoretical
constructs behind many of the methods
while contrasting the underlying questions of
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2. Data and methods
we need to answer

question.

3. Data we can get.
Methods we can use.

1. Question we
want to answer.

4. Question we can
answer with data and

methods we have.

Figure 16.1 The ‘whirling vortex’ of spatial data analysis.

interest driving different families of analytic
approaches.

To set the stage conceptually, Figure 16.1
provides a starting point for developing and
evaluating analytic methods for detecting
clusters and clustering. We begin with
Step 1 with a question we wish to answer
(for example, ‘Are disease risks elevated
for individuals living near a source of
pollution?’). The question of interest defines
the sorts of data and methods we require to
answer the question (for example, individual-
level case status and individual exposure
histories). However, the data required often
are unavailable for reasons varying from cost
to privacy and we often settle for related data
we can obtain within budget and satisfying
availability constraints (for example, present
residential location of cases and proximity to
known sources of pollution). Similarly, avail-
able methods may only address part of the
question or may be particularly susceptible
to data shortcomings (for example, missing
data or location inaccuracy). This situation
is particularly relevant in the analysis of

spatial data with the increasing sophistication
and data holdings of geographic information
systems (GISs). One is increasingly faced
with the ease of including ‘found’ data
collected by others that seems to fit the bill
for the data one would really like to have.
After obtaining the data we can retrieve,
we conduct analysis on these available data,
often without explicitly acknowledging that
our analyses may be addressing slightly
different questions (e.g., in our conceptual
example, we have moved from a question
involving associations between disease and a
particular exposure, to associations between
disease and present proximity to a known or
suspected exposure source). As a final step,
we should carefully examine how closely
the questions we do answer mirror those we
originally intended to answer. All too often,
this last step is ignored.

While we can consider the steps shown in
Figure 16.1 as a linear set of steps (1, 2, 3, 4),
it is often a loop where the answers obtained
on the available observational data in Step 4
inform on refinements to the questions
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asked in Step 1 and suggest limitations
arising due to the data compromises between
Steps 2 and 3.

16.2. WHAT ARE WE LOOKING FOR?

It is appropriate to begin by considering the
very basic question: What exactly do we hope
to find? Besag and Newell (1991) provide
several important observations relevant to the
search for clusters. The first key distinction is
between detection of ‘clusters’ and the detec-
tion of ‘clustering’. A cluster represents an
unusual collection of events while clustering
represents a general tendency for events to
occur nearer other events than one might
expect.

These definitions of ‘cluster’ and
‘clustering’differ from those found in ‘cluster
analysis’, a set of analytical classification
methods designed to group observations into
‘clusters’ wherein observations within the
same cluster are more alike than those from
different clusters. The overlap in terminology
can be confusing when reviewing the
literature, especially since some spatial
methods to detect clusters and/or clustering
utilize concepts and methods from cluster
analysis (Knorr-Held and Raßer, 2000;
Denison and Holmes, 2001). As illustrated
in Figure 16.1, it remains critical to clearly
identify goals and conclusions in the context
of both the questions addressed and the
methods used to address them.

In the discussion below, we follow Besag
and Newell (1991) and take the term
‘cluster’ to define an anomaly, an interesting
collection of spatial locations that appears
to be inconsistent with some background
conceptual model of how events arise. For
instance, a cancer registry might report six
new cases of childhood leukemia in a small
neighborhood in a particular year, when
only one new case would be expected if

the national annual incidence rate applied
directly to all individuals in the study area.
That is, the aggregation of six cases appears
to be unlikely under a simple model of all
children experiencing equal risk. Contrast
this example with that of clustering where we
observe multiple pockets of higher incidence
than expected from national rates, perhaps
separated by areas of lower-than-expected
local rates.

Besag and Newell (1991) also note the
difference between seeking clusters or clus-
tering anywhere versus around particular
locations of interest. They denote the former
as ‘general’methods and the later as ‘focused’
methods, also referred to as ‘global’ and
‘local’ methods, respectively, in the geog-
raphy literature by Anselin (1995) and in
the disease clustering literature by Kulldorff
et al. (2003).

As suggested by Figure 16.1, seeking
general or focused clusters or clustering
defines different questions of interest and,
as a result, methods appropriate for seeking
individual clusters might not be the best
approach to measure clustering and vice
versa. We will explore this in more depth in
the examples below.

The general ideas of clusters and clus-
tering arise in many different disciplines.
However, each discipline often brings its
own particular sets of questions of interest,
assumptions regarding data availability, and
familiar statistical methods. For example, the
fields of epidemiology and criminology both
exhibit interest in the detection of clustering
within geographically referenced data sets.
However, the sets of techniques appearing in
their respective literatures are largely distinct
and cross-references between the fields are
rare. This situation is unfortunate since both
fields could draw from the experiences and
ideas of the other. Figure 16.1 provides
a general context for comparison and we
express and compare ideas from recent
surveys in both fields in the sections below.



302 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

The remainder of the chapter addresses
the typical types of data available for cluster
detection; some basic analytic concepts,
assumptions, and complications; an illustra-
tive data set from archaeology; an overview
of some different approaches for detecting
clusters and/or clustering in point-referenced
data with application to the data set; and
general conclusions. As a result, the chapter
represents more of a review of the questions
one should ask in performing a search for
clusters or clustering than an exhaustive
collection of methods.

16.3. WHAT DATA DO WE HAVE?

As one might expect, the typical data for clus-
ter detection consist of locations on a map.
These may be point locations of events or
may represent counts of events occurring
within a set of zones partitioning the study
area into non-overlapping pieces. Examples
of the latter include census enumeration
districts, postal zones, or other administra-
tive regions. Regional counts may arise to
preserve individual confidentiality or simply
due to the relative ease of obtaining records
sorted by political district, mailing addresses,
or other identifier. We concentrate on point-
referenced data in the development below
noting that methodologically we typically
assume a latent, unobserved set of points
behind regional counts and many of the
analytic tools used for points provide the
basis for similar tools for counts (Waller and
Gotway, 2004, Chapters 6–7).

In addition to the point locations or
regional counts of events, it is often very
important to have access to data defining
the spatial heterogeneity of the population
from which our events are drawn. These
may be potential crime victims, individuals
susceptible to the disease of interest, or
simply the population sizes for each area.

The background information is critically
important in the interpretation of any detected
clusters since it defines the amount of
clustering we would expect under some null
model of event occurrence. This null model
defines the patterns we would expect in the
absence of anomalies. A common null model
is one of constant risk where each individual
in the study area experiences an identical
probability of experiencing the event under
study. To illustrate the importance of the
background information, consider as a con-
trived example a collection of six childhood
leukemia cases in one neighborhood which
would seem very unusual if only six children
reside there but not as unusual if 600,000
children live there. The background data
coupled with the null model provide our
statistical point of reference for detecting
clustering and clusters.

We also may have spatially-referenced
covariate information providing information
regarding the spatial distribution of factors
impacting the local probability of the events
of interest. For instance, the incidence of
most cancers increases dramatically with
age. As a result, we would tend to expect
more cases in neighborhoods with higher
numbers of older residents. The covariate
information may include both endogenous
and exogenous variables. In some sense, the
covariate information is collected to define
‘uninteresting’ clustering, that is, clustering
for reasons we already know or suspect. In
most cases, cluster detection builds from a
desire to identify areas where the observed
pattern of events doesn’t match our general
expectations.

16.4. WHAT ANALYTIC TOOLS CAN
WE USE?

Most methods to detect clusters and
clustering build from probability models
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operationalizing the null model mentioned
above. As a result, most tools aim to define
some measure of the ‘unusualness’ of a
cluster, then determine the distribution of
this quantity under the null (uninteresting)
model, and compare the quantity based on the
observed data to this null distribution (Waller
and Jaquez, 1995). In a statistical hypothesis
setting, the null hypothesis is defined concep-
tually as the absence of clusters/clustering,
and operationally as the expected distribution
of our measure (statistic) under the null
model.

As a result, the analytic tools required
for statistical inference are a definition of
our statistic and its null distribution. In the
sections below, we will illustrate several
types of statistics and contrast the underlying
questions addressed by each.

Before defining particular methods, we
offer a brief review of some basic proba-
bilistic elements for point-referenced event
locations driving many of the methods
illustrated below. The first is the definition
of complete spatial randomness (CSR).
A set of events arising from CSR has the
following properties: first, the total number
of events observed in the study area follows
a Poisson distribution; second, given the
observed number of events, event locations
occur independently of one another and
the expected number of events per unit

area is a constant, denoted l, across the
entire study area. CSR corresponds to a
spatial Poisson point process yielding the
following features: the number of events
observed in a region A within the study
area follows a Poisson distribution with
mean l|A| where |A| denotes the area of
A, the number of observed events in non-
overlapping areas are independent of one
another, and, given the observed number
of events, events are uniformly distributed
across the study area (and any region within
it). For clarity we follow Diggle (2003)
and distinguish between an event location

where an observed event did occur, and a
point location where an event could occur.
A typical data set consists of a set of
event locations and we often compare the
value of our statistic based on events to
the distribution of values associated with
randomly selected events.

While CSR represents a complete lack of
clustering, data generated by CSR nonethe-
less visually exhibits some ‘clumping’ and
‘gapping’ due to the inherent randomness,
and one purpose of a statistical test is to
determine whether the observed patterns in
our data are more extreme than the amount of
clumping and gapping expected under CSR.
Figure 16.2 illustrates three realizations of
CSR with 100 events uniformly distributed
across a square. It is worth noting that the
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Figure 16.2 Three examples of complete spatial randomness (CSR).
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uniform distribution of event locations rep-
resents a uniform probability of occurrence,
not an ‘evenly spaced’ set of events.

CSR represents a convenient null model
and many tests of CSR exist in the literature
(Cressie, 1993, p. 604), but CSR may
not be the appropriate reference pattern
for applications where the population at
risk is spatially heterogeneous. A common
adjustment is the use of a heterogeneous
Poisson process where the number of events
expected per unit area is allowed to vary with
location. If we define l(x) as the expected
number of events per unit area at location
(point) x, we refer to l(x) as the intensity

function of the process. We adjust the Poisson
process properties as follows: first, the
number of events observed in any region still
follows a Poisson distribution but now with
the mean defined as the integral of l(x) over
that region, counts from non-overlapping
regions remain statistically independent, and
events are distributed according to a (spatial)
probability density function proportional to
the intensity function. That is, more events
are expected in locations where the intensity
function is high, and fewer events are
expected in locations where the intensity
function is low.

The heterogeneous Poisson process
offers a flexible model of the spatial
distribution of point-locations of events,
and its properties regarding counts for non-
overlapping regions define the distributional
basis for several commonly-used models
for regional count data. However, the
assumed independence of counts raises some
eyebrows, especially among geographers
for whom spatial autocorrelation is often
a fundamental assumption in any spatial
analysis (Tobler’s First Law of Geography;
Tobler, 1970). The distinction between
a process defined by independent events
with spatially patterned means versus a
process defined by spatially correlated
counts with identical means represents

a lurking issue in the analysis of spatial
pattern in general, and specifically in
the detection of clusters. Bartlett (1964)
showed that, without additional information,
a pattern of independent events arising
from a process with spatially varying
intensity is mathematically indistinguishable
from a process of spatially dependent
events arising from a process with
spatially constant intensity, let alone
from patterns based on spatial variations
in both correlation and intensity. The
‘additional information’ allowing one
to separate the intensity and correlation
effects could be based on temporal
ordering of events to see if the location
of past events influences future events
(for example, with infectious diseases or
diffusion of new technologies), or replicated
observations of the same process over
time to see if a suspected cluster remains
in the same location (for example, near
a putative source of increased risk) or
if one observes similar patterning but in
different locations for each time period.
When contrasting methods based on
independent or dependent events, it is
important to recognize that both approaches
represent an idealization of reality: neither
approach is right, both are useful, but each
answers our questions of interest in slightly
different ways.

The basic probability models described
above also provide a recipe for simulating
sets of events following a given null model,
thereby providing a powerful tool for Monte
Carlo-based statistical inference. Recall that
in frequency-based statistical hypothesis test-
ing, one often considers the p-value, the
probability under the null hypothesis of
observing a more extreme value of the test
statistic than one observes in the data set.
Monte Carlo hypothesis testing (Barnard,
1963; Waller and Gotway, 2004; Chapter 5)
uses simulation to estimate this probability
by generating multiple data sets under the



DETECTION OF CLUSTERING IN SPATIAL DATA 305

null model, calculating the test statistic for
each, constructing a histogram of these values
as an approximation to the null distribution
of the test statistic, and calculating the
proportion of test statistic values associated
with null simulations exceeding the value
of the test statistic associated with the
observed data. Note that the accuracy of
the estimated p-value is a function of
the number of simulations, not the sample
size of the observed data, thereby putting
the level of accuracy into the analyst’s
hands. This is not to say that sample size
is unimportant. Sample size impacts the
variation of the statistic under the null and
alternative hypotheses, while the number
of simulations controls the accuracy of the
simulation-based tail probability ( p-value)
estimates. In some cases, theoretical deriva-
tions of proposed test statistics exist, but
often these are based on particular distribu-
tional assumptions (for example, Gaussian
or normally-distributed observations) and it
is not always immediately clear whether
the results apply in settings having different
structures. In contrast, as long as one can
simulate data under a reasonable null model,
the Monte Carlo approach yields accurate
inference.

Two general null models are worth
mention in our discussion of Monte Carlo
techniques for the detection of clus-
ters/clustering. The first, mentioned above,
is that of constant risk, that is, an assumed
constant probability of the event outcome
for each individual under study. If one has
either point locations or regional counts
reflecting a census, one can estimate the
overall global risk of the event through the
overall observed proportion of individuals
experiencing the event. Then, one may
randomly assign the observed number of
events to the population at risk to obtain
each simulated data set. The constant risk
null model can also adjust for local covariate
effects by using the covariates to define

the local probability of an event. Random

labelling provides a second null model,
similar to the first, but designed when one has
a sample of event locations and a sample of
non-event or ‘control’ locations (individuals
sampled from the population at risk of events)
(Diggle, 2003; Waller and Gotway, 2004,
Chapter 6) wherein we condition on the
observed locations and randomly assign the
event status (‘label’) among the full set of
locations. That is, if we observe 30 events
and have locations for 70 individuals not
experiencing an event (controls), we keep the
set of 100 locations, and randomly assign
30 of these to be ‘events’ in each simulated
data set. Note that random labelling assumes
a constant probability of event assignment,
based on the observed ratio of events to non-
events. At first glance, this seems identical
to the constant risk assumption but two
subtle differences remain. First, the random
labelling hypothesis is conditional on the
set of locations (both event and non-event)
so random labelling simulations will not
place events in any other locations. Second,
constant risk simulations could be based
on an event probability estimated from the
observed data or could be based on an
externally reported probability (for example,
national disease or crime rates). If the
study takes place in an area different from
that providing the basis for the external
probability, it is possible that the local
probability is sufficiently higher or lower
than the external probability so the observed
data will seem inconsistent with simulated
values based on the external value for
no other reason than the discrepancy in
the background probability and not due
to spatial clusters or clustering within the
data set.

Again referring to Figure 16.1, each
of these steps represents a decision that
may, subtly or not, impact the question
addressed in the analysis. In the develop-
ment, implementation, and review of specific
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spatial analyses, it is important to design,
report, and understand the type of null model
driving the simulations in order to place
results within the proper context and to
connect Steps 4 and 1 in Figure 16.1.

Finally, it is worth noting that there are
many more advanced computational and
mathematical methods of statistical analysis
of point patterns under current development.
Such models allow one to define parametric
models of clustering of event locations
(Lawson and Denison, 2002), assign random
measurements (often referred to as ‘marks’)
to event locations, or allow interactions
between multiple point processes observed
over the same spatial study area (see Møller
and Waagepetersen (2002) for detailed tech-
nical development). Many of these make
use of computationally intensive Markov
chain Monte Carlo (MCMC) methods for
likelihood or Bayesian inference for para-
metric models of point processes. However,
the non-parametric Monte Carlo approaches
presented below represent exploratory tech-
niques for detecting the presence of clusters
and/or clustering without explicitly modeling
the type of clustering. The approaches illus-
trated here offer robust statistical inference
and a good starting place for analysis.

16.5. ILLUSTRATIVE DATA SET:
ANASAZI SITES ON BLACK
MESA, ARIZONA

To illustrate these concepts and to provide
an illustration of the methods below, we
consider a data set from the field of
archaeology. The Peabody Coal Company
leased land on the Black Mesa in northeastern
Arizona, USA for coal mining. As part
of the lease, the company contracted with
archaeologists to conduct a detailed survey
of archaeological sites in the lease area. The
Black Mesa Archaeology Project conducted

field research in the area between 1967
and 1987 leading to a body of research
summarized in texts by Gumerman (1970),
Gumerman et al. (1972), Plog (1986), and
Powell and Smiley (2002). The study is
relatively unique in its careful survey of
a large tract of land and detailed mapping
of the location of every site discovered on
the surface. For our illustrative purposes,
we make the simplifying assumption of a
constant probability of detection of surface
sites regardless of age or location. Figure 16.3
represents data locations abstracted from
maps presented in Plog (1996). The 100
open circles represent sites dated to the
time period 950–1049 CE and the 390
filled circles represent sites dated to the
time period 1050–1150 CE. The later period
represents a time of great expansion of
the Anasazi culture (as represented by the
increased number of settlement sites), but
ends coincident with a time of large-
scale abandonment of sites by the Anasazi
throughout the southwestern United States c.
1100–1150 CE.

To illustrate the methods described below,
we will compare spatial patterns between
the ‘early’ and ‘late’ sites represented in the
data set, seeking both clusters and clustering
within the data sets.

16.6. DETECTING CLUSTERING

We begin with a general examination of
clustering, the overall tendency for events
to occur near other events. In the Anasazi
data, possible questions of interest are: ‘Do
we observe clustering among all sites?’
and ‘Do we observe different types of
clustering among the early and the late
sites?’ We focus on the latter question but,
in the spirit of Figure 16.1, consider how
it differs from the former in discussions
below.
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Figure 16.3 The Anasazi data set from the Peabody Coal Eastern Lease on Black Mesa in
northeastern Arizona. Empty circles represent early sites (dated 950–1149 CE) and filled
circles represent locations of later sites (dated 1050–1150 CE).

16.6.1. Who is my neighbor?
Nearest neighbor analysis

First, suppose we observe two types of events
in the same study area. In our data example,
these correspond to early and late sites and
the question of interest becomes: ‘Does the
pattern of clustering in late sites differ from
that in early sites?’ Note that this question
explores the relative degree of clustering
within the set of early and late sites, not
whether either set of sites exhibits clustering
or not.

There is a long tradition of exploring
nearest neighbor patterns in spatial data (Cliff
and Ord, 1973) and Cuzick and Edwards
(1990) propose a test of clustering of one
type of event within a set of two types of
events in the same area. The test statistic
is defined for a fixed number (k) of nearest
neighbors and is, intuitively, the total number
of late sites observed within the k nearest
neighbors of other late sites. More formally,
suppose we observe N events of which nlate

are late sites. If we define the matrix B to
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have elements Bk,ij = 1 if event j is in
the k nearest neighbors of event i and if
we define δi = 1 if the ith event is late
and δi = 0 otherwise, then the test statistic
becomes:

Tk =
N∑

i=1

N∑

j=1

Bk,ijδiδj.

If late sites exhibit more clustering than
early sites, we should observe more late
sites near other late sites than we would
expect under a random assignment of late
sites to the observed locations of either
type of event. Cuzick and Edwards (1990)
derive an asymptotic normal distribution for
the test statistic under the null hypothe-
sis, but Monte Carlo tests under random
labelling are applicable for any sample
size.

Figure 16.4 illustrates the observed test
statistic, a histogram approximation to the
null distribution and the associated Monte
Carlo p-value based on 999 simulations
for odd numbers of nearest neighbors
k = 3, 5, 7, 9, 11, and 13. None of the sets
of nearest neighbors considered suggest any
statistically significant clustering of late
sites among the set of early and late sites
combined.

In the spirit of our discussion of
Figure 16.1, the lack of statistically signifi-
cant clustering of one type of events among
its nearest neighbors does not necessarily
preclude the existence of a more general
definition of clustering among sites. In
addition, since clustering represents a feature
averaged over the entire data set, non-
significant clustering also does not preclude
the existence of a few isolated clusters within
the data set. We next consider both options
with other analytic approaches.

16.6.2. Second-order measures and
spatial scale

The nearest neighbor approach above
explores clustering of event types among
the sets of nearest neighbors but ignores
inter-event distances. Statistical estimation
of evidence for clustering as a function of
distance provides an approach that addresses
the question of clustering in a slightly
different manner.

The most commonly used distance-based
approach for assessing clustering among
a single set of events is the so-called
K function originally due to Ripley
(1977).
The K function is a function, K(d), of
distance d defined as the average number of
additional events observed within distance d

of a randomly chosen event, scaled by the
overall intensity (average number of events
per unit area). As a result, we could estimate
the K function via:

K̂(d)= l̂
−1 1

N

N∑

i=1

N∑

j=1
j %=i

δ(d(i, j)<d) (16.1)

where N represents the number of observed
events, l̂ is an estimate the overall
intensity of events, d(i, j) denotes the
distance between events i and j, and
δ(d(i, j) < d ) = 1 if d(i, j) < d and 0
otherwise. Note that the intensity l is
assumed to be constant so that any pattern
in the events will be described within
the K function rather than as a spatially
heterogeneous intensity function. In prac-
tice, we should make some adjustment
for events observed near the edge of the
study area since events occurring nearby
but outside of the study area will not
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Figure 16.4 Histograms and associated p-values of the cumulative number of late events
among the nearest neighbors of early events based on 999 random labelling simulations for
the Anasazi data set.
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be observed. An ‘edge corrected’ (ec) version
is provided by

K̂ec(d) = l̂
−1

N∑

i=1

N∑

j=1
j %=i

(wij)−1δ(d(i, j) < d)

(16.2)

where the average is replaced by a weighted
average with weight wij defined as the
proportion of the circumference of the circle
centered at event i with radius d(i, j)
which lies within the study area. With a
constant intensity, wij denotes the conditional
probability of an event occurring at distance
d(i, j) from event i falling within the study
area, given the location of event i. Note that
wij = 1 if the distance between events i and j

is less than the distance between event i and
the edge of the study area.

Under CSR, K(d) = πd2 (the area of
a circle with radius d and patterns exhibit
clustering for K(d) > πd2. To simplify the
graphical expression of the K function, Besag
(1977) proposed a transformation:

L̂(d) − d =
(

K̂ec(d)
π

)1/2

− d

where the first term on the right-hand side
equals d under CSR, so subtracting d yields
a CSR-associated reference value of zero.
Plotting d versus L̂(d) − d allows us to
quickly identify distances at which patterns
exhibit clustering (̂L(d) − d > 0) and those
at which patterns appear too evenly spaced to
be consistent with CSR (̂L(d) − d < 0).

The thick line in Figure 16.5 provides
a graph of L̂(d) for the late Anasazi sites.
The transformed K function is well above
the CSR reference value of zero indicating
more clustering that we would expect under
CSR. However, the question of interest is

not ‘Do the late sites appear consistent
with CSR?’ but rather ‘Do the late sites
exhibit more clustering than the early sites?’
We can use a random labelling Monte
Carlo approach to address this question
by repeatedly sampling 390 sites from
the set of early and late sites combined,
estimating the K function and exploring the
variability of these estimates. Figure 16.5
illustrates the pointwise median, 2.5th and
97.5th percentiles of estimates of L̂(d) − d,
based on 999 random labelling samples.
We note that the estimate based on the
data falls well within the band of values
likely under the random labelling hypothesis
so that the observed set of late sites
does not differ from the patterns expected
under random labelling in a statistically
significantly way.

At this point, the pattern of the late sites
does not appear to differ significantly from
the pattern of the early sites either in its
observed nearest neighbor relationships or its
distance-based associations. However, both
approaches applied so far explore clustering
and we next consider approaches to evaluate
the possible existence of clusters within the
late sites.

16.7. DETECTING CLUSTERS

We consider two conceptual approaches for
detecting clusters, namely, the detection of
the most unusual collection of events, and
the comparison of the distribution of event
locations experiencing the phenomenon of
interest (e.g., a disease case or a crime), to
that of locations not experiencing the phe-
nomenon (controls). These two approaches
cover many but not all examples and we
refer the interested reader to texts by Lawson
(2001), Elliott et al. (1992, 1999), and Waller
and Gotway (2004) for additional approaches
and techniques.
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Figure 16.5 The estimate of the standardized K function (L̂(d )) for the late Anasazi sites
(solid line) compared to the median (dashed) and 95 percent tolerance bands based on
999 random labeling simulations.

16.7.1. Finding the oddest ball in
the urn: Scan statistics

If we consider a cluster to be defined by
an ‘unusual’ collection of events, then an
initial place to start is with methods designed
to detect the most unusual collection (or
collections) of events observed within the
data set. Such methods define a (large) set
of ‘potential clusters’, collections of events
each of which we might define as a cluster
if the collection appears unusual enough
(discrepant from the null model of interest),
then identify the most unusual of these.

This general idea motivated the ‘geograph-
ical analysis machine’ (GAM) of Openshaw
et al. (1988) where potential clusters were
defined as collections of events falling within
circular buffers of varying radii. The buffers
were centered at each point in a fine grid

covering the study area and the GAM
approach mapped any circle whose collection
of events was detected as unusual, e.g., those
circles where the number of events exceeded
the 99.8th percentile of a Poisson distribution
with mean defined by the population size
within the buffer multiplied by the overall
disease risk. (The use of the 99.8th percentile
was an attempt to adjust for the extremely
high number of hypothesis tests conducted,
one for each potential cluster.)

The GAM received a fair amount of
attention, both in applications and in crit-
icisms of the relatively ad hoc statistical
inference associated with it. Subsequent
methods proposed by Besag and Newell
(1991) and Turnbull et al. (1990) revised
the basic idea in more statistically-based
ways, but the most widely-used variant
of this general idea is the spatial scan
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statistic originally proposed by Kulldorff
(1997) and freely available in the software
package SaTScan (Kulldorff and Information
Management Services Inc., 2002).

The spatial scan statistic works as follows.
The set of potential clusters consists of
all circular collections of cases centered at
observed cases or controls, and radii ranging
from the minimum observed inter-event
distance to radii containing approximately
one-half of the study area. For each potential
cluster, we measure its ‘unusualness’ via a
local likelihood ratio statistic comparing a
null hypothesis that events arise within the
potential cluster with the same probability
as they do outside of the potential cluster to
an alternative hypothesis where events arise
within the potential cluster with a higher
probability than outside of the potential
cluster. If we assume events follow a
Poisson process within and without the
potential cluster, we are simply testing the
null hypothesis of equal intensities within
and without the potential cluster versus the
alternative hypothesis of a greater intensity
within the potential cluster. In this case, the
local likelihood ratio statistic becomes:

(
N1,in

Nin

)N1,in
(

N1,out

Nout

)N1,out

I

(
N1,in

Nin
>

N1,out

Nout

)

(16.3)

where N1,in and Nin =
(
N0,in + N1,in

)
denote

the number of event locations and persons at
risk (number of event and control locations)
within the potential cluster, respectively, and
N1,out and Nout =

(
N0,out + N1,out

)
for

outside of the potential cluster. By extending
the statistic with the inclusion of the indicator
function I(·) we can limit attention to only
windows where the observed rate inside the
window exceeds that outside the window,
rather than including ‘cold spots’ where the
rate inside the window is less than that
outside the window.

At this point, we have a value measuring
the unusualness of each potential cluster.
Next, we identify the potential cluster with
the highest local likelihood ratio statistic as
the ‘most likely cluster’ among the set of
potential clusters considered.

Next, we determine the statistical signifi-
cance of this most likely cluster, an important
step since there will always be a most likely
cluster, i.e., the most unusual collection of
events considered. The relevant question is:
How unusual is this most unusual collection
of events? Kulldorff (1997) addresses this
question in a clever way using Monte Carlo
hypothesis testing. Given the total number
and locations of events of both types (those
experiencing the phenomenon and those not),
we randomly assign ‘events’ among the
set of all locations, find the most likely
cluster and save its associated likelihood
ratio statistic. We repeat this exercise many
times and construct a histogram of the
maximum local likelihood ratio statistic for
each random allocation. We estimate the
statistical significance of the most likely
cluster detected in our data set by the
proportion of simulated maximized local
likelihood ratio test statistics exceeding that
of the observed data (i.e., the proportion,
under the random labelling null hypothesis,
of measures of unusualness that are more
unusual than observed in the data).

This approach avoids the multiple testing
problem encountered in Openshaw et al.’s
(1988) GAM in the following way. The key
lies in comparing the measure of unusualness
of the most likely cluster in the observed
data (the maximized local likelihood ratio
statistic) to the same value from each of a
large number of data sets simulated under the
null hypothesis. Each simulated assignment
generates its own most likely cluster and
associated local likelihood ratio statistic.
These values are independent of one another
since the simulated data sets are independent
of one another, so the collection of maximum
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local likelihood ratio statistics represents an
independent sample under the null hypothesis
and its histogram provides an estimate
of the null distribution of the maximized
local likelihood ratio statistic. Note that this
approach compares the maximized likelihood
statistic regardless of where it occurs rather
than comparing the measure of unusualness
at its observed location to the measures of
unusualness at that same location.

We can contrast these two approaches
by considering the questions answered by
each. By comparing the observed measure
of unusualness to the measure observed
anywhere in the simulated data sets we
answer ‘How unusual does our most likely
cluster appear compared to how unusual the
most likely cluster appears under the null
hypothesis?’ If we compare the observed
measure at a particular location to the
observed measure at that location in each
of the simulated data sets, we answer
‘How unusual does our most likely cluster
appear compared to any other cluster at
this location?’ The first question represents
a single question particular to the most likely
cluster but the second is particular to a
location and radius. Openshaw et al.’s (1988)
GAM and similar methods essentially ask the
second question for each location and radius
which generates multiple hypothesis tests and
complicates inference, again illustrating the
importance of Figure 16.1.

To illustrate the spatial scan statistic,
Figure 16.6 shows the most likely cluster of
late sites in the Anasazi data by the thick,
dark circle and the most likely cluster of
early sites by the thin, light circle. Neither
is statistically significant. Even though the
most likely cluster of late sites consists of
only one early site (on the edge), the late sites
outnumber the early sites in the data set so
this is not a particularly unusual grouping of
events.

A few items merit mention. First, note that
seeking the most likely cluster of late sites is a

different exercise than seeking the most likely
cluster of early sites. In some applications
it is clear which events one wishes to find
a cluster of (e.g., cases versus non-case
controls in epidemiology); in others it is not
as obvious and both questions are of interest.
Second, we must interpret the results in light
of the set of potential clusters considered.
Here, we only consider circular clusters and
may miss more oblong or sinuous clusters,
perhaps following rivers. The most recent
version of SaTScan incorporates elliptical
potential clusters and recent methodological
work by Assunção (2006) and Patil and Tallie
(2004) further expand the set of potential
clusters at increasing computational cost. The
impact of expanding the set of potential
clusters on the statistical power of detection
for subsets of this class remains to be studied
in detail. For instance, it is not known
to what extent including both circular and
elliptical clusters might reduce the power to
detect only elements of the subset of circular
clusters.

16.7.2. Finding peaks and valleys:
Estimating the spatial
intensity

The spatial scan statistic is appealing, but
is limited to the set of potential clusters.
A more general approach involves estimation
of the intensity function associated with a set
of observed event locations. The conceptual
framework of a spatial point process views
the set of observed locations as a realization
of a random distribution in space. The next
step involves estimating the local probability
of an event occurrence and defining clusters
as areas where events appear to be most
likely.

Kernel estimation is a popular approach
for estimating probability distributions and
has seen broad use in spatial analy-
sis as well (Bailey and Gatrell, 1995;
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Figure 16.6 SaTScan results for the Anasazi data set. Thick, dark circles and p-values
correspond to the most likely clusters of late sites, and thin, light circles and p-values
correspond to the most likely clusters of early sites.

McLafferty et al., 2000; Diggle, 2003;
Eck et al., 2005). Conceptually, suppose
we place an equal amount of soft mod-
eling clay over each event location on
our map. These will overlap for events
near each other and the resulting height
of the entire surface represents our esti-
mate of the spatial intensity, higher in
areas with many observed events, lower
in areas with few observed events. More
precisely, we place a smooth, symmet-
ric function (the ‘kernel’) over events,

typically a probability density function such
as a bivariate Gaussian density or other
function which integrates to one. At each
of a fine grid of points, we sum the
kernel values associated with each observed
event, yielding a smooth surface estimat-
ing the unknown intensity function. The
‘bandwidth’ (spatial extent) of each kernel
controls the overall amount of smoothness
in the estimated intensity surface with
larger bandwidths corresponding to smoother
surfaces. Essentially, the kernel takes each
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observation and ‘spreads’ its influence over
a local area corresponding to the kernel
function.

Mathematically, suppose x denotes the
vector location of N events (x1, x2, . . . , xN ),
and x denotes any location within our study
area A. The kernel estimate of the intensity
l(x) is:

l̃(x) =
1

|A|b

N∑

i=1

Kern
(

x − xi

b

)
(16.4)

where |A| denotes the geographic area of our
study area A, Kern(·) is a kernel function
satisfying:

∫

A
Kern(x) dx = 1

and b denotes the kernel’s bandwidth.
Figure 16.7 represents the two intensity

estimates for the Anasazi site data for a

bandwidth of 15 distance units. Visually, we
observe some differences between the two
intensity estimates, such as a more distinct
gap between site intensity for the late period
(right-hand plot) in the northern third of
the study area, and perhaps an additional
mode for the early period (left-hand plot) in
the southwestern section of the study area.
Such conclusions must be interpreted with
caution however, since they are dependent
upon the bandwidth used for estimation. In
this illustration we use the same bandwidth in
both plots to facilitate numerical comparisons
between them in the next subsection, even
though the two time periods contain different
sample sizes.

16.7.3. Comparing maps:
Contouring relative risk

Intensity estimates provide a descriptive view
of local variations in the probability of event
occurrence. However, as mentioned above,
the interpretation of clustering depends on the
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Figure 16.7 Kernel estimates of the intensity functions for the patterns of late (left) and
early (right) sites for the Anasazi site data based on a bandwidth of 15 distance units.
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(often spatially-varying) population at risk of
an event. That is, we are often more interested
in spatial variations in the risk (probability)
of an event rather than in spatial variations
in the actual numbers of events. For crime
data, we often do not have point-level
population data or samples of the locations
of ‘control’ individuals not experiencing the
crime under study, and intensity analysis
concludes with interpretation of the intensity
function of events (Eck et al., 2005). In
other fields, such comparison patterns are
more readily available, and we next con-
sider statistical identification of clusters via
comparisons between two estimated intensity
functions.

Suppose we have two types of events
(events and controls, early or late sites, etc.).
Bithell (1990), Lawson and Williams (1993),
and Kelsall and Diggle (1995) propose
approaches for comparing kernel estimates
from each type of event, say l̃0 and l̃1.
Kelsall and Diggle (1995) examine the
surface generated by the natural logarithm of
the ratio of the two intensity functions:

r(x) = log
l̃1(x)

l̃0(x)

for any location x in our study area A.
To borrow a term from epidemiology, the
ratio of the two intensity functions reflects
the relative risk, and the log transformation
places the ratio on a more symmetric scale
around its null value (0.0 on the log scale).
Kelsall and Diggle (1995) point out technical
and practical reasons for using the same
bandwidth for both kernel estimates, pri-
marily to avoid confounding the smoothness
of the r(x) surface by differences in the
underlying smoothness of the two intensity
estimates.

The log relative risk surface r(x) illustrates
areas where events of each type are more

or less likely than the other. In order
to use this approach to detect clusters,
we seek peaks or valleys in the surface.
To assess statistical significance, the next
step is to decide whether the peaks and
valleys are more extreme than one would
expect to observe under a null hypothesis.
Kelsall and Diggle (1995) propose using
random labeling simulations to determine
local clusters. Suppose we have n0 type 0
events and n1 type 1 events. Conditional
on the complete set of observations of both
types of events, we randomly assign n0 of
the events to be type 0, the rest to be type 1,
and calculate r(g) for a grid of locations
g = (g1, g2, . . . , gG). We repeat the random
labeling a large number of times providing
a large number of r(gi) values for each gi

in our grid, under the random labeling null
hypothesis. If the value of r(gi) based on the
observed data is more extreme than the 2.5th
or 97.5th percentiles of the values based on
the simulation, we mark the location on the
map. We note that this approach provides
pointwise inference, not overall inference
due to the multitude of grid points and the
correlation between values of r(g) induced by
the kernel function (nearby estimates share
the same data).

Figure 16.1 provides a basis for com-
parison between the spatial scan statistic
and the log relative risk surface. The scan
statistic addresses the question ‘Where is the
most unusual collection of cases and how
unusual is it compared to what would be
expected of the most unusual collection under
the null hypothesis?’ The log relative risk
surface addresses: ‘Where are different types
of events more or less likely than others and
how do these differences compare to what
we would expect under the null hypothesis?’
One important distinction between these
two questions is the emphasis on a single
cluster in the first and the emphasis on
the entire log relative risk surface in the
second. For instance, a focus on a single
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cluster ignores the size, number, and location
of other local peaks and valleys across
the surface. Also, if we were to use the
pointwise interval inference to identify a
single most likely cluster from the log
relative risk surface we would fall into
the same multiple inference problem as
discussed above for GAM-type methods.
Instead, we should think of the collection
of pointwise intervals as a general guide
to describe the variability (under the null
hypothesis) of the estimated log relative risk
surface across the study area, and draw
attention to locations where the estimated log
relative risk surface wanders outside of these
bounds. Leong (2005) recently proposed
and compared several approaches to move
from pointwise to simultaneous intervals
around such log relative risk functions in
one dimension and extensions to higher
dimensions would provide a stronger basis
for inference.

To illustrate the approach, Figure 16.8
illustrates the log relative risk of late versus
early sites based on the kernel intensity
estimates shown in Figure 16.7. On the
contour plot, we indicate grid points with
local relative risk estimates falling above
and below the 95 percent tolerance intervals
(defined by random labeling) by ‘+’ and ‘−’
symbols, respectively. We see locally statis-
tically significant increases in the relative
probability of late versus early sites in the
north-central area mentioned in our discus-
sion of Figure 16.7.

How can we reconcile the locally sig-
nificant cluster shown in Figure 16.8 with
the non-significant most likely cluster found
by the spatial scan statistic in Figure 16.6?
Closer examination of Figure 16.6 reveals
that the collection of late sites (filled circles)
driving the cluster identified in the log
relative risk plot is an oblong concentration
of late sites in the north central portion of
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Figure 16.8 Log relative risk surface comparing the probabilities of late sites versus that of
early sites for the Anasazi site data based on a bandwidth of 15 distance units. On the
contour plot, ‘+’ denotes a point exceeding the upper 95 percent pointwise tolerance limits
and ‘−’ a point exceeding the lower 95 percent limit (see text).
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the study area. This concentration would not
be considered among the circular potential
clusters we used in our application of the
spatial scan statistic. The example illustrates
the importance of understanding the types
of clusters evaluated by a particular method
when comparing results between different
approaches. In addition, the most likely
clusters identified by the spatial scan statistic
do not appear as unusual peaks in the
log relative risk surface since (as with
the scan statistic) there is not a strong
excess of early or late sites in these
locations.

16.8. CONCLUSIONS

The sections above illustrate the importance
of understanding what sort of spatial patterns
statistical approaches investigate in studies
to detect clusters and/or clustering. The data
set provides an interesting example where
we observe no significant clustering but a
significant cluster, provided we examine a
broad enough class of potential clusters.
Figure 16.1 illustrates that the example is
not simply a situation of applying multiple
methods until we get the answer we desire,
but rather an example of the sorts of patterns
not considered by many common summaries
of spatial pattern, and how some potentially
interesting patterns may be missed by some
methods.
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17
Bayesian Spatial Analysis

A n d r e w B . L a w s o n a n d S u d i p t o B a n e r j e e

17.1. INTRODUCTION

Spatially referenced data occur in diverse
scientific disciplines including geological and
environmental sciences (Webster and Oliver,
2001), ecological systems (Scheiner and
Gurevitch, 2001), disease mapping (Lawson,
2006) and in broader public health contexts
(Waller and Gotway, 2004). Very often, such
data will be referenced over a fixed set of
locations in a region of study. These locations
can be with regions or areas with well-defined
neighbors (such as pixels in a lattice, counties
in a map, etc.), whence they are called areally

referenced or lattice data. Alternatively, they
may be simply points with coordinates
(latitude–longitude, Easting–Northing etc.),
in which case they are called point refer-

enced or geostatistical. Statistical theory and
methods to model and analyze such data
depend upon these configurations and has
enjoyed significant developments over the
last decade; see, for example, the books

by Cressie (1993), Chilés and Delfiner
(1999), Móller and Waagpetersen (2004),
Schabenberger and Gotway (2004), and
Banerjee et al. (2004) for a variety of
methods and applications.

With recent advances in computational
methods (particularly in the area of Monte
Carlo algorithms), it is now commonplace
to be able to incorporate spatial correlation
as an important modeling ingredient. It is
now feasible to fit routinely linear models
with a variety of features within a modeling
hierarchy. With the implementation of fast
algorithms such as Markov Chain Monte
Carlo (MCMC), sophisticated models that
were previously inaccessible are now within
reach allowing us to move beyond the
simpler, and often inadequate, descriptive
measures for analyzing spatial structure.

Spatial analysis can be viewed in a number
of ways. For the statistician, there are two
basic approaches to statistical modeling and
inference: frequentist or likelihood based
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inference, and Bayesian inference. Here
we focus on the latter approach. Bayesian
inference and modeling can be seen as an
extension of likelihood methods, but it also
has a fundamentally different view of the
inferential process.

17.2. NOTATION

The following notation will be used through-
out this chapter. A random variate is denoted
yi, for an item in a vector. The vector of
these items is y. Often y will be related to
independent variables (such as in a linear
model). In that case the matrix of such
variables can be defined as X. A linear model
can be defined, for a single independent
variable x1 as:

yi = β0 + β1x1i + ei.

In general, the matrix formulation of the
model, where i = 1, . . . , n will be:

y = Xβ + e (17.1)

where y is an n × 1 vector of the dependent
variable, X is an n×p matrix of p independent
predictors (or covariates), β is a p × 1
parameter vector of the corresponding slopes
and e is an n × 1 vector of the errors. Often
we make distributional assumptions, such as
e ∼ N(0, 6) These expressions imply that
the errors are normally distributed with a
zero-vector, 0, as the mean and a covariance
matrix ".

17.2.1. Point-referenced spatial
data notation

As we will be dealing with spatial data, we
will require some notation specific to such

settings. When the referencing is done using
coordinates (latitude–longitude, Easting–
Northing, etc.) over a domain D, we denote
it as s ∈ D; for instance in two-dimensional
domains we have s ≡ (sx, sy). The most
frequently encountered scenario observes
a spatial field measured at a finite set
of locations, say S = {s1, . . . , sn}.
We usually name this a random field,
which we denote as {w(s) : s ∈ D} or
simply as w(s) in short. A realization
of this random field will be a vector
w = (w(s1), . . . , w(sn)).

17.2.2. Health data notation

For health data discussed in this chapter we
will confine ourselves (mostly) to examining
count data arising within small arbitrary
administrative areas (such as census tracts,
zip codes, postcodes, counties). Define yi as
the count of disease within the ith small area.
Assume that i = 1, . . . , m. For this we need
to define a relative risk for the ith region: θi.
We usually want to make inferences about the
relative risk, in any study.

We also usually have available an expected
rate for the ith region: ei. Often the count
within the regions will have a Poisson
distribution, i.e., yi ∼ Pois(eiθi).

17.3. LIKELIHOOD AND BAYESIAN
MODELS

17.3.1. Likelihood

A random variable X is usually associ-
ated with a distribution which governs its
behavior. We denote this distribution as
f (x | θ ) where θ is a parameter. In general,
θ could be a vector of parameters and so
is denoted θ . In this case we have f (x | θ ).
When a random sample of values of X are
taken {xi, i = 1, . . . , n} then the likelihood is
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defined as the joint distribution of the sample
values:

f (x | θ ) =
n∏

i=1

f (xi | θ ). (17.2)

It is assumed that conditional on θ the
sample values are independent. If this were
not so, then we would require to take
the product of conditional distributions in
equation (17.2). When using the frequentist
inferential process it is important to base
decisions about parameters (estimation of
parameter values or confidence intervals) on
the likelihood function. Maximum likelihood
estimation seeks point estimates of the
parameters in θ by maximising f (x | θ ) or
log f (x | θ ). Testing and interval estimation
is often based on likelihood ratios derived
for different values of θ under different
hypotheses. Inference for quantities such as
confidence intervals is based on the concept
of repeated experimentation, in that probabil-
ity statements are derived based on properties
of repeated sequences of experiments.

17.4. BAYESIAN INFERENCE

Fundamental philosophical differences with
the frequentist approach are found when a
Bayesian perspective is assumed. First of
all, parameters within Bayesian models are
assumed to be random variables and hence
are governed by distributions themselves.
Hence, there is no longer a fixed (true) value
for a given parameter. Instead an expected
value or other functional of a distribution
can be defined. Because parameters have
distributions then the likelihood previously
defined must be extended to accommodate
these distributions.

By modeling both the observed data
and any unknown parameter or other

unobserved effects as random variables, the
hierarchical Bayesian approach to statistical
analysis provides a cohesive framework for
combining complex data models and external
knowledge or expert opinion (e.g., Berger,
1985; Carlin and Louis, 2000; Robert, 2001;
Gelman et al., 2004; Lee, 2005) In this
approach, in addition to specifying the distri-
butional model f (y | θ ) for the observed data
y = ( y1, . . . , yn) given a vector of unknown
parameters θ = (θ1, . . . , θk), we suppose
that θ is a random quantity sampled from a
prior distribution p(θ | l), where l is a vector
of hyperparameters. Inference concerning θ

is then based on its posterior distribution:

p(θ | y, l) =
p(y, θ | l)

p(y | l)
=

p(y, θ | l)∫
p(y, θ | l) dθ

=
f (y | θ )p(θ | l)∫
f (y | θ )p(θ | l) dθ

. (17.3)

Notice the contribution of both the data
(in the form of the likelihood f (y | θ )) and
the external knowledge or opinion (in the
form of the prior p(θ | l)) to the posterior.
If l is known, this posterior distribution is
fully specified; if not, a second-stage prior
distribution (called a hyper-prior) may be
specified for it, leading to a fully Bayesian

analysis. Alternatively, we might simply
replace l by an estimate l̂ obtained as
the value which maximizes the marginal
distribution p(y | l) viewed as a function of l.
Inference proceeds based on the estimated
posterior distribution p(θ | y, l̂), obtained by
plugging l̂ into equation (17.3). This is called
an empirical Bayes analysis and is closer to
maximum likelihood estimation techniques.

The Bayesian decision-making paradigm
improves on the classical approaches to
statistical analysis in its more philosophically
sound foundation, its unified approach to
data analysis, and its ability to formally
incorporate prior opinion or external
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empirical evidence into the results via the
prior distribution. Statisticians, formerly
reluctant to adopt the Bayesian approach
due to general skepticism concerning
its philosophy and a lack of necessary
computational tools, are now turning to
it with increasing regularity as classical
methods emerge as both theoretically and
practically inadequate. Modeling the θis as
random (instead of fixed) effects allows us
to induce specific (e.g., spatial, temporal or
more general) correlation structures among
them, hence among the observed data yi as
well. Hierarchical Bayesian methods now
enjoy broad application in the analysis of
complex systems, where it is natural to pool
information across different sources e.g.,
Gelman et al. (2004).

Modern Bayesian methods seek complete
evaluation of the posterior distribution using
simulation methods that draw samples from
the posterior distribution. This sampling-
based paradigm enables exact inference
free of unverifiable asymptotic assumptions
on sample sizes and other regularity
conditions. A computational challenge in
applying Bayesian methods is that for many
complex systems, the simulations required
to do inference under equation (17.3)
generally involve distributions that are
intractable in closed form, and thus one
needs more sophisticated algorithms to
sample from the posterior. Forms for
the prior distributions (called conjugate

forms) may often be found which enable
at least partial analytic evaluation of these
distributions, but in the presence of nuisance
parameters (typically unknown variances),
some intractable distributions remain. Here
the emergence of inexpensive, high-speed
computing equipment and software comes
to the rescue, enabling the application of
recently developed MCMC integration
methods, such as the Metropolis–Hastings
algorithm (Hastings, 1970) and the Gibbs
sampler (Geman and Geman, 1984; Robert

and Casella, 2005). Univariate MCMC
algorithms are particularly attractive for
general purpose implementation, since all
that is required is the ability to sample
easily from each parameter’s complete con-
ditional distribution, namely p(θi | y, θj %=i),
i = 1, . . . , k. The recently developed
WinBUGS language (www.mrc-bsu.

cam.ac.uk/bugs/welcome.shtml)

and the R statistical platform (www.

r-project.org) with its Bayesian
packages are promising steps towards
a general purpose software package for
hierarchical modeling, though it may be
insufficiently general in some advanced
analysis settings, and in any case more work
is needed before it is suitable for routine use
by statistical support staff.

Statistical prediction in Bayesian settings
is particularly elegant and intuitive. Let
ypred denote the random variables (they
can be a collection) we seek to predict.
Then, we simply treat ypred as a random
variable whose prior, conditional upon the
parameters, is the data likelihood f (y | θ ).
Then, all predictions will be summarized in
the posterior predictive distribution:

p(ypred | y) =
∫

f (ypred | θ )p(θ | y) dθ .

Once the posterior samples are available
from p(θ | y), it is routine to draw samples
from p(ypred | y) using the principle of
composition: for each posterior draw of θ , we
draw ypred from f (ypred | θ ). Details of such
methods are particularly well explained in the
texts by Carlin and Louis (2000) and Gelman
et al. (2004).

17.4.1. Posterior sampling
methods

Practical Bayesian modeling relies upon
efficient computation of the posterior
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distribution of the parameters. As mentioned
above, the main computational challenge
lies in evaluating the integral in the
denominator of equation (17.3). This is
especially compounded when θ is multi-
dimensional. Hence, instead of designing
multi-dimensional integration routines,
even the best of which can easily prove
inadequate for several practical settings,
we focus upon sampling from the posterior
distribution, also known as simulating the
posterior distribution. Once a posterior
sample is obtained, all inference summaries
(e.g., point estimates and credible intervals)
are calculated using the sample. In principle,
this strategy works equally well for simpler
models where the posterior distribution
is a standard family as well as for very
complex hierarchical models where the
posterior distribution is highly complex.
Depending upon the complexity of the
posterior distribution, the sampling strategies
will vary: with a standard family we can
directly draw a random sample, while
with complex families more elaborate
MCMC algorithms (see below) may be
required.

Since the posterior distribution now
describes the behavior of the parameters
once the data are observed, we work with
this distribution for estimation and inference.
To obtain estimates of parameters this
distribution must be summarized.

A simple example of this type of model in
disease mapping is where the data likelihood
is Poisson and there is a common relative
risk parameter with a single gamma prior
distribution:

p(θ | y) ∝ L(y | θ )g(θ )

where g(θ ) is a gamma distribution with
parameters α, β, i.e., G(α, β), and L(y | θ ) =∏m

i=1 {(eiθ )yi exp(−eiθ )} bar a constant only

dependent on the data. A compact notation
for this model is:

yi | θ ∼ Pois(eiθ )

θ ∼ G(α, β).

Here, the posterior distribution is again a
Gamma and one can sample from it by
simply employing a Gamma random number
generator.

Another useful mechanism for posterior
simulations when the posterior distribution
is not a standard family arises from the
principle of composition. This essentially
observes that the joint posterior distribu-
tion of two arbitrary parameter vectors,
say θ1 and θ2 can be expressed as
P(θ1, θ2 | y) = P(θ1 | y)P(θ2 | θ1, y). To
obtain samples from the above joint posterior
distribution, we first sample θ

( j)
1 from the

marginal posterior distribution P(θ1 | y) and
then sample a θ

( j)
2 from the conditional

posterior distribution P(θ2 | θ ( j)
1 , y)). Repeat-

ing this for j = 1, . . . , M results in a joint
posterior sample (θ j

1, θ
( j)
2 )M

j=1 of size M. We

illustrate this principle below using the linear
regression model mentioned in equation
(17.1) from a Bayesian perspective. Several
other examples can be found in the texts
by Carlin and Louis (2000) and Gelman
et al. (2004).

Let us suppose that we have data yi

from n experimental units, which forms our
dependent variable. Suppose also that we
have observed p covariates, x1i, . . . , xpi, on
the ith individual. Using matrix notations,
we write:

y = Xβ + e; e ∼ N(0, σ 2I)

where y is an n × 1 vector of observations,
X is a n × p matrix of independent
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predictors with full column rank (we assume
independent columns – so that covariates are
not collinear), β is a p×1 vector of regression
coefficients, and e is the n × 1 vector of
uncorrelated normally distributed errors with
common variance σ 2.

To construct a Bayesian framework, we
will need to assign a prior distribution for
(β, σ 2) in the above model. For illustration,
consider the non-informative or reference

prior distribution for (β, σ 2):

P(β, σ 2) ∝
1
σ 2 .

This is equivalent to a flat or Uniform prior
on (β, σ 2). In hierarchical language we write
the Bayesian linear regression model as:

y | β, σ 2 ∼ N(0, σ 2I)

β, σ 2 ∼ P(β, σ 2) ∝
1
σ 2 .

Simple computations (see, e.g., Gelman
et al., 2004, Section 14.2) reveal that the
marginal distribution p(σ 2 | y) is a scaled
Inv-χ2(n − p, s2) distribution, which is the
same as the Inverse-Gamma distribution
IG((n − p)/2, (n − p)s2/2) where:

s2 =
1

n − p
(y − Xβ̂)T (y − Xβ̂)

with β̂ = (XT X)−1XT y being the usual
least-squares estimate (also the MLE). The
distribution P(β | σ 2, y) is N(β̂, σ 2(XT X)−1).
In fact, here the marginal posterior
distribution for P(β | y) can be derived in
closed form as a multivariate-t distribution
(see, e.g., Robert, 2001) but we outline the
sampling-based perspective.

Following the principle of composition
sampling, we draw, say for j = 1, . . . , M,
σ 2( j) ∼ IG(n − p/2, (n − p)s2) followed
by β( j) ∼ N(β̂, σ 2j(XT X)−1). This yields
our desired posterior sample (β( j), σ 2( j))
with j = 1, 2, . . . , M. Posterior confidence
intervals and all inference will again be
carried out using these samples.

17.5. HIERARCHICAL MODELS

The idea that the values of parameters could
arise from distributions is a fundamental
feature of Bayesian methodology and leads
naturally to the use of models where
parameters arise within hierarchies. In the
Poisson-gamma example there is a two level
hierarchy: θ has a G(α, β) distribution at the
first level of the hierarchy and α will have a
hyperprior distribution (hα) as will β(hβ ), at
the second level of the hierarchy. This can be
written as:

yi | θ ∼ Pois(eiθ )

θ | α, β ∼ G(α, β)

α | ν ∼ hα(ν)

β | ρ ∼ hβ (ρ).

Clearly it is important to terminate a
hierarchy at an appropriate place, otherwise
one could always assume an infinite hierar-
chy of parameters. Usually the cut-off point
is chosen to lie where further variation in
parameters will not affect the lowest level
model. At this point the parameters are
assumed to be fixed. For example, in the
gamma-Poisson model if you assume α and
β were fixed then the Gamma prior would
be fixed and the choice of α and β would be
uninformed. The data would not inform about
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the distribution at all. However, by allowing
a higher level of variation i.e., hyperpriors for
α, β, then we can fix the values of ν and ρ

without heavily influencing the lower level
variation. This allows the data to inform more
about the different parameters in the lower
levels of the hierarchy.

17.6. MARKOV CHAIN MONTE
CARLO METHODS

Markov chain Monte Carlo (MCMC) meth-
ods are a set of methods which use iterative
simulation of parameter values within a
Markov chain. The convergence of this chain
to a stationary distribution, which is assumed
to be the posterior distribution, must be
assessed.

Prior distributions for the p components
of θ are defined as gi(θi) for i = 1, . . . , p.
The posterior distribution of θ and y is
defined as:

P(θ | y) ∝ L(y | θ )
∏

i

gi(θi). (17.4)

The aim is to generate a sample from
the posterior distribution P(θ | y). Suppose
we can construct a Markov chain with
state space θc, where θ ∈ θc ⊂ 5k . The
chain is constructed so that the equilibrium
distribution is P(θ | y), and the chain should
be easy to simulate from. If the chain is run
over a long period, then it should be possible
to reconstruct features of P(θ | y) from the
realized chain values. This forms the basis
of the MCMC method, and algorithms are
required for the construction of such chains.
A selection of recent literature on this area
is found in Ripley (1987), Besag and Green
(1993), Gelman et al. (2004), Gamerman
(2000) and Robert and Casella (2005).

The basic algorithms used for this
construction are:

1 the Metropolis and its extension, the Metropolis–

Hastings algorithm;

2 the Gibbs Sampler algorithm.

17.6.1. Metropolis and
Metropolis–Hastings
algorithms

In all MCMC algorithms, it is important to
be able to construct the correct transition

probabilities for a chain which has P(θ | y) as
its equilibrium distribution. A Markov chain
consisting of θ1, θ2, . . . , θ t with state space
7 and equilibrium distribution P(θ | y) has
transitions defined as follows.

Define q(θ , θ ′) as a transition probability
function, such that, if θ t = θ , the vector θ t

drawn from q(θ , θ ′) is regarded as a proposed
possible value for θ t+1.

17.6.2. Metropolis and
Metropolis–Hastings
updates

In this case choose a symmetric pro-
posal q(θ , θ ′) and define the transition
probability as:

p(θ ,θ ′)=






α(θ ,θ ′)q(θ ,θ ′) if θ ′ %=θ

1−
∑

θ ′′
q(θ ,θ ′′)α(θ ,θ ′′) if θ ′ =θ

where α(θ , θ ′) = min
{
1, P(θ ′ | y)/P(θ | y)

}
.

In this algorithm a proposal is generated
from q(θ , θ ′) and is accepted with probability
α(θ , θ ′). The acceptance probability is a
simple function of the ratio of posterior
distributions as a function of θ values.
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The proposal function q(θ , θ ′) can be defined
to have a variety of forms but must be an
irreducible and aperiodic transition function.

Metropolis–Hastings (M–H) is an exten-
sion to the Metropolis algorithm where
the proposal function is not confined to
symmetry and:

α(θ , θ ′) = min
{

1,
P(θ ′ | y) q(θ ′, θ )
P(θ | y) q(θ , θ ′)

}
.

Some special cases of chains are found
when q(θ , θ ′) has special forms. For
example, if q(θ , θ ′) = q(θ ′, θ ) then the
original Metropolis method arises and
further, with q(θ , θ ′) = q(θ ′) (i.e., when no
dependence on the previous value is
assumed) then:

α(θ , θ ′) = min
{

1,
w(θ ′)
w(θ )

}

where w(θ ) = P(θ | y)/q(θ ) and w(.) are
importance weights. One simple example of
the method is q(θ ′) ∼ Uniform (θa, θb) and
gi(θi) ∼ Uniform (θ ia, θ ib) ∀i; this leads to
an acceptance criterion based on a likeli-
hood ratio. Hence the original Metropolis
algorithm with uniform proposals and prior
distributions leads to a stochastic exploration
of a likelihood surface. This, in effect, leads
to the use of prior distributions as proposals.
However, in general, when the gi(θi) are not
uniform this leads to inefficient sampling.
The definition of q(θ , θ ′) can be quite
general in this algorithm and, in addition, the
posterior distribution only appears within a
ratio as a function of θ and θ ′. Hence, the
distribution is only required to be known up
to proportionality.

17.6.3. Gibbs updates

The Gibbs Sampler has gained consider-
able popularity, particularly in applications
in medicine, where hierarchical Bayesian
models are commonly applied (see, e.g.,
Gilks et al. (1993)). This popularity is
mirrored in the availability of software that
allows its application in a variety of problems
(e.g., WinBUGS, MLWin, BACC). This
sampler is a special case of the Metropolis–
Hastings algorithm where the proposal is
generated from the conditional distribution
of θi given all other θs, and the resulting
proposal value is accepted with probability 1.

More formally, define:

q(θj, θ
′
j ) =

{
p(θ∗

j | θ t−1
−j ) if θ∗

−j = θ t−1
−j

0 otherwise

where p(θ∗
j | θ t−1

−j ) is the conditional distribu-
tion of θj given all other θ values (θ−j) at time
t−1. Using this definition it is straightforward
to show that:

q(θ , θ ′)
q(θ ′, θ )

=
P(θ ′ | y)
P(θ | y)

and hence α(θ , θ ′) = 1.

17.6.4. M–H versus Gibbs
algorithms

There are advantages and disadvantages
to M–H and Gibbs methods. The Gibbs
Sampler provides a single new value for
each θ at each iteration, but requires the
evaluation of a conditional distribution. On
the other hand the M–H step does not require
evaluation of a conditional distribution
but does not guarantee the acceptance of
a new value. In addition, block updates
of parameters are available in M–H, but
not usually in Gibbs steps (unless joint
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conditional distributions are available). If
conditional distributions are difficult to
obtain or computationally expensive, then
M–H can be used and is usually available.

In summary, the Gibbs Sampler may
provide faster convergence of the chain if the
computation of the conditional distributions
at each iteration are not time consuming.
The M–H step will usually be faster at each
iteration, but will not necessarily guarantee
exploration. In straightforward hierarchical
models where conditional distributions are
easily obtained and simulated from, then
the Gibbs Sampler is likely to be favored.
In more complex problems, such as many
arising in spatial statistics, resort may be
required to the M–H algorithm.

17.6.5. Special methods

Alternative methods exist for posterior sam-
pling when the basic Gibbs or M–H updates
are not feasible or appropriate. For example,
if the range of the parameters is restricted
then slice sampling can be used (Robert
and Casella, 2005, Ch. 7; Neal, 2003).
When exact conditional distributions are not
available but the posterior is log-concave
then adaptive rejection sampling algorithms
can be used. The most general of these algo-
rithms (ARS algorithm; Robert and Casella,
2005, pp. 57–59) has wide applicability for
continuous distributions, although they may
not be efficient for specific cases. Block
updating can also be used to effect in some
situations. When generalized linear model
components are included then block updating
of the covariate parameters can be effected
via multivariate updating.

17.6.6. Convergence

MCMC methods require the use of
diagnostics to assess whether the iterative

simulations have reached the equilibrium
distribution of the Markov chain. There are
a wide variety of methods now available
to assess convergence of chains within
MCMC. algorithms (ARS algorithm; Robert
and Casella, 2005, pp. 57–59) provide
recent reviews. The available methods are
largely based on checking the distributional
properties of samples from the chains.

17.7. MODEL GOF MEASURES

It is inevitable that our statistical analysis
will entail the fitting and comparison of a
variety of models. For this purpose, we will
need to attend to issues concerning model
adequacy and model comparison. To compare
between the different models and perhaps
help us choose those that provide better
fits, we will use the Deviance Information
Criteria (DIC) (Spiegelhalter et al., 2002) as
a measure of model choice. The DIC has nice
theoretical properties for a very wide class of
likelihoods since it provides an estimate of
goodness-of-fit and for model complexity and
is particularly convenient to compute from
posterior samples. This criterion is the sum of
the Bayesian deviance (a measure of model
fit) and the (effective) number of parameters
(a penalty for model complexity). It rewards
better fitting models through the first term
and penalizes more complex models through
the second term, with lower values indicating
favorable models for the data. The deviance,
up to an additive quantity not depending
upon the parameters θ , is simply minus twice
the log-likelihood, D(θ ) = −2 log f (y | θ ),
where f (y | θ ) is the first stage likelihood for
the respective model. The Bayesian deviance
is the posterior mean, D(θ ) = Eθ | y[D(θ )],
while the effective number of parameters is
given by pD = D(θ )−D(6θ ). The DIC is then
given by D(θ ) + pD and is easily computed
from the posterior samples.



330 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

We also often use predictive fits to
assess model performance using the posterior
predictive distributions. We will employ the
posterior predictive loss approach (Gelfand
and Ghosh, 1998) to identify models pro-
viding the best fit. The actual computations
are very similar to the predictive paradigm
discussed towards the end of Section 17.2.
Here, for any given model, if θ is the
set of parameters, the posterior predictive
distribution of a replicated data set is
given by:

P(yrep | y) =
∫

P(yrep | θ ) P(θ | y) dθ

where P(yrep | θ ) has the same distribution
as the data likelihood. Replicated data
sets from the above distribution are
easily obtained by simulating a replicated
data set from the above distribution.
Preferred models will perform well
under a decision-theoretic balanced loss

function that penalizes both departure from
corresponding observed values (lack of
fit), as well as from what we expect the
replicates to be (variation in replicates).
Measures for these two criteria are
evaluated as G = (y − µrep)T (y − µrep) and
P = tr (Var (yrep) | y), where µrep = E[yrep | y]
is the posterior predictive mean for the
replicated data points, and P is the trace of
the posterior predictive dispersion matrix for
the replicated data; both of these are easily
computed from the samples drawn. Gelfand
and Ghosh (1998) suggest using the score
D = G + P as a model selection criterion,
with lower values of D indicating better
models.

Using these formal statistical methods, we
will be able to enhance the accuracy of
the outputs of computer models, compare
between them to validate an underlying
scientific hypothesis and provide predictions
of complex systems.

17.8. UNIVARIATE SPATIAL
PROCESS MODELS

17.8.1. Ingredients of a Gaussian
process

As briefly mentioned in the Introduction,
modeling of point-referenced spatial data
typically proceeds from a spatial random field
{w(s) : s ∈ D}, where D is typically an open
subset of 5d where d is the dimension; in
most practical settings d = 2 or d = 3.
We say that a random field is a valid spatial
process if for an any finite collection of
sites S = {s1, . . . , sn} of arbitrary size, the
vector w = (w(s1), . . . , w(sn)) follows a
well-defined joint probability distribution.

For the practical spatial modeller, the most
common specification is a Gaussian Random

Field (GRF) or a Gaussian Process (GP),
which additionally specifies that w follows
a multivariate normal distribution.
To be more specific, we write
w(s) ∼ GP(µ(s), C(·)) which is a Gaussian
Process with a mean function µ(s), i.e.,
E[w(s)] = µ(s), and a covariance function

Cov(w(s), w(s′)) = C(s, s′). This specifies
the joint distribution for a collection of
sites s1, . . . , sn as w ∼ N(µ, 6), where
µ = (µ(si))n

i=1 is the corresponding n × 1
mean vector and 6w = [C(si, sj)] is the
n × n covariance matrix with (i, j)th element
given by C(si, sj).

Clearly the covariance function cannot
be just any function: it needs to ensure that
the resulting 6w matrix is symmetric and
positive definite. Symmetry is guaranteed
as long as C(s, s′) is symmetric in its
arguments, while functions that ensure
the positive-definiteness are known as
positive definite functions. The important
characterization of such functions, at least
from a modeler’s perspective, says that a
real-valued function is a valid covariance
function if and only if it is the characteristic
function of a symmetric random variable
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(this is derived from a famous theorem due
to Bochner). Further technical details about
positive definite functions can be found in
Cressie (1993), Chilés and Delfiner (1999)
and Banerjee et al. (2004).

Since it is common for spatial data to
consist of single observations from a site,
we often need to assume stationary or
isotropic processes for ensuring estimable
models. Stationarity, in spatial modeling
contexts, refers to the setting when
C(s, s′) = C(s − s′); that is, the covariance
function depends upon the separation of
the sites. Isotropy goes further and specifies
C(s, s′) = C(‖s − s′‖), where ‖s − s′‖ is
the distance between the sites. Furthermore,
we will parametrize the covariance function
as C(s − s′) = σ 2ρ(s − s′), where ρ(s − s′)
is called a correlation function and σ 2 is
a spatial variance parameter. In particular,
we will use the the isotropic exponential
correlation function ρ(d, φ) = exp (−φd),
with d = ‖s − s′‖.

17.8.2. Bayesian spatial regression
and kriging

There is an expanding literature on modeling
point-referenced spatial data. The most com-
mon setting assumes a response or dependent
variable Y (s) observed at a generic location s,
referenced by a coordinate system (e.g.,
UTM or lat–long), along with a vector of
covariates x(s). One seeks to model the
dependent variable in a spatial regression
setting such as:

Y (s) = xT (s)β + w(s) + ε(s). (17.5)

The residual is partitioned into a spatial
process, w(s), capturing residual spatial
association, and an independent process,
ε(s), also known as the nugget effect,
modeling pure errors that are independently

and identically distributed as N(0, τ 2), where
τ 2 is a measurement error variance or micro-
scale variance. The key to incorporating
spatial association is by modeling w(s) as
a Gaussian Process with spatial variance
σ 2 and a valid correlation function ρ(·, ξ )
with ξ representing parameters that quantify
correlation decay and smoothness of the
resulting spatial surface.

When we have observations, y =
(Y (s1), . . . , Y (sn)), from n locations, we
treat the data as a partial realization of
a spatial process, modeled through w(s).
Hence, w(s) ∼ GP(0, σ 2ρ(·, φ)), is a
zero-centered Gaussian Process with
variance σ 2 and a valid correlation function
ρ(d, φ), which depends upon inter-site
distances (dij = ‖si − sj‖) and a parameter φ

quantifying correlation decay. Also, we
assume ε(s) are i.i.d. N(0, τ 2). Inferential
goals include estimation of regression
coefficients, spatial and nugget variances,
and the strength of spatial association thro-
ugh distances. Likelihood-based inference
proceeds from the distribution of the data,
y ∼ N(Xβ, 6), with 6 = σ 2R(φ) + τ 2I ,
where X is the covariance matrix and R(φ)
is the correlation matrix with Rij = ρ(dij, φ).
See Cressie (1993) for details, including
maximum-likelihood and restricted maximum-
likelihood methods, and Banerjee et al.
(2004) for Bayesian estimation.

Statistical prediction (kriging) at a new
location s0 proceeds from the conditional
distribution of Y (s0) given the data y.
Collecting all the model parameters into
θ = (β, σ 2, τ 2, φ, ν), we note that

E[Y (s0) | y] = x(s0)T β + γ T 6−1(y − Xβ)

(17.6)

Var [Y (s0) | y] = σ 2 + τ 2 − γ T 6−1γ

(17.7)
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where γ = (σ 2ρ(φ; d01), . . . , σ 2ρ(φ; d0n))
and d0j = ‖s0 − sj‖. Classical prediction
computes the BLUP (Best Linear
Unbiased Predictor) by substituting
maximum-likelihood estimates for the
above parameters. A Bayesian solution
first computes a posterior distribution
P(θ | y), where θ = (β, σ 2, τ 2, ξ ) is the
collection of all model parameters and
then computes the posterior predictive
distribution P(Y (s0) | y) by marginalizing
over (averaging over) the posterior
distribution,

∫
P(Y (s0) | y, θ ) P(θ | y).

A Bayesian framework is convenient here,
driving inference assisted by proper and
moderately informative priors on the weakly
identified correlation function parameters.
For example, for the smoothness parameter
in the Matérn covariance, ν, we can follow
Stein (1999) in assuming that the data
cannot distinguish ν = 2 and ν > 2, which
suggests placing a Unif (0, 2) prior on ν.
Usually a MCMC algorithm is required to
obtain the joint posterior distribution of the
parameters, but again there are different
strategies to opt for. For example, we may
work with the marginalized likelihood as
above, y | θ ∼ N(Xβ, σ 2H(φ) + τ 2I), or we
may add a hierarchy with spatial random
effects, w = (w(s1), . . . , w(sn)):

y | θ , w ∼ N(Xβ + w, τ 2I)

w ∼ N(0, σ 2R(φ)).

In either framework, a Gibbs sampler may
be designed, with embedded Metropolis or
slice-sampling steps, to obtain the marginal
posterior distribution (see, e.g., Banerjee
et al., 2004). Much more complex hierarchi-
cal models have been discussed extensively
in the spatial literature but, irrespective of
their complexity, they mostly fit into the
template we outlined above.

When we want to capture spatial and
temporal associations, modeling is accom-
plished by envisioning a spatial process
evolving through time. The literature in
spatiotemporal models is quite rich (see, e.g.,
Cressie, 1993; Banerjee et al., 2004, and
the references therein). Essentially, modeling
proceeds from a spatiotemporal process
w(s, t) in the above context, where s denotes
the location, and t denotes time. Of course,
appropriate assumptions on the covariance
function associated with w(s, t) have to be
made. A popular covariance specification for
spatiotemporal models is separability, which
models spatiotemporal correlation functions
as a product of a purely spatial and a
purely temporal covariance function. These
and other more general specifications may be
found in Banerjee and Johnson (2006).

17.8.3. Illustration

Interest lies in predicting the relative den-
sity of eastern hemlock across the Bartlett
Experimental Forest. Basal area per hectare1

of all tree species was estimated at each of
438 forest inventory plots distributed across
the domain of interest. The response variable
is the fraction of estimated eastern hemlock
basal area per hectare. Covariates include
elevation and six spring and fall Tasseled Cap
spectral components that were derived from
Landsat satellite images (Kauth and Thomas,
1976).

A spatial regression model (as in
equation (17.5)) was fitted to the data.
We employed flat priors for the regression
estimates β and, based on estimates
from initial descriptive analyses including
variograms (see, e.g., Banerjee et al., 2004),
we used inverted-gamma IG(2, 0.01) for both
the spatial variance σ 2 and the measurement
error variance τ 2. The maximum distance
between inventory plots is 4834.81 meters,
so a uniform prior on φ was set so that the
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effective range was less than 3000 meters.
Using these priors an MCMC algorithm
was devised to obtain posterior samples.
Gibbs updates were used for the regression
parameters β while Metropolis updates were
employed for spatial variance components
(σ 2, τ 2) and the spatial range parameter φ.

The CODA package in R (www.r-

project.org) was used to diagnose
convergence by monitoring mixing, Gelman–
Rubin diagnostics, autocorrelations, and
cross-correlations. Analysis was based on
three chains of 11,000 samples each. The
first 1,000 samples were discarded from
each chain as a part of burn-in. Subsequent
parameter estimation and analysis used the
remaining 30,000 (10,000 × 3) samples.

Table 17.1 presents the 95% central
credible intervals for the parameter estimates
based upon the posterior samples. All six
covariates are significant and perhaps explain
some of the spatial variation in the data,
as is indicated by the spatial variance σ 2

being smaller than the measurement error
variance τ 2. The spatial range is calcu-
lated as the distance beyond which the
correlation function drops below 0.05; for

the exponential correlation function this
is approximately 3/φ. Finally Figure 17.1
displays an image plot of the estimated
response surface overlaid with contours
of the estimated spatial random effects
(the w(s)s). The random effects serve to offset
the spatially varying density of the response
surface.

17.9. BAYESIAN MODELS FOR
DISEASE MAPPING

In previous sections we have alluded to a
simple Poisson model for disease counts. In
fact, this is the basic model often assumed
for small area counts of disease (in tracts, zip
codes, counties, etc.). We consider two data
resolutions here. First we consider case event
data where, within a suitable study region
(W ), realization of cases arises. The locations
of cases are usually residential addresses.
These form a spatial point process. Often
data is not available at this level of spatial
resolution and aggregation to larger spatial
units occurs. Aggregated counts of disease
are often more readily available (e.g., from

Table 17.1 Parameter estimates for the model covariates
elevation and spring and fall Tasseled Cap spectral components.
Lower table provides parameter estimates for error terms σ2

and τ2, spatial range φ, and associated effective range

Parameter Estimate: 50% (2.5%, 97.5%)

Intercept −0.262 (−0.954, 0.387)

ELEV −0.002 (−0.002, −0.001)

SPR-TC1 0.007 (0.001, 0.013)

SPR-TC2 −0.007 (−0.011, −0.003)

SPR-TC3 0.011 (0.006, 0.015)

FALL-TC1 −0.007 (−0.011, −0.003)

FALL-TC2 0.008 (0.004, 0.011)

FALL-TC3 −0.004 (−0.008, −0.001)

σ 2 0.009 (0.005, 0.016)

τ 2 0.014 (0.012, 0.018)

φ 0.002546 (0.001325, 0.005099)

Effective range (meters) 1178.448 (588.301, 2264.629)
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Figure 17.1 Contour lines of estimated spatial random effects overlayed on an image plot
of estimated relative density of eastern hemlock. Note, the random effects serve to offset
the spatially varying density of eastern hemlock.

official government sources). Hence, the
second common data type is disease count
data within small areas. These small areas
are arbitrary with respect to the disease
process (such as census tracts, counties,
postcodes) and form a sub-division of the
study region. In what follows we will briefly
consider case event data, but will concentrate
discussion on the more commonly available
count data type.

17.9.1. Case event data

Assume we observe within a study region
(W ), a set of m cases, with residen-
tial addresses given as {si}, i = 1, . . . , m.
Figure 17.2 displays an example of such data:
larynx cancer incident case addresses for a
fixed time period (see Lawson, 2006, Ch 1
for discussion). Here the random variable is
the spatial location, and so we must employ
models that can describe the distribution

of locations. Often the natural likelihood
model for such data is a heterogeneous
Poisson Process (PP). In this model, the
distribution of the cases (points) is governed
by a first-order intensity function. This
function, l(s) say, describes the variation
across space of the intensity (density) of
cases. This function is the basis for modeling
the spatial distribution of cases. we denote
this model as:

s ∼ PP(l(s)).

The likelihood associated with this model is
given by:

L =
m∏

i=1

l(si) exp {−
∫

W

l(u) du}
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Figure 17.2 Larynx cancer incident case address locations in NW England (1974–1983).

where l(si) is the first-order intensity
evaluated at the sample locations {si}.
This likelihood involves an integral of l(u)
over the study region.

In disease mapping studies, usually
the variation in disease relates closely to
the underlying population that is at risk for
the disease in question. This is known as the
at risk background. Hence any definition of
the intensity of cases must make allowance
for this effect. Any areas where there are lots
of at risk people are more likely to yield cases
and so we must adjust for this effect. Often
the intensity is specified with a multiplicative
link between these components:

l(s) = l0(s)l1(s | θ ).

Here the at risk background is represented
by l0(s) while the modeled excess risk of
the disease is defined to be l1(s | θ ), where

θ is a vector of parameters. In modeling we
usually specify a parametric form for l1(s | θ )
and treat l0(s) as a nuisance effect that
must be included. Usually some external data
is used to estimate l0(s) nonparametrically
(leading to profile likelihood). This data
relates to the local population density.
Alternatively, if the spatial distribution of
a control disease is available (see Lawson
and Cressie (2000) for more details), then
the problem can be reformulated as a binary
logistic regression where l0(s) drops out of
the likelihood. Denote the control disease
locations as {sj}, j = m + 1, . . . , m + n, and
with N = n + m, a binary indicator function
can be defined:

yi =
{

1 if i ∈ 1, . . . , m

0 otherwise

∀i, i = 1, . . . , N
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and the resulting likelihood is just given by:

L(s | θ ) =
N∏

i=1

[l1(si)]yi

1 + l1(si)
.

By conditioning of the joint set of cases and
controls the population effect is removed and
does not require estimation.

17.9.2. Parametric forms

Often we can define a suitable model for
excess risk within l1(s). In the case where
we want to relate the excess risk to a known
location (e.g., a putative source of pollution)
then a distance-based definition might be
considered. For example:

l1(s) = ρ exp{F(s)α + γ ds} (17.8)

where ρ is an overall rate parameter, ds is a
distance measured from s to a fixed location
(source) and γ is a regression parameter, F(s)
is a design vector with columns representing
spatially-varying covariates, and α is a
parameter vector. The variables in F(s) could
be site-specific or could be measures on the
individual (age, gender, etc.). In addition this
definition could be extended to include other
effects. For example we could have:

l1(s) = ρ exp{F(s)α + ην(s) + γ ds}

(17.9)

where ν(s) is a spatial process, and η is a
parameter. This process can be regarded as
a random component and can include within
its specification spatial correlation between
sites. One common assumption concerning

ν(s) is that it is a random field defined to
be a spatial Gaussian process.

In the intensity (17.8), all the variables
can be estimated using maximum likelihood.
However when a Bayesian approach is
assumed then all parameters have prior
probability distributions and so we would
need to consider sampling the posterior
distribution given by:

P1(α, η, γ | s) ∝ L(s | α, η, γ ) · P0(α, η, γ )

where P0(α, η, γ ) is the joint prior distribu-
tion of the parameters. Assuming indepen-
dent prior distributions for each parameter
component, i.e., P0(α, η, γ ) = gα1 (α1) ·
gα2 (α2) · gα3 (α3) . . . gη(η) · gγ (γ ), this model
can be sampled via standard MCMC algo-
rithms. In intensity (17.9), the spatial com-
ponent ν(s) would have a spatially correlated
prior distribution and so a Bayesian approach
would be natural.

17.9.3. Count data

Often only count data is available within a
set of small areas. Denote yi as the count
of disease within the ith small area where
i = 1, . . ., p. As in the case of case event data
we need to allow for the at risk population
in our models. This can usually be easily
achieved for count data since expected rates

or counts can be obtained or calculated
for small areas. For example, age × sex
standardized rates for census tracts, postal
zones, or zip codes are often available from
government sources. Denote these rates as
ei, i = 1, . . ., p. Also, in our model we
want to model the relative risk of disease
via the parameter θi, i = 1, . . ., p. The
relative risk will be the focus of modeling
and it is usually assumed that the {ei}
are fixed.
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The simplest model for such data is a
Poisson log linear model where:

yi ∼ Poiss(eiθi).

In addtion the relative risk θi is usually
modeled with a log link for positivity.
A simple example could be:

log θi = α0,

a constant. This model represents constant
area-wide risk and often the null hypothesis
aasumed by many researchers is that α0 = 0,
so that θi = 1. This represents the situation
where the underlying rate or count gener-
ates the risk directly (i.e., yi ∼ Poiss(ei)).
This would be applicable if there were no
excess risk in the study area. Of course this
is seldom reality and it is the alternative
hypotheses where θi have some spatilal
structure that is of interest in modeling.

Some examples of models currently
adopted for different applications can be
instructive:

Putative health hazard assessment
Usually in these applications some measure
of the association between small area counts
and a fixed location or locations is to be
made. This association could be via distance
or directional measures. For example, define
the distance from the ith small area centroid
to the source as di and the angle as ψi. A log
linear model for risk related to a source might
be of the form:

log θi = α0 + α1di + α2 cos(ψi − µ0)

+ α3 sin(ψi − µ0) + 9i.

Here, the directional component is summa-
rized by the cosine and sine terms in relation

to a mean angle parameter (µ0), while the
distance component is assumed to be log-
linearly related to risk. The final term 9i is
meant to repesent unattributed extra variation
in risk. This could include random effect
terms, such as:

9i = ui + νi

where each term could represent different
aspects of the extra variation. For example,
ui is often defined to have a correlated
prior distribution (and is called correlated or
structured heterogeneity (CH)), whereas νi

is often assumed to represent uncorrelated
heterogeneity (UH). The prior distributions
assumed for these terms are commonly:

νi ∼ N(0, τν)

(ui | · · · ) ∝
1

√
β

exp




−
∑

j∈∂i

wij(ui − uj)2






where wij = 1/2β ∀i, j. The neighborhood
∂i is assumed to be the areas with common
boundary with the ith area. The second of
these prior distributions assumes dependence
between neighboring areas. This distribution
is termed a conditional autoregressive (CAR)
prior distribution. It is an example of a
Markov random field. Note that in this
definition the parameter β controls the
spatial smoothness (or correlation) of the
component.

The posterior distribution can be specified
as follows:

P(u, v, β, τν, α | y) ∝ L(y | θ )

× f1(u)f2(v)f3(α)f (β)f (τν)

where f1(u) is the CAR prior distribution,
f2(v) is a zero mean normal distribution,
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f3(α) is the joint prior distribution for
the regression parameters, f (β) and f (τν)
are prior distributions for the remaining
parameters. Note that β and τν are hyper-
parameters and they have prior distributions
as could any hyperparameters within the
other prior distributions (f1, f2, f3). The prior
distributions for regression parameters are
often assumed to be independent and each
parameter is often assumed to have a zero
mean normal prior distribution.

Disease map reconstruction
Often the main aim of modeling disease inci-
dence is simply to provide a good estimate
of disease risk. This can be specified as the
relative risk within each region (θi). Hence
the aim is to provide an accurate estimate of
the true underlying risk within the map. Much
recent work has been focussed on this area of
concern, and many models and approaches
have been developed (see, e.g., Banerjee
et al., 2004, section 5.4; Lawson, 2006,
Chapter 8.0, Lawson (2008)). Typically a log
linear model with random effects is defined:

log θi = α0 + 9i where 9i = ui + νi.

Here the ui, νi terms are CH and UH defined
as above. This is often called the convolution
model and was originally proposed by Besag
et al. (1991). This model has proved to
be very robust against mis-specification of
the risk, although it can also over-smooth
rates. Lawson et al. (2000), Best et al.
(2005) and Hossain and Lawson (2006) have
provided recent simulation-based evaluations
of a range of methods in this area.

Ecological analysis
This area of focus arises when the risk within
a small area is to be related to a covari-
ate or covariates usually measured at the

aggregate level. Often the main issue relates
to making individual level inference from
aggregate data. Aggregation or averaging
induces biases in estimation of parameters
for models (see, e.g., Wakefield, 2004). The
modifiable areal unit problem (MAUP) is an
example of an aggregation-related inference
problem. Another problem that can arise
is the misaligned data problem (MIDP).
This arises when the spatial resolution of
covariates is different from the outcome
variable. The classic example of this would
be modeling cancer outcomes at zip code
level and relating these to groundwater
uranium measured at point locations (wells).
A fuller discussion of these issues can be
found in Banerjee et al. (2004). In general the
type of model assumed is often of the form:

log θi = xT
i β + zT

i ξ

where xT
i is a row vector of fixed covariate

values for the ith small area and β is a
corresponding parameter vector, and zT

i is a
row vector of random effects and ξ a unit
vector.

Surveillance
With recent concerns over bioterrorism
(Fienberg and Shmueli, 2005; Sosin, 2003;
Lawson and Kleinman, 2005), the focus of
disease surveillance has become important.
Essentially this focus concerns the moni-
toring of disease incidence with a view to
detecting aberrations or unusual incidence
events. This often requires the monitoring of
large scale databases of health information.
In addition, the focus of the monitoring could
be a range of effects. There could be a need
to find clusters of disease on maps or change
points in time series or some mixture of these
effects in space–time. Detection of change
in multiple time and spatial series is the
focus. This is a challenging area that requires
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the use of fast computational algorithms
and novel spatial-sequential inference. In
essence, a range of models found in equa-
tions (17.1)–(17.3) above may need to be
examined simultaneously in this analysis.

17.9.4. Example

Here we examine briefly an example of
relative risk estimation. The example consists
of the South Carolina incidence of congenital
anomalies deaths by county for 1990. This
has also been examined in Chapter 6 of
Lawson et al. (2003). Figure 17.3 diplays the
standardised mortality ratio for this disease
for 1990. We are concerned to estimate the
true relative risk underlying these county
rates. To achieve this we propose a log linear
model for the risk in each area. Hence we
assume the likelihood:

yi ∼ Poiss(eiθi)

and then a log linear model of the form

log θi = α0 + 9i where 9i = ui + νi.

The two effects have the following prior
distributions:

ui ∼ CAR(uδi , τ/nδi )

where δi is the neighborhood of the ith area,
uδi is the mean of ui in the neighborhood,
and nδi is the number of neighbors, τ is the
variance, and

νi ∼ N(0, κ)

where κ is the variance. Now α0 is assumed
to have a uniform prior distribution on a
large range, while the τ and κ are variances
and their inverses (precisions: 1/τ, 1/κ)
have gamma prior distributions with fixed
parameters (shape: 0.5, scale: 0.0005). There
is some debate currently about how infor-
mative such hyperprior distributions are
(see, e.g., Gelman, 2005). In fact it is
always recommended that sensitivity to prior
assumptions be examined in any application.
The Bayes estimate of the relative risk is the
posterior expected value of relative risk for
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Figure 17.3 Congenital anomalies deaths, standardized mortality ratio, South
Carolina, 1990.
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each region. This can be obtained from a
posterior sample by averaging the converged
sample output. The estimates of the relative
risk for the congential abnormalities data
are displayed in Figure 17.4. The posterior
probability of θi > 1 over the whole map is
shown in Figure 17.5 Note that this quantity
can be used to assess whether ther are any
areas of ‘significant’ risk elevation on the
map. For more details of this example see
Lawson et al. (2003: chapter 6).

17.10. SOFTWARE FOR BAYESIAN
MODELING

Posterior sampling is the commonest
approach to Bayesian inference. There is
now a range of software that can peform
this task. The best known of these is the
free software WinBUGS (downloadable
from www.mrc-bsu.cam.ac.uk/bugs/). This
package employs both Gibbs sampling and
Metropolis–Hastings updating methods for a
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0.3721–0.8230

0.8231–1.4410

1.4411–2.2180

2.2181 and over

Figure 17.4 Posterior expected relative risk estimates for the congenital abnormalities data
for South Carolina, 1990.
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Figure 17.5 Posterior probability of exceedance (Pr (θi > 1)) for the South Carolina
congenital abnormalities data.
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wide range of models. The package also has
a wide range of online runnable examples
and has a GIS tool called GeoBUGS that
allows mapping of small area data and
parameter estimates, as well as spatial
modeling of various kinds. Bayesian Kriging
and both CAR and multivariate CAR models
can be fitted using this package. Facilities
also exist within R (e.g. packages such
as bayesm, geoR, geoRglm, MCMCpack,
mCmC, spBayes etc.) and MATLAB
(spatial statistics toolbox) to perforn MCMC
computations for Bayesian spatial models.
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NOTE
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1.37 meters from the ground. Basal area per hectare
is the sum of all the basal area per tree in the hectare.
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18
Monitoring Changes in

Spatial Patterns

P e t e r A . R o g e r s o n

18.1. INTRODUCTION

The tools of spatial analysis have long
been used to study the characteristics of
geographic patterns. Central to this effort has
been the application of statistical tools to test
the null hypothesis of spatial randomness.
Interest in the spatial distribution of species
within the field of ecology gave rise to
some of the earliest approaches, including
the nearest neighbor statistic for use with
point data (Skellam, 1952; Clark and Evans,
1954) and the quadrat approach for use with
counts of events lying within predefined
subregions (see Blackman (1935) for an early
application).

As the field of spatial analysis has
developed, other statistical measures and
tests for geographic pattern have become
popular. Moran’s I (1950) is of special note,

owing to its widespread use and popularity.
The use of K-functions to assess the nature of
point patterns over a range of spatial scales
(Ripley, 1976) and kernel density methods
to visualize the spatially-varying intensity of
variables are now in common use (see Bailey
and Gatrell (1995) and Waller and Gotway
(2004) for reviews).

While the majority of early approaches
relied upon a single, global statistic to
evaluate the null hypothesis of spatial ran-
domness, there has been more recent interest
in local statistics; these are the location-
specific components of global statistics that
allow one to test whether spatial association
exists in the vicinity of a particular location
(see, e.g., Anselin, 1995; Getis and Ord,
1992; Ord and Getis, 1995).

Many of the more recent developments in
the statistical analysis of spatial patterns have
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taken place within the field of epidemiology,
where there is interest in the detection
of geographic clusters. Besag and Newell
(1991) suggest three categories for these
statistical approaches. In addition to the
global and local statistics outlined above
(referred to by Besag and Newell as general
and focused tests, respectively), they note
that there is a separate category for tests for

the detection of clustering. While global tests
lead to acceptance or rejection of a specified
null hypothesis (perhaps one of spatial
randomness, but more realistically, one where
the observed spatial distribution of cases is
compared with an expected distribution based
upon population distribution and possibly
other covariates), they do not indicate the
size and/or location of geographic clusters.
Similarly, local tests are limited in the sense
that they evaluate only one location. A test
for the detection of clustering may essentially
be viewed as a set of local tests (where one
or more specifications of potential cluster
size are made for many locations within the
study area). Scan statistics (Kulldorff and
Nagarwalla, 1994), and the maximum of
smoothed Gaussian random fields (Rogerson,
2001) fall into this category, where the
extreme local statistic is assessed, and the
multiple hypothesis testing associated with
carrying out many local tests is accounted for.

Like other subfields of spatial analysis,
interest in the statistical analysis of spatial
patterns and the development of statistical
methods for cluster detection has grown
rapidly in the last decade. Waller (Chapter 16
in this volume) provides a review of many of
these developments and related issues.

Spatial statistical tests of null hypotheses
are almost always carried out on a single set
of data; the hypothesis is accepted or rejected,
and ideally the size and location of significant
geographic clustering is revealed. However,
there are many situations where repeated
tests of this type are required. Imagine the
crime analyst, who, each month, receives a

new map of burglaries, or the epidemiologist
who maps the locations of new cancer cases
each year. A market researcher may wish to
assess the degree to which customers cluster
around a store, and it may be of particular
interest to monitor this each month, based
upon new sales data. If statistical tests are
simply carried out each time a new map
is available, the multiplicity of tests will
increase the likelihood that a false declaration
of significance is made. For instance, if
20 tests are carried out using a Type I error
probability of 0.05, we can expect to find
on average one false rejection of the null
hypothesis among the 20 tests.

In this chapter we describe and review
the use of statistical approaches designed for
carrying out repeated tests concerned with the
evaluation of spatial patterns. The common
objective of such repeated tests is the quick
detection of geographic change (where most
commonly the goal is to find new, emergent
clusters as quickly as possible). It can be
noted that this objective of prospective,
quick detection of temporal change in spatial
pattern differs from that of retrospectively
finding space–time interaction in a set of
data using a single test such as those
outlined by say Knox (1964), Mantel (1967),
or Raubertas (1988).

The development of methods for the
surveillance or monitoring of spatial patterns
has received much of its impetus during the
last few years from intense interest in surveil-
lance for bioterrorism, and following from
that, interest in public health surveillance.
The recent reviews of outbreak detection
algorithms (Buckeridge et al., 2005) and
control charts for public health surveillance
(Woodall, 2006) include discussions of spa-
tial considerations in surveillance and sum-
marize the many recent advances in this area.
In addition, Chapter 9 of Lawson (2001) and
the more recent collection of contributions
edited by Kleinman and Lawson (2005) also
attest to the growing importance of this field.
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The remainder of the chapter is structured
as follows: Section 18.2 describes and
reviews the use of the methods of statistical
process control; these methods have been
developed primarily within an industrial
context for the quick detection of change
in industrial processes and product quality.
They are appropriate for monitoring an
outcome variable for a single region, and
they lie at the core of many approaches
to spatial surveillance. The focus is upon
cumulative sum methods in particular, due
to both their optimality properties and their
widespread use both in temporal public
health surveillance and in many early
attempts at spatial surveillance. Section 18.3
gives a very brief history of the recent
development of interest in the methods
of spatial surveillance. The intent here is
to indicate some of the early approaches
and some of the general perspectives taken
in various attempts to monitor geographic
patterns; no attempt is made to be compre-
hensive. Section 18.4 describes how these
statistical process control methods have been
adopted for use with spatial statistics to
carry out surveillance for potential changes
in geographic patterns.

18.2. STATISTICAL PROCESS
CONTROL FOR TEMPORAL
SEQUENCES OF
OBSERVATIONS

18.2.1. Shewhart charts

The majority of statistical approaches for
spatial surveillance have their methodologi-
cal roots in the field of statistical process con-
trol. Industrial processes are often monitored
so that various process parameters stay within
tolerable limits, and so that manufactured
products maintain acceptable quality. Control
charts for such purposes were developed
by Shewhart in 1924. In a straightforward

application of Shewhart charts, sequential
observations are plotted on a chart that
has both a centerline corresponding to the
assumed process mean, and upper and
lower control limits, usually corresponding
to plus and minus three standard deviations
from the mean, respectively. If data come
from a standard normal distribution, an
observation outside of the control limits
of plus or minus three would be observed
once every 370 observations on average,
since the tail area of a normal distribu-
tion lying outside three standard devia-
tions is approximately equal to 1/370. One
possible rule for declaring a process to be
out-of-control, therefore, could be to do so
when an observation is observed outside of
the control limits; the average run length
(i.e., number of observations) until an alarm
is declared, when the process is in control
(designated ARL0), would be 370. Since this
procedure would declare alarms for single,
outlying observations, various alternative
rules are also commonly implemented –
for example, some users advocate declaring
an out-of-control alarm if there are nine
consecutive observations on one side of
the mean (see, e.g., Nelson (1984) for this
and other suggested rules). For normally
distributed observations, the control limits for
a Shewhart chart can easily be redefined to
be consistent with a desired value of ARL0.
For example, suppose that false alarms were
desired only once every 700 observations.
The standard normal score associated with a
two-tail area of 1/700 (i.e., an area of 1/1,400
in each tail) is found to be 3.19, and so
upper and lower control limits would be set
at ±3.19 standard deviations.

18.2.2. Cumulative sum
(CUSUM) charts

Although Shewhart charts are straightforward
to employ, and they are good at detecting
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large changes from the process mean, they are
not as sensitive as other methods at detecting
smaller and therefore more subtle deviations
from the baseline process. The cumulative
sum (CUSUM) chart was introduced by Page
(1954); the approach consists of maintaining
the cumulative sum of deviations between
observed and expected values. Cumulative
sum methods are covered in detail by
Hawkins and Olwell (1998). For the partic-
ular example of standardized, independent,
normally distributed observations (zt), the
one-sided cumulative sum at time t, St , is:

St = max(0, St−1 + zt − k)

where k is a parameter chosen to be equal
to one-half the size of the deviation that
is expected when the process goes out of
control. In this example, the expected value
of each observation is equal to zero (since
observations have been standardized), and
it is easy to see that the cusum is, more
precisely, the cumulative sum of deviations
for observations that exceed their expectation
by more than k standard deviations. The
parameter k is almost always chosen in
this case to be equal to ½; this choice
minimizes the time it will take to detect a one
standard deviation increase in the mean of
the process. An alarm indicating an increase
in the underlying mean of the process is
declared when the cumulative sum exceeds
some predefined threshold, h (i.e., St > h).
The threshold is chosen in conjunction with
a desired value of ARL0; for the case
of k = ½, Rogerson (2006) provides the
following formula:

h ≈
ARL0 + 4
ARL0 + 2

ln
(

ARL0

2
+ 1

)
− 1.166.

(18.1)

For other choices of k in the range
1/

√
ARL0 ≤ k ≤ 1 one can use the more

general

h≈
2k2ARL0 +2
2k2ARL0 +1

ln
(

2k2ARL0

2k
+1
)

−1.166.

(18.2)

The Shewhart chart is a special case of the
cusum chart, where k is equal to the Shewhart
control limit and h = 0.

There is a tradeoff between the rate of
false alarms and the ability to detect change
when it actually occurs; the higher the value
of ARL0 (and hence the lower the false
alarm rate), the greater will be the time
until true change is detected (as signified by
ARL1, the average number of observations
until an alarm is signaled, once change has
occurred). Moustakides (1986) shows, and
Frisen and Sonesson (2005) note, that the
cusum approach minimizes the maximum
expected delay until an alarm is sounded, for
a particular changepoint.

Cusums for Poisson data
Regional data to be used for monitoring are
often not normally distributed. For example,
counts of disease or crime incidents are often
taken to have a Poisson distribution. Lucas
(1985) gives the Poisson cusum as:

St = max(0, St−1 + yt − k)

where yt is the count at time t. If the expected
count is constant and equal to l0, the value
of k is:

k =
l1 − l0

ln l1 − ln l0

where it is desired to detect an increase
in the Poisson parameter from l0 to l1 as
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quickly as possible. Lucas gives tables for the
threshold h, which is determined from both
k and the analyst’s choice of the in-control
average run length, ARL0.

An alternative approach is to attempt to
transform the Poisson counts to normality.
Rossi et al. (1999) find that the following
transformation converts the data, approxi-
mately, to a standard normal distribution:

zt =
yt − 3l0 + 2

√
l0yt

2
√

l0
.

Rogerson and Yamada (2004) give examples
however showing that this transformation
may be unreliable when l0 < 2. In addi-
tion, Hawkins and Olwell (1998) note that
detection times are shorter when cusums
designed for the distribution are employed,
in comparison with cusums based upon
transformations to normality.

Situations where the expected count
remains constant over time are unusual; dis-
ease counts might be expected to vary season-
ally, or exhibit other temporal trends. The use
of transformations to normality allows such
temporally-varying expectations to be easily
handled. Alternatively, the Poisson cusum
can itself be generalized to handle changing
expectations (see Hawkins and Olwell, 1998;
Rogerson and Yamada, 2004).

Cusums for exponential data
Quicker detection of increases in the rate
of rare events can often be achieved by
monitoring the times between events (Wolter,
1987; Gan, 1994). For a random process,
the times between events are exponentially
distributed:

f (x) = θ exp (−θx)

where 1/θ is the mean time between
events.

To detect a decrease in the mean time
between events (and hence an increase in
θ from, say, θ0 to θ1), one can use the
exponential cusum:

St = max(0, St−1 − xt + k)

where xt is the time between events, and:

k =
θ1 − θ0

ln(θ1θ0)
.

Rogerson (2005) derives the approximate
threshold associated with a desired ARL0

by first transforming the problem into one
having an in-control parameter of θ =1; this is
achieved by dividing each observation by θ 0.
The normalized out-of-control parameter is
then θ̃1 = θ1/θ0. The threshold is then
given by:

h ≈
(q + 2) ln(q + 1)

(q + 1) ln(θ̃1)
− 1.33

where:

q = ARL0 ln(θ̃1)|1 − k|.

18.2.3. Other methods for
temporal surveillance

The exponentially weighted moving average
(EWMA) chart was introduced by Roberts
(1959) and is discussed further by Hunter
(1986) and by Lucas and Saccucci (1990);
it is based upon the quantities:

zt = (1 − l)zt−1 + lxt
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where xt is the observation at time t and l

is a parameter that dictates the importance
of dated information. An alarm is signaled at
the first time when the value of zt exceeds a
time-varying threshold that over time reaches
an asymptotic limit. In the special case of
l = 1, only current information is used, and
the method is identical to the Shewhart chart.

The Shiryaev–Roberts method, based upon
contributions from Shiryaev (1963) and
Roberts (1966), can be derived as a special
case of a likelihood ratio method with a
noninformative prior distribution on the time
of the changepoint (Frisen and Sonesson,
2005). This approach minimizes the expected
time until an alarm following a change.

Many other approaches to temporal
surveillance exist; these range from simple
calculations of historical limits that are
empirically based upon recent data, to sophis-
ticated use of time series analysis – these are
reviewed by Farrington and Beale (1998),
and more recently by Le Strat (2005).

18.3. SPATIAL SURVEILLANCE

18.3.1. Brief overview of the
development of methods
for spatial surveillance

Like recent developments in spatial cluster
detection, many of the recent developments
in the monitoring of spatial patterns have
occurred within the field of public health.
Raubertas (1989) was one of the first to
outline how statistical approaches to spatial
surveillance could be developed, and he did
so in the context of disease surveillance.

Raubertas employed cumulative sum
methods to suggest how disease monitoring
for a particular region within a study area
could be carried out. Monitoring is based
upon forming a weighted sum of the number
of cases occurring both in the region of

interest and in the surrounding regions.
The weights define the spatial structure of
the alternative, and should be matched as
closely as possible with the definition of any
presumed cluster. The weights for example
might decline as the distance from the
region of interest increases. For each time
period, the weighted sum of observations is
compared with expectations, and deviations
are cumulated; if these deviations exceed a
pre-specified threshold, an alarm signaling a
possible increase in disease in the vicinity of
the region of interest is sounded. Raubertas
notes some of the complications that
arise when one wishes to monitor several
regions simultaneously, since there will
be correlation in the monitoring statistics
obtained for regions that are close to
one another (since they will have shared
neighborhoods).

Statistical process control approaches to
spatial surveillance may be categorized into
those that maintain separate, local charts
for each region (where, like Raubertas’,
the regional chart may possibly include
information from a defined neighborhood
around the region), and those that monitor
a single, global spatial statistic.

As an example of the latter category,
Rogerson (1997) also uses cumulative sum
methods to monitor temporal changes in a
global spatial statistic (specifically, Tango’s
1995 statistic). Each time a new case is
observed, Tango’s statistic is updated and the
resulting statistic is then compared with the
expectation of the statistic (conditional upon
the previous value of the statistic, before
the new case was observed) under the null
hypothesis of no raised incidence in any
subregion. An alarm is sounded, indicating
a significant change in the global statistic,
if deviations between observed and expected
statistics cumulate sufficiently.

Kulldorff (2001) has extended his spatial
scan statistic to the case of prospective
disease surveillance, by considering the
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likelihood of the observed number of events
in space-time cylinders (where the vertical
axis represents time, and the horizontal
plane represents a region and its surrounding
neighborhood), under the null hypothesis.
The spatial scan statistic (Kulldorff and
Nagarwalla 1994) is based upon the like-
lihood ratio associated with the number
of events inside and outside of a circular
scanning window. The numerator of the ratio
is associated with the hypothesis that the
rates inside and outside of the rate are
different, and the denominator of the ratio
is associated with the null hypothesis that
the rates inside and outside of the window
are the same. Likelihood ratios are found
using circular scanning windows of various
sizes, and the window moves, to scan over
space. The most unusual window under the
null hypothesis is the one displaying the
maximum likelihood ratio. This maximum
observed ratio is compared with ratios
that are simulated by assuming the null
hypothesis to be true; if for example the
maximum observed ratio is greater than
95% of the simulated ratios, the cluster is said
to be significant using α = 0.05.

For disease surveillance, the circular scan-
ning windows become cylinders with time on
the vertical axis, where the top of the cylinder
represents the most recent time period. To
find space-time clusters as the cylinders
grow vertically with the progression of time,
the maximum likelihood ratio concept is
simply generalized. At each time period, the
likelihood of the most interesting cylinder
(i.e., the one with the highest likelihood
ratio) is compared with the likelihood of
the most interesting cylinder generated from
many simulations of the null hypothesis. The
popularity of the method has been aided by
freely available software (SatScan), available
at www.satscan.org.

Kleinman et al. (2004) model the count of
cases in a small region using covariates in
a generalized linear mixed model (Breslow

and Clayton, 1993) for an historical period.
In particular, they use a logistic equation
to model the probability that a particular
individual is a case. Next, they use the
coefficient estimates to derive the expected
probability that an individual becomes a
case during the next time period. Statistical
significance is achieved if the observed count
of cases is unlikely to have occurred using a
binomial distribution based upon the number
of individuals and the predicted probability
resulting from the model.

Other approaches to spatial surveillance
include distance-based methods (see, e.g.,
Forsberg et al., 2005), and perspectives
that adopt more of a model-based than
a statistical hypothesis testing perspective
(Lawson, 2005).

18.3.2. Spatial issues in spatial
surveillance

One way to monitor variables for a set of
regional subunits is to maintain a separate
cusum chart for each subunit. An immediate
issue that arises in the context of monitoring
across a set of regional subunits is how
to properly account for the multiple testing
across spatial units. If cusum control charts
are kept for each region, the average run
length between false alarms will be less than
that implied by the threshold derived for each
chart (which is based upon the desired ARL).
Thus if thresholds for each chart are chosen
using a desired ARL0 of 100, the mean time
until the first alarm on at least one of the
charts will be less than 100. More precisely,
the average run length between false alarms
for a set of m charts (one for each region),
ARL∗

0, will be

ARL∗
0 =

1
1 − (1 − 1/ARL0)m

.
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This is based upon the fact that the time
between false alarms has an exponential
distribution (Page, 1954), and hence the prob-
ability that any single observation leads to a
false alarm is 1/ARL0. Alternatively stated,
the ARL to use on each chart is given by:

ARL0 =

[

1−
(

1−
1

ARL∗
0

)1/m
]−1

(18.3)

where, again, ARL∗
0 is the desired time

between alarm investigations. A computa-
tionally simpler way to account for the
simultaneous monitoring of the m charts is
to use a Bonferroni-type adjustment; instead
of using Equation (18.3) to determine the
threshold for each chart, the quantity:

ARL0 = m ARL∗
0 (18.4)

is used. Thus if there are m = 10 regional
units and a desired time between false alarms
of ARL∗

0 = 100, the threshold for each chart
is found using ARL0 = 10 (100) = 1000,
together with equation (18.1) or (18.2).

This type of adjustment is appropriate
and will yield the desired ARL when
(a) no spatial autocorrelation in the regional
variables exists, (b) when all regions are in
control, and (c) there is a desire to monitor
individual regions, and not neighborhoods
around regions. However, Equations (18.3)
and (18.4) will often lead to thresholds that
are too conservative (i.e., thresholds that are
too high). One reason for this is that not
all m regions may be ‘in-control’; we only
require a threshold and false alarm rate that
have been adjusted for the number of in-
control regions (which is unknown, but is
less than or equal to m). When a region
goes out of control, other (e.g., surrounding
regions) may simultaneously go out of

control. This suggests that the adjustments
for multiple testing may be too severe, and
recent developments in the area of multiple
testing can be used to lower the thresholds
(for a review, see Castro and Singer, 2006).
A second reason that equations (18.3) and
(18.4) can be conservative is that they assume
that the m regional charts are independent.
More commonly, regional charts may exhibit
spatial dependence; a cusum chart for one
region may look a lot like a chart for a nearby
region. Finally, if emergent clusters might
exceed the size of regional subunits, this
will provide a rationale for monitoring local
statistics for neighborhoods around regions.

Maintaining separate charts for each region
is a directional scheme; the approach will
work very well when the actual change
occurs in one of the regions (and not,
for example, combinations of regions), but
can lose considerable power in detecting
change quickly when changes in other
directions occur. If, for example, an increase
occurs in a neighborhood containing several
regions (corresponding to several charts), this
approach will not be as effective and can
yield longer times to detection than other
methods.

In the next section, we examine some alter-
native approaches to multiplicity adjustment.

Monitoring a single local statistic
Suppose that there is no spatial autocorrela-
tion in the regional values being monitored,
and that we suspect that when change occurs,
it will occur in the form of increases in
a subset of regions comprising a neighbor-
hood. There are at least two ways forward
if our objective is to detect this increase
quickly:

1 Keep a single chart for the variable consisting of

a weighted sum of the regional values (similar to

the suggestion of Raubertas).
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2 Use the approach of Healy (1987), which is

optimal for quick detection of change in a single,

hypothesized direction.

While these approaches should give iden-
tical results under the conditions specified,
Healy’s approach is more general, since
it can also handle the situation where
the underlying variables are correlated.
Specifically, when the variance–covariance
matrix associated with the regional values is
designated 6, the following cumulative sum
based on vectors of regional observations (xt)
is optimal for detecting a change in mean
from µG to µB, where these latter quantities
are vectors of regional values for the good,
in-control, and bad, out-of-control means,
respectively:

St = max(0, St−1 + a′(xt − µG) − 0.5D)

where:

a′ =
(µB − µG)′6−1

{(µB − µG)′6−1(µB − µG)}1/2

and:

D =
√

(µB − µG)′6−1(µB − µG).

Monitoring many local statistics
simultaneously
ow suppose that we wish to carry out surveil-
lance of several such local statistics simulta-
neously. We could either keep a Raubertas-
type chart for each local statistic, or, more
generally (since it is possible to account
for underlying spatial autocorrelation in the
regional values), keep a Healy-type chart for
each region. Consider first the special case

where 6 = I; the Healy and Raubertas charts
will be identical. An important issue is the
adjustment for multiplicity; using individual
thresholds for each chart based upon mARL
would be too conservative, since the charts
will be correlated (nearby local statistics will
be similar, since they use shared regional
values). On the other hand, thresholds based
on ARL alone would be too liberal, unless the
charts for all local statistics were identical. It
is of interest to find the number of effectively
independent charts (say, e); in that case each
individual threshold could then be based
upon e(ARL).

Let the regional variables be denoted by
{yi} and the local statistic to be monitored
by {zi}. Rogerson (2005) suggests that
a Gaussian kernel be used to define the
neighborhood weights:

zi =
∑

j

w′
ij yj

w′
ij =

wij√∑
j

w2
ij

wij =
1

√
πσ

exp

(
−d2

ij

2σ 2(A/m)

)

where A is the size of the study area, and
where σ is the width of the Gaussian kernel,
expressed in terms of multiples of the square
root of the average regional area. Then one
possibility is to use the following for an
estimate of e:

e =
m

1 + 0.81σ 2 .

This is based upon results reported in
Rogerson (2001), who modified the work
of Worsley (1996) on the use of Gaussian
random fields to find the probability that
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specified thresholds were exceeded anywhere
in the study area by at least one local
statistic.

Although this idea gives results that are
similar to those found through Monte Carlo
simulation, the adjustment is based upon the
(static) correlation between regional local
statistics observed at a single point in
time. In practice, the cusum charts being
maintained for each regional local statistic
will have correlations that are not necessarily
the same as this static correlation. Any
adjustments to chart thresholds should ideally
be based upon the probabilities of charts
jointly signaling. Additional approaches to
monitoring data from multiregional systems
include methods designed for multivari-
ate surveillance (Rogerson and Yamada,
2004) and monitoring regional maxima
(Rogerson, 2005).

18.4. SUMMARY

The prospective surveillance of geographic
patterns, based upon incoming streams of
spatial data, is a field that has grown
rapidly in the last decade. This growth has
been motivated largely through interest in
public health surveillance. There are also
many potential applications in other areas,
including applications to crime analysis
(where there is interest in emerging areas
of criminal activity), and in marketing,
where the spatial pattern of customers in a
competitive retailing environment could be
monitored.

This chapter has only touched upon
some of the major approaches and issues.
The reader interested in investigating the
topic further may find the edited collec-
tion of Kleinman and Lawson (2005), and
the software GeoSurveillance (available at
wings.buffalo.edu/∼rogerson) of interest.
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19
Case-Control Clustering for

Mobile Populations

G e o f f r e y M . J a c q u e z a n d J a y m i e R . M e l i k e r

The effect of [human] mobility could be a
time–space lag between causes and effects that
makes conventional mapping spurious.

A. Shaerstrom (2003)

19.1. INTRODUCTION

Traditionally, geographic clustering tech-
niques have concerned themselves with
static spatial distributions in which human
mobility is ignored. For example, within the
case-control framework, place-of-residence
at time of diagnosis or death is often
analyzed even though there may be a
substantial space time lag or latency between
timing of causative exposures and disease
diagnosis. The few techniques currently
available for accounting for human mobility

when assessing case-clustering often do not
adequately account for known risk factors
(e.g., smoking), covariates (e.g., age, gender,
race, education, etc.) and the space–time
lag between exposure and disease. This
chapter is based closely on two previous
papers published by our research group
(Jacquez et al., 2005, 2006). It provides
background on human mobility and its
implications in disease clustering, and then
offers an approach for analyzing case-
control data for mobile individuals that
addresses latency and incorporates covariates
and other risk factors in the analysis.
Called Q-statistics, this approach is used for
analyzing clustering in case-control data for
mobile individuals. An example analysis of
bladder cancer in southeastern Michigan is
presented within an inductive framework in
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which the plausible explanatory hypotheses
are first enumerated and then systematically
evaluated. We demonstrate that clustering
of residential histories of bladder cancer
cases is only partially explained by smok-
ing, age, gender, race, and education. We
also identify clusters of unexplained risk
(focused clusters) surrounding the business
address histories of 22 industries whose
reported emissions and/or business processes
release known or suspected bladder cancer
carcinogens. The methods developed and
demonstrated in this chapter provide a sys-
tematic approach for evaluating increasingly
realistic alternative hypotheses regarding the
identification and explanation of clusters in
case-control data.

19.1.1. A historical perspective on
human mobility

Recent generations have seen an expo-
nential increase in human mobility (Cliff
and Haggett, 2003) and a global shift in
the population distribution such that cities
and developing countries are growing the
fastest. Geographical space has collapsed,
and travel times have fallen exponentially
from the 1800s to the present (Davies,
1964). Improved transport and population
growth have contributed to changing travel
patterns, as exemplified by Figure 19.1
which illustrates the increasing size and
complexity of travel networks over four
male generations of the same family

(a)

(b)

(c) (d)
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Figure 19.1 Exponential increase in lifetime distances traveled over generations of males
from great grandfather (A), grandfather (B), father (C), and son (D). From Bradley (1988),
with kind permission of Dr. Bradley and Springer Science and Business Media.
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(Bradley, 1988). The lifetime travel-track of
the great-grandfather remained within 40 km
of a village in Northamptonshire, whereas
the grandfather ranged throughout southern
England as far as 400 km. The father traveled
throughout Europe to a scale of 4000 km and
the son was a global traveler, reaching a
scale of 40,000 km. Although this is only one
illustrative example, it demonstrates what
is commonly accepted, that people traveled
much greater distances at the turn of the
21st century, on average, than they did at the
turn of the 20th century.

In addition to travel mobility, other
aspects of human mobility include short-
term daily mobility (e.g., commuting to
work and running errands) and long-term
mobility (e.g., housing mobility and choice of
location) (Scheiner and Kaspar, 2003). U.S.
population-based surveys estimate that adults
spend 87% of their day indoors, 69% in their
place of residence, and 6% in a vehicle in
transit (Collia et al., 2003; Klepeis et al.,
2001; Reuscher et al., 2002). Residential
mobility histories compared across several
countries in the early 1980s found nearly 13
moves per person over a lifetime in New
Zealand, 11 in the U.S., 7 in Great Britain,
6½ in Japan, 5 in Belgium, and 4 in Ireland
(Long, 1992). Individuals in their early 20s
in New Zealand will, on average, have
experienced as many moves as a resident
of Ireland over a lifetime. Approximately
50–70% of the moves occur within localities
(e.g., counties), 20–35% between localities,
10–15% between regions (e.g., states or
provinces), and 0–10% between countries
(Long, 1992). While the median distance
moved was just 3 km in Great Britain and
10 km in the US, 17–20% of the moves
were between regions or between coun-
tries, demonstrating considerable mobility
for a large segment of the population. The
challenge thus is to incorporate residential
and other forms of human mobility into
environmental health investigations.

19.1.2. Background on residential
mobility in environmental
health studies

In recent years residential mobility has
increasingly been incorporated in exposure
assessment. Exposure reconstruction often
involves assessment of proximity of indi-
vidual place-of-residence to environmental
hazards such as super-fund sites, incinerators,
and hazardous waste sites. In these instances
Geographic Information Systems (GIS) have
been used to reconstruct individual-level
exposures to environmental contaminants
(Beyea and Hatch, 1999; Nuckols et al.,
2004; Ward et al., 2000). Examples include
assessments of proximity of individuals to
landfills (O’Leary et al., 2004), hazardous
waste sites (Elliott et al., 2001; McNamee
and Dolk, 2001), and farms for assessing
exposures to pesticide application (Reynolds
et al., 2005). Perhaps because of the emphasis
on the individual, exposure reconstruction
has concerned itself both with human mobil-
ity as well as with temporally dynamic
environmental contaminants for which con-
centrations may change through time. Res-
idential histories and changes through time
in the concentrations of environmental con-
taminants have been addressed in studies
of air pollutants (Bellander et al., 2001;
Bonner et al., 2005; Nyberg et al., 2000),
drinking water contaminants (Swartz et al.,
2003), pesticides (Aschengrau et al., 1996;
Brody et al., 2002) and herbicides (Stellman
et al., 2003).

19.1.3. Unrealistic assumptions of
disease clustering

Only recently has the role of human mobility
and temporally varying exposures been
addressed within the context of disease
clustering. That risk of disease may vary from
one geographic sub-population to another,
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and that this risk is time-dependent, is a
fact for almost all human diseases, including
infectious as well as chronic diseases such
as cancer. Goodchild (2000) referred to
the failure to appropriately represent the
time dimension as a ‘static world-view’.
To date, many disease clustering methods
have been based on a static world-view in
which individuals are considered immobile,
migration between populations does not
occur, and in which background disease
risks under the null hypothesis are assumed
to be time-invariant and uniform through
geographic space. As a result, many of the
applications in the published literature suffer
from violations of fundamental assumptions
that are inherently unrealistic (Jacquez,
2004).

19.2. CONSEQUENCES OF THE
STATIC WORLD VIEW IN
DISEASE CLUSTERING

When analyzing chronic diseases such as
cancer, causative exposures may occur over
a long time period, and the disease may
be manifested only after a lengthy latency
period. During this latency period individuals
may move from one place of residence to
another. This can make it difficult to detect
clustering of cases in relation to the spatial
distribution of their causative exposures. Yet
the static spatial point distribution is the point
of departure for many clustering approaches,
including Turnbull’s test (Turnbull et al.,
1990), and tests suggested by Cuzick and
Edwards (1990), Besag and Newell (1991),
the Bernoulli form of the scan test (Kulldorff
and Nagarwalla, 1995), Tango (1995), and a
host of others. Especially for chronic diseases
with long latencies, human mobility must be
accounted for.

Hagerstand (1970) developed conceptual
models of the space–time paths formed

as individuals move throughout their days
and lives. In the context of human health
studies these have been called ‘geospatial
lifelines’, and their mathematical representa-
tion, properties, and means of analysis have
become important research topics. Sinha
and Mark (2005) employed a Minkowski
metric to quantify the dissimilarity between
the geospatial lifelines of cases and con-
trols, and suggested that their technique
could be used to evaluate differences in
exposure histories between the case and
control populations. The Minkowski metric
provides a global measure of dissimilarity
between cases and controls, but does not
identify where or when these dissimilari-
ties occur. Using k-function analysis, Han
et al. (2004) evaluated clustering of breast
cancer in two New York state counties and
detected significant spatial clustering at the
global level. Their approach incorporated
knowledge of residential locations of both
cases and controls at biologically relevant
ages in a woman’s life, namely at birth,
menarche, and at woman’s first birth. The
k-function was applied to the spatial pattern
described by place of residence at specific
time slices in the participants’ lives. Sabel
and colleagues (Sabel et al., 2000, 2003) used
residential histories to analyze clustering of
cases of motor neurone disease in Finland.
They calculated risk surfaces using kernel
functions that were weighted by duration at
specific locations of residence. This approach
thus used the residential history information
more fully, but ignored the temporal ordering
of place of residence.

Jacquez and colleagues (2005) developed
global, local and focused versions of so-
called Q-statistics that evaluate clustering
in residential histories using case-control
data. Their approach is based on a space–
time representation that is consistent with
Hagerstrand’s model of space–time paths,
and evaluates local, global, and focused
clustering of the residential histories of the
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cases relative to the residential histories
of the controls. One of the benefits of
the different versions of the Q-statistics
is their ability to quantify what is hap-
pening at the local, spatial, and temporal
scales that are of relevance to individuals,
while also providing global statistics for
evaluating aggregations of cases. But their
approach did not incorporate explicit models
of disease latency, nor did it account
for those times in a person’s life when
they might be most susceptible to specific
exposures.

19.3. A HISTORICAL PERSPECTIVE
ON LATENCY MODELS

It seems a truism to observe that people
are mobile, the environment varies through
time, and that populations grow and their
composition changes, thereby complicating
the adjustment for covariates. We therefore
need to understand the contributions to
individual exposure that transpire at home,
at work, and while commuting. Substantial
disease latencies may need to be accounted
for, and an individual’s susceptibility to
disease and to environmental insults may
vary with age. Metabolic responses may
be non-linear and synergistic, and observed
impacts of current exposures may be medi-
ated by past exposures. Enzymes involved
in metabolism may be inducible, such as
the example of alcohol dehydrogenase and
alcohol metabolism. In addition, exposures
are temporally dynamic, may be episodic
or cyclic, and can occur on time scales
including days, weeks, years, decades, and
potentially over the entire life-course. For
example, in summer, air pollutants may vary
over the course of day; while concentrations
of naturally-occurring metals in groundwa-
ter may be relatively static over months
and even years. And certain carcinogens

and biologically active compounds are of
anthropogenic origin (e.g., PCBs) and were
not present in the environment in prior
generations.

As noted earlier, the majority of cluster
methods assume a static geography and work
with static spatial point patterns (instead of
location histories) to represent cases and
controls. The spatial coordinate employed
may be the place of residence of cases
at time of diagnosis, death, hospitalization,
or whatever health-related event is being
studied. But clustering of cases at time of
diagnosis or death is often of little scientific
or practical interest in terms of enhancing
our understanding of health–environment
relationships. Of greater import is whether
there is clustering in the locations where
the causative exposures occurred, but this
question cannot be adequately addressed
by techniques that employ a static world-
view because those approaches implicitly
assume the duration between exposure and
the date of the health related event (e.g.,
diagnosis, death) to be negligible. When
exploring space–time interaction – whether
nearby cases tend to occur at about the
same time – the Knox test (Knox, 1964)
employs critical time and space distances
that may be specified to reflect a latency
period and the average distance individuals
might move during this period. But to
date and to our knowledge none of the
available tests for geographic clustering take
into account disease latency for location
histories. Methods for addressing this need
are proposed later in this chapter.

For purposes of this chapter we make
a distinction between the evolution of risk
through time of a known exposure (e.g., when
the exposure began, ended, the mid-point, as
well as changes in the exposure level through
time) and the definition of a time window
within which an unknown exposure might

have occurred that plausibly could explain
a known disease outcome (what we refer to
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in this article as the exposure window). Let
us now consider approaches that have been
used for modeling latency.

Langholz et al. (1999) observed that
effects of latency as described in the epi-
demiological literature are largely insufficient
for addressing questions related to public
health. They proposed latency models using
bilinear and exponential decay functions,
and fitted these models to case-control
data within a likelihood framework. Their
working definition of latency is the function
describing how the relative risk associ-
ated with a known exposure changes through
time. So, for example, in their analysis of
lung cancer in a cohort of uranium miners
they found that ‘ . . . relative risk associated
with exposure increases for about 8.5 years
and thereafter decreases until it reaches
background levels after about 34 years’.
As for most latency models of occupational
studies, Langholz’s metric was calculated
for a known exposure – for example, the
period of employment. For purposes of
clustering we are interested in determining
whether the residential histories of cases
clustered during those times when causative
exposures plausibly might have occurred,
but we do not necessarily know what those

exposures might be. We thus wish to use our
admittedly inadequate knowledge of cancer
latency to define exposure windows that
bracket those time periods within which an
environmental exposure might be associated
with an observed cancer. This could indicate,
for example, those times in a person’s life
when exposures (should they occur) are most
likely to result in a cancer at some later date.
This is an important distinction that, as noted
above, must be kept in mind for the remainder
of this chapter.

Exposures early in life and over an
individual’s life course may be important
risk factors for the onset of chronic diseases
such as cancer (Barker, 1992; Han et al.,
2004; Kuh and Ben-Shlomo, 1997). But

how can exposures during the life course be
accounted for when modeling latency and
exposure windows? Robins and Greenland
(1991) showed that in cohort analyses, years
of life lost (YLL) due to early exposures
cannot be estimated without bias in the
absence of causal models for how exposure
causes death. Morfeld (2004) demonstrated
this result analytically, resulting in a pro-
posed framework for formulating such causal
models (e.g., Robin’s G-estimation procedure
(Robins, 1997; Rothmann and Greenland,
1998) that can be used to estimate the latency
between exposure and death). Of course any
results from an exploratory analysis with
no a priori hypothesis would need to be
verified with another study. A model that
links exposures and latency periods to the
health outcomes thus appears to be required
in order to evaluate alternative specifications
of exposure windows, an important result that
we will refer to later in this chapter.

For purposes of clustering, the putative
exposure is often unknown, and we therefore
must be able to handle uncertainty in
exposure windows. Later in this chapter
we define approaches for explicitly model-
ing exposure windows, and for specifying
sampling distributions for exposure win-
dows. These can then be used to evaluate
the sensitivity of the cluster statistics to
alternative specifications of and uncertainty
in the exposure windows. But in general,
the latency model employed should be
specified to correspond to some a priori

hypothesis regarding disease causation – a
causal model.

19.4. AGE-DEPENDENT MODEL OF
DISEASE LATENCY AND
EXPOSURE WINDOWS

Detailed specification of a latency model
requires a causal model of how disease results
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in death. At this writing our knowledge of
the causes of most cancers is incomplete
and in almost all instances is insufficient
to fully specify such a model. But in
order to tackle this problem it first is
necessary to develop an understanding of
the information the construction of such
a model might require. We therefore now
consider how one might construct and then
employ a model of disease latency within
the framework of Q-statistics, using a simple
and necessarily unrealistic age-dependent
function as our point of departure. As more
realistic models of disease causation are
developed they may be radically different in
form and will replace what we acknowledge
is a simplistic first step. But for now and
for convenience define the latency /L(Ad)
as the duration between the age of the
participant at the time of onset of the
condition, E1(Ad) (age of the participant
at that date when the participant has the
beginnings of a cancer, yet to be diagnosed)
and the age at diagnosis, Ad (Figure 19.2).
Further, suppose the exposure window – the
time in an individual’s life course when
he or she is biologically vulnerable should
an exposure occur – commences at age
E0(Ad) and ends at age E1(Ad). Recall
the distinction made in the Introduction
regarding exposure windows and an actual
exposure. The exposure window is simply
that time in a person’s life when a causative

t

∆E(Ad )

E0(Ad ) E1(Ad ) Ad

∆L(Ad )

Figure 19.2 Schematic of a model of
age-dependent exposure windows
beginning at E0(Ad ), ending at E1(Ad ), and
followed by latency -L(Ad ), with latency
ending at diagnosis at age Ad .

exposure might have occurred and given rise
to the observed cancer – that time interval
from E0(Ad) and E1(Ad).

For the purposes of this chapter we will
assume the age at which latency begins
is the age at which the exposure window
ends (E1(Ad)) although this does not have
to be the case and the modeling approach
(below) is readily adapted to instances in
which the end of the exposure window
is not the same as the beginning of the
latency period. We would like to model the
exposure window and latency as functions
of the age at diagnosis, Ad . The duration
of the exposure window is therefore age
dependent and we now write /E(Ad) =
E1(Ad) − E0(Ad), and the duration of the
latency period is /L(Ad) = Ad − E1(Ad).
For our purposes we wish to construct
a model of /E(Ad) + /L(Ad) so that
the duration of the latency period and
exposure window becomes shorter as the
age at diagnosis decreases, since we wish
to avoid implausible situations such as
causative exposures occurring after the age
at diagnosis. Notice, however, that the
model can be specified in a manner that
would allow maternal exposures prior to
conception. We would also like the model
to allow in utero exposures occurring after
conception. To accomplish these objectives
we employ a modified form of the logistic
equation initially attributed to Verhulst (1838,
1845). Define the variable g at a given age of
diagnosis to be:

g(Ad) =
/E(Ad) + /L(Ad)

max(/E(Ad) + /L(Ad))
. (19.1)

This is the duration between the beginning of
the exposure window to the age at diagnosis,
scaled to the range 0 . . . 1, by dividing
by the maximum of that duration over all
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ages considered. Now define the parameter
g0 to be:

g0 =
min(/E(Ad) + /L(Ad))
max(/E(Ad) + /L(Ad))

. (19.2)

This is the smallest possible value of g(Ad).
The model of the latency and exposure
window as a function of age is then:

g(Ad) =
1

1 +
(

1
g0

− 1
)

e−rAd

. (19.3)

Here r is a parameter describing the rate
of increase of g(Ad) as a function of age
at diagnosis, with positive values indicating
that the time period between the onset
of the causative exposure and the end of
the latency period increases as the age at
diagnosis increases (Figure 19.3). Hence
equation (19.3) is how we model g(Ad) and
equation (19.1) is the relationship between
g(Ad) and the latency and exposure windows
at a given age of diagnosis.

19.5. SAMPLING DISTRIBUTIONS
FOR EXPOSURE WINDOWS

With an age-dependent model of the latency
and exposure windows defined we now
concern ourselves with models of their
uncertainty. Recall that exposure windows
represent that time interval within which a
causative environmental exposure plausibly
could have occurred. Notice that we observe
the cancer outcome (e.g., date of diagnosis)
but do not know whether the cancer was in
fact caused by an environmental exposure,
nor what the exposure might actually be.
This is in contrast to models of latency
that were summarized in the Introduction,

for which the exposure and its timing
are known (or at least presumed known,
being related for example to employment
dates), as well as the date of diagnosis or
death. Since in our case the exposures are not
observable we require a sampling distribution
for exposure windows that will allow us to
assess the sensitivity of any observed case
clustering to uncertainty in that exposure
window.

We will accomplish this by modeling
exposure windows for an individual with
a given age at diagnosis as the waiting
time from the beginning of the exposure
window (E0(Ad)) to the end of that exposure
window (E1(Ad)). Our approach will be to
find the duration of the exposure window for
individuals of a given age using the function
in equation (19.3) and solving for /E(Ad)
in equation (19.1). We then obtain individual
realizations of that exposure window by
sampling from a distribution of waiting times.
Suppose we define events as being the
beginning and end of an exposure window,
and that these events are separated by a
waiting time /E(Ad). Assume E0(Ad) and
E1(Ad) are Poisson distributed and that the
Poisson process has intensity l. For a given
waiting time we can estimate the intensity
of the Poisson process adjusting for edge
effects as:

l̂ =
2

/E(Ad) + 1
. (19.4)

Or when ignoring edge effects as:

l̂ =
1

/E(Ad)
. (19.5)

The cumulative distribution of /E(Ad) is
then estimated by:

D(/E(Ad)) = 1 − e−l̂/E(Ad ) (19.6)
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Figure 19.3 Age dependent model of exposure window and latency. The sum of the
exposure window plus the latency as a function of age at diagnosis is shown in the first
column. The second column shows the age at diagnosis (top solid line), the age at the end of
the exposure window (dashed line) and the age at the beginning of the exposure window
(bottom solid line). Top row: r = 0.05; bottom row r = 0.125. Minimum latency is 0.375
years, maximum latency is 15 years. Minimum exposure window is 0.375 years, maximum
exposure window is 15 years.

And the probability of /E(Ad) is given by:

P(/E(Ad)) = l̂e−l̂/E(Ad ). (19.7)

Having defined exposure windows and their
uncertainty we now turn to cluster statistics
that account for human mobility.

19.6. THE DETECTION OF
CLUSTERING IN RESIDENTIAL
HISTORIES

In this section we first review Q-statistics.
We then define exposure traces that are
the geographic projection of exposure win-
dows and extend the Q-statistics to provide
global, local, and focused tests that account
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for risk factors, covariates, and disease
latency. We then describe an experimental
data set for bladder cancer in southeastern
Michigan, and apply some of these new
methods to this dataset to illustrate the
approach.

Jacquez et al. (2005, 2006) developed
global, local, and focused tests for case-
control clustering of residential histories
for use with chronic diseases such as
cancer and that account for covariates
and other risk factors such as smoking.
Readers unfamiliar with Q-statistics may
wish to refer to the original works. We
now briefly present these techniques and
then extend them to account for exposure
windows.

Define the coordinate ui,t = {xi,t, yi,t}
to indicate the geographic location of the
ith case or control at time t. Residential
histories can then be represented as the set
of space–time locations:

Ri = {ui0, ui1, . . ., uiT }. (19.8)

This defines individual i at location ui0 at the
beginning of the study (time 0), and moving
to location ui1 at time t = 1. At the end
of the study individual i may be found at
uiT . T is defined to be the number of unique
location observations on all individuals in
the study. We now define a case-control
identifier, ci, to be:

ci =

{
1 if and only if i is a case

0 otherwise.
(19.9)

Define na to be the number of cases
and nb to be the number of controls.
The total number of individuals in the
study is then N = na + nb. Let k indicate
the number of nearest neighbors to con-
sider when evaluating nearest neighbor

relationships, and define a nearest neighbor
indicator to be:

ηi,j,k,t =






1 if and only if j is a k nearest

neighbor of i at time t

0 otherwise

(19.10)

We then can define a binary matrix of kth
nearest neighbor relationships at a given
time t as:

ηk,t =





0 η1,2,k,t · · η1,N,k,t

η2,1,k,t 0 ·
· · ·
· · ηN−1,N,k,t

ηN,1,k,t · · ηN,N−1,k,t 0




.

(19.11)

This matrix enumerates the k nearest neigh-
bors (indicated by a 1) for each of the N

individuals. The entries of this matrix are 1
(indicating that j is a k nearest neighbor of
i at time t) or 0 (indicating j is not a k nearest
neighbor of i at time t). It may be asymmetric
about the 0 diagonal since nearest neighbor
relationships are not necessarily reflexive.
Since two individuals cannot occupy the
same location, we assume at any time t

that any individual has k unique k-nearest
neighbors. The row sums thus are equal to
k(ηi,•,k,t = k) although the column sums vary
depending on the spatial distribution of case
control locations at time t. The sum of all the
elements in the matrix is Nk.

Alternative specifications of the proximity
metric may be used – the metrics do not
have to be nearest neighbor relationships in
order for the Q-statistics to work. We prefer
to use nearest neighbor relationships because
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they are invariant under changing population
densities, unlike geographic distance and
adjacency measures. There is also some
evidence that nearest neighbor metrics are
more powerful than distance- and adjacency-
based measures (Jacquez and Waller, 1997).
Still, one then may be faced with the
question of ‘how many nearest neighbors
(k) should I consider?’ In certain instances
one may have prior information that suggests
that clusters of a certain size should be
expected, and this can serve as a guide to
specification of k. When prior information
is lacking one may wish to explore several
levels of k. In these instances Tango (2000,
2006) advocates using the minimum p-value
obtained under each level of k considered
as the test statistic. Jacquez et al. (2006)
evaluated different levels of k to determine
sensitivity of the results to specification of k.
Each of these approaches has advantages and
may be preferred in different situations.

There exists a 1 × T + 1 vector denoting
those instants in time when the system is
observed and the locations of the individuals
are recorded. We can then consider the
sequence of T nearest neighbor matrices
defined by:

ηT
k = {ηk,t ∀t = 0. . .T}. (19.12)

This defines the sequence of k nearest
neighbor matrices for each unique temporal
observation recorded in the data set, and thus
quantifies how spatial proximity among the
N individuals changes through time.

19.7. ADJUSTING FOR COVARIATES
AND OTHER RISK FACTORS

In the absence of knowledge of covariates
and other risk factors simple randomization
may be used when evaluating the statistical

significance of the above statistics. This is
accomplished by holding the location histo-
ries for the cases and controls constant, and
by then sprinkling the case-control identifiers
at random over the residential histories. This
corresponds to a null hypothesis where the
probability of an individual being declared a
case (ci = 1) is proportional to the number
of cases in the data set, or:

p(ci = 1|H0,I ) =
n1

n0 + n1
. (19.13)

Here n1 is the number of cases and n0 is
the number of controls, and H0,I indicates a
null hypothesis corresponding to Goovaerts
and Jacquez’s (2004) type I neutral model
of spatial independence. This null hypothesis
assumes the risk of being declared a case
is the same over all of the N case and
controls. When covariates and risk factors
are quantified we may wish to incorporate
that information into the null hypothesis. Any
case-clustering that is found then will be
above and beyond the modeled risk factors
and covariates, and will thus indicate the
possible presence of risk sources beyond
those specified under this null hypothesis.

19.7.1. Logistic model of the
probability of being a case

In order to provide a more realistic model
of the risk of being a case, we must make
the probability of being declared a case a
function of the covariates and risk factors
one wishes to incorporate under the null
hypothesis. We will accomplish this task
using logistic regression. Logistic models
are used for binary response variables. Let
x denote the vector of covariates and risk
factors. Further, let p = Pr(c = 1|x) denote
the response probability to be modeled,
which is the probability of person i being a
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case given that person’s vector of covariates
and risk factors. The linear logistic model
may then be written as:

logit (p) = log (p/1 − p) = α + β ′x

(19.14)

and the equation for predicting the prob-
ability of being a case given the vector
of covariates and risk factors for the ith
individual is:

p̂(ci = 1|xi) =
eα+β ′xi

1 + eα+β ′xi
. (19.15)

Here the logit function is the natural log
of the odds, α is the intercept parameter,
and β is the vector of regression (slope)
coefficients. One then fits the regression
model to the vector of covariates and risk
factors to calculate the intercept and slope
parameters. These are then used to calculate,
for each individual, the probability of being a
case given that individual’s known covariates
and risk factors.

19.7.2. Randomization accounting
for risk factors and
covariates

We use approximate randomization to eval-
uate the probability of a given Q-statistic
under the null hypothesis that the likelihood
of being a case is a function of the
covariates and risk factors specified under the
logistic model in equation (9.14). This null
hypothesis thus effectively accounts for the
risk factors and covariates in the vector x. To
evaluate the reference distribution for a given
Q-statistic we follow these steps.

Step 1. Calculate statistic (Q∗) for the observed
data.

Step 2. Sprinkle the case-control identifier ci over
the residential histories of the participants
in a manner consistent with the desired
null hypothesis, and conditioned on the
observed number of cases. Assume we
have n1 cases, N participants and that Pi is
the probability of the i th participant being
a case. Notice the Pi are provided by the
logistic equation.

Step 2.1. Rescale the Pi as follows:

P ′
i = Pi /

N∑

i=1
Pi .

Step 2.2. Map the P ′
i to the interval 0 . . .

1. For example, assume we have
N = 2 participants, n1 = 1
case and that P1 = 0.7 and
P2 = 0.8. P ′

1 then maps to the

interval [0 . . . 0.7/1.5) and P ′
2

maps to the interval [0.7/1.5 . . .

1.5/1.5).
Step 2.3. Allocate a case by drawing a

uniform random number from
the range [0 . . . 1). Set
the case identifier equal to 1
(ci = 1) where i is the identi-
fier corresponding to the study
participant whose interval for P ′

i
contains the random number.

Step 2.4. Rescale as shown in Step 2.1
but not including the probabil-
ity for the participant whose
case identifier was assigned in
Step 2.3.

Step 2.5. Repeat Steps 2.2–2.4 until all
of the n1 case identifiers are
assigned.

Step 2.6. Set the remaining N − n1 case
identifiers to 0, these are the
controls.

Notice steps 2.1–2.6 result in one real-
ization of the distribution of case-control
identifiers.

Step 3. Calculate Q for the realization from Step 2.
Step 4. Repeat Steps 2 and 3 a specified number

of times (e.g., 999) accumulating the
reference distribution of Q.

Step 5. Compare Q∗ to this reference distribution
to evaluate the statistical probability of
observing Q∗ under the null hypothesis
that accounts for the known risk factors
and covariates.
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19.8. LOCAL AND FOCUSED
CLUSTERING OF EXPOSURE
TRACES

Exposure traces are defined as the residential
mobility that transpires for an individual dur-
ing the exposure window, /E(Adi). Notice
we are now subscripting the age of diagnosis
with the letter i to indicate the age of
diagnosis for the ith individual. Therefore,
exposure traces are those portions of a case’s
residential history that were traversed while
that individual was thought to be at risk
to a cancer-causing exposure – where they
were when they were in that portion of
their lifespan corresponding to /E(Ad,i).
This concept of an exposure trace assumes
a natural history of carcinogenesis in which
the causative exposures occur, followed by
a latency period which concludes when the
cancer is diagnosed. This is easily modified
to fit other models of the natural history
of carcinogenesis, including other relevant
windows such as the lag between the onset
of a fully developed cancer and diagnosis.
Given the residential history for case i, Ri,
denote the space–time coordinate at time of
diagnosis as ui,tD , noting that ui,tD ∈ Ri. We
can then define that subset of the residential
history Ri during which causative exposures
might have occurred as:

RE
i ={ui,t; (ti,D − /L(Ad,i) > t

> (ti,D − /L(Ad,i) − /E(Ad,i)).

(19.16)

Here ti,D is the time of diagnosis for
individual i. The term (ti,D − /L(Ad,i)) is
the time when the exposure window ended
and the latency period began. The term
(ti,D − /L(Ad,i) − /E(Ad,i)) indicates the
time prior to diagnosis when the exposure
window began. This allows us to move
between the age representation where things

are measured relative to age at diagnosis
to an absolute time representation using,
for example, the Gregorian calendar. Hence
equation (9.16) denotes that portion of case
i’s residential history in which s/he was in
the exposure window. Call this the exposure

trace. As noted earlier in the Introduction,
effective specification of exposure windows,
and hence of exposure traces, requires a
causal model of how the exposure(s) causes
cancer. The exposure trace for case i(RE

i )
records those places where that individual
resided while s/he might have experienced
causative exposures. Now define an indicator,
ei,t as:

ei,t =






1 if and only if t is within the

exposure trace is for individual i,

0 otherwise.

(19.17)

When ei,t is 1, let us say the exposure trace is
‘active’. A local case-control test for spatial
clustering of exposure traces at time t is then:

QE
i,k,t = ci ei,t

N∑

j=1

ηi,j,k,t cj ej,t . (19.18)

This is the count, at time t, of the number
of k nearest neighbors of case i’s exposure
trace that are also cases and whose exposure
traces are also active. This statistic will be
large when the active exposure traces of a
group of cases cluster about case i at time t.

We can explore whether exposure traces of
cases tend to cluster spatially about certain
individuals through time. A statistic sensitive
to this pattern is:

QE
i,k =

T∑

t=0

QE
i,k,t . (19.19)
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QE
i,k will tend to be large when active

exposure traces for the other cases tend
to persistently cluster around the active
exposure trace of the ith case.

We can also ask whether the exposure
traces of cases cluster about specific locations
(e.g., point source releases of carcinogens)
that we refer to as a focus:

QE
F,k,t =

N∑

j=1

ηF ,j,k,t cj ej,t . (19.20)

Here ηF,j,k,t is 1 if individual j is a k

nearest neighbor of the focus at time t,
and 0 otherwise. The statistic QE

F,k,t is the
count of the number of cases whose exposure
traces are k nearest neighbors of the focus
at time t. Notice these statistics can also be
duration weighted as described by Jacquez
et al. (2005).

19.8.1. Statistical probability of
exposure traces

In order to evaluate whether exposure traces
of the cases cluster we first must derive a
procedure for generating representative times
of diagnosis, latency periods, and exposure
windows for the controls. Once this is
accomplished we will be able to determine
whether the exposure traces for the cases
cluster relative to those so constructed for
the controls. Given the residential history of a
control, steps involved to accomplish this are:

1 Set the ‘age at diagnosis’ for each control to be

their age at their time of interview for the study

(notice researchers often may subtract one year

from age at time of interview, to account

for time between diagnosis and interview for

cases).

2 Define the exposure window and latency period

for each case and control using the time of

diagnosis assigned in (1) and the model of

latency as a function of age defined earlier.

Notice this function could also be based on the

covariates for each participant, or on the times

of occurrence of a putative exposure source of

interest. Completion of (1) and (2) will result in

dates of diagnosis, and definition of exposure

windows, latency periods, and exposure traces

for both cases and controls.

3 Calculate the desired test statistic for exposure

traces, for the original (not randomized

data), Q∗ (e.g., equation (19.20) for focused

clustering, equation (19.19) for local clustering,

etc.).

4 Assign case-control identifiers across the resi-

dential histories employing the logistic model

described earlier in order to account for

known risk factors and covariates. This will

result in a possible arrangement of cases and

controls (a realization) that accounts for the risk

factors and covariates. Hence any statistically

significant clustering observed in the exposure

traces may be attributable to causes other than

the risk factors and covariates included in the

logistic model.

5 For the realization from (4), calculate the

desired test statistic for clustering of exposure

traces (Q).

6 Repeat (4) and (5) a desired number of times

to construct the reference distribution of the

statistic under the null hypothesis (the null

distribution of Q).

7 Evaluate the probability of the observed

clustering of exposure traces under the null

hypothesis by comparing the value of the test

statistic for the observed data (Q∗) to the

reference distribution for Q from (6).

19.9. EXAMPLE: BLADDER CANCER
IN SOUTHEASTERN MICHIGAN

A population-based bladder cancer case-control
study is underway in southeastern Michigan.
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Cases diagnosed in the years 2000–2004
are being recruited from the Michigan
State Cancer Registry. Controls are being
frequency matched to cases by age (±5
years), race, and gender, and are being
recruited using a random digit dialing
procedure from an age-weighted list. At
this stage of recruitment, controls are not
adequately matched; therefore, age, race, and
gender are included in the logistic regression
model that accounts for covariates. To be
eligible for inclusion in the study, participants
must have lived in the eleven county study
area for at least the past five years and had
no prior history of cancer (with the exception
of non-melanoma skin cancer). Participants
are offered a modest financial incentive and
research is approved by the University of
Michigan IRB-Health Committee. The data
analyzed here are from 219 cases and 437
controls. As part of the study, participants
complete a written questionnaire describing
their residential mobility. The duration of
residence and exact street address were
obtained, otherwise the closest cross streets
were provided. Approximately 66% of
cases’ person-years and 63% of controls’
person-years were spent in the study area.
Of the residences within the study area, 88%
were automatically geocoded or interactively
geocoded with minor operator assistance.
The unmatched addresses were manually
geocoded using self-reports of cross streets
with the assistance of internet mapping
services (6%); if cross streets were not
provided or could not be identified, residence
was matched to town centroid (6%).

Address histories were collected for
those industries believed to emit con-
taminants associated with bladder cancer.
These were identified using the Toxics
Release Inventory (EPA, 2000) and the
Directory of Michigan Manufacturers. Stan-
dard Industrial Classification (SIC) codes
were adopted, but prior to SIC coding,
industrial classification titles were selected.

Characteristics of 268 industries, including,
but not limited to, fabric finishing, wood
preserving, pulp mills, industrial organic
chemical manufacturing, and paint, rubber,
and leather manufacturing, were compiled
into a database. Each industry was assigned
a start year and end year, based on best
available data. Industries were geocoded
following the same matching procedure as for
residences: 89% matched to the address, 5%
were placed on the road using best informed
guess, and as a last resort, 6% were matched
to town centroid.

19.10. BLADDER CANCER:
ANALYSIS

Jacquez et al. (2006) addressed four hypothe-
ses regarding clusters of bladder cancer in
southeastern Michigan:

A0: Bladder cancer cases in southeastern Michigan

are not clustered.

A1: There is global and local space–time clustering

of bladder cancer cases.

A2: The clusters may be explained entirely by

known risk factors (e.g., smoking) and

covariates.

This probability was then incorporated in
the randomization procedure as described
earlier, resulting in a null hypothesis that
accounts for smoking, age, gender, education,
and race. Any clustering that is observed thus
is above and beyond any case clustering due
to these risk factors and covariates. Increased
smoking is associated with higher probability
of being a case; this risk increases with
age, and is elevated for whites and females.
Bladder cancer typically afflicts older white
males to a greater extent than the remainder
of the population (Silverman et al., 1996).
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A3: There is clustering of bladder cancer cases

about industries known to emit bladder cancer

carcinogens that is not explained by known risk

factors and covariates.

They used the global and local Q-statistics
not adjusting for covariates and risk factors

to address hypotheses A0 and A1. They
then used the logistic model to adjust
for smoking, age, gender, education, and
race in order to evaluate hypotheses
A2–A3, employing the following func-
tion to evaluate the probability of being
a case:

p̂ (ci = 1|xi) =
e



 2.0359 − 0.0125∗Agei − 0.9396∗Genderi + 0.1900∗Educatei+
0.0557∗Racei − 0.2438∗Cignumi





1 + e



 2.0359 − 0.0125∗Agei − 0.9396∗Genderi + 0.1900∗Educatei+
0.0557∗Racei − 0.2438∗Cignumi





(19.21)

Here females experience a higher risk
because controls are in the process of being
frequency matched to cases in the ongoing
study, and in this dataset, a greater proportion
of cases are females than controls. In this
chapter, results are presented for k = 7
nearest neighbors. Results for additional
nearest neighbors are discussed in Jacquez
et al. (2006).

The first hypothesis A0: Bladder cancer

cases in southeastern Michigan are not

clustered was evaluated without correcting
for the known risk factors and covariates.
The Global Q statistic was 1.198437 and
was significant (p = 0.001), and hypothesis
A0 was rejected. Next, hypothesis A1:

There is space–time clustering of bladder

cancer cases in southeastern Michigan was
evaluated using the spatial and temporally
local Q-statistics of equations (19.10) and
(19.12) in Jacquez et al. (2005). This
effectively decomposed the observed global
clustering into local contributions. Persistent
case clusters were found in Oakland, Ingham,
and Jackson counties. Hypothesis A1 was
accepted and Jacquez et al. (2006) concluded
there is persistent case clustering in these

three counties. However, whether these
clusters may be explained by smoking and the
covariates age, gender, race, and education
remained to be evaluated.

Next, the researchers evaluated hypothesis
A2: The clusters may be explained by

known risk factors and covariates. To
accomplish this they incorporated the prob-
abilities calculated from the logistic model
in equation (19.21) into the randomization
procedure as described in section 19.7.2.
They then recalculated the probabilities of
the global Q statistic used to evaluate A0.
Because the geometry of the residential
histories doesn’t change, the values of the
statistic were unchanged. After adjustment
for smoking and covariates the P value
slightly increased to 0.003 from 0.001
before adjustment. Hypothesis A2 was not
accepted, and the authors concluded the
global case clustering of residential histories
was not sufficiently explained by smoking
and the covariates. Significant local clus-
tering also remained, and was persistent
through time. In all, 26 local clusters were
significant after covariate adjustment. They
were found in Lapeer, Ingham, Oakland, and
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Jackson counties. The clusters in Lapeer
and Jackson counties were comprised of
1–3 cluster centers, and are ephemeral.
The clusters in northwestern Ingham county
appeared in 1950, concentrated to the north-
west of Lansing and persisted into 2000.
Numerous clusters appeared in central and
southeastern Oakland county beginning in
the 1950s and persisted to the present day.
The authors suggested that the grouping
of these local case clusters into two areas
and their persistence through time might
indicate the possible action of a causal agent
or an unknown covariate. They therefore
explored hypothesis A3: There is clustering

of bladder cancer cases about industries

known to emit bladder cancer carcinogens

that is not explained by known risk factors

and covariates. Bladder cancers have a
multiplicity of possible causative exposures.
Using a database of 268 industries that
emitted known or suspected bladder cancer
carcinogens, they analyzed case clustering
of residential histories about these indus-
tries both with and without adjustment for
smoking and the four covariates. The global
version of the focused test was significant at
the 0.015 level before covariate adjustment
and remained significant ( p = 0.035) after
the covariates and smoking were accounted
for. Considering the 268 business address his-
tories one at a time, the researchers found 22
industries that were significant cluster foci,
located in Oakland (19 clusters), Ingham (2),
and Jackson (1) counties. Clusters in central
and southeastern Oakland county appeared in
the 1930s and persisted to the present day.

The prospect of environmental pollution
originating from these facilities being asso-
ciated with bladder cancer is intriguing;
however, caution is necessary until the study
is complete. Occupational histories are being
collected and will be incorporated as risk
factors in the logistic regression model, thus
creating a neutral model that includes smok-
ing and occupational exposures, along with

key covariates. Until then, we cannot rule
out occupational exposures in explaining the
focused clustering around certain industries.
In the interest of public health, however, it
is worth exploring those facilities with the
most extreme p-values to single out those
that consistently are at the center of a cluster
of cases. Once identified, additional epidemi-
ological investigation may be warranted to
uncover a biologically plausible exposure,
and to determine whether individuals in the
vicinity of the operation actually demonstrate
a body burden for the suspected carcinogen.

19.11. DISCUSSION AND FUTURE
DIRECTIONS

The case-control epidemiological study
design provides a wealth of information at
the individual level regarding exposures,
risks, risk modifiers, and covariates. When
designing such a study the researcher often
is concerned with assessing a few putative
exposures, and in determining whether there
are significant differences in these exposures
between the case and control populations.
As such, the case-control design is not
inherently spatial, nor is it particularly well
suited or even capable of assessing risk
factors other than those specified in the
original design.

The approaches described in this chapter
may prove to be a highly useful addition
to the traditional aspatial case-control design
because they allow researchers to identify
local groups of individuals whose risk
exceeds that accounted for by the known risk
factors and covariates incorporated under the
designed study. Efforts in developing causal
models for latency and exposure timing are
evolving, and the approach outlined here
will allow researchers to incorporate these
models into future cluster analyses that
account for human mobility. In addition,
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while the application presented here uses
residential histories, this approach may also
be used to investigate disease clustering using
occupational histories, or other forms of
human mobility.

The ability of local and focused tests to
quantify pockets of cases whose excess risk
might be attributable to specific locations
or point sources is a powerful addition
to the inferential toolbox. While such a
tool can never of itself assess the dose–
response relationship necessary to attribute
risk to a specific location or point source,
the ability to temporally and geographically
localize the putative exposure source makes
it possible to begin the assessment of
dose–response relationships. Once such a
putative focus has been identified, the next
step may involve techniques for modeling
exposure that will provide a more accurate
and detailed description of the spatial and
temporal variability in exposure. And once a
specific point source is identified, the task of
quantifying the type and quantity of releases
of agents that plausibly might give rise to the
observed health outcome may begin.
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20
Neural Networks for

Spatial Data Analysis

M a n f r e d M . F i s c h e r

20.1. INTRODUCTION

The term ‘neural network’ has its origins in
attempts to find mathematical representations
of information processing in the study of
natural neural systems (McCulloch and Pitts,
1943; Widrow and Hoff, 1960; Rosenblatt,
1962). Indeed, the term has been used
very broadly to include a wide range of
different model structures, many of which
have been the subject of exaggerated claims
to mimic neurobiological reality.1 As rich
as neural networks are, they still ignore
a host of biologically relevant features.
From the perspective of applications in
spatial data analysis, however, neurobiolog-
ical realism is not necessary. In contrast,
it would impose entirely unnecessary con-
straints. Thus, the focus in this chapter is
on neural networks as efficient nonlinear
models for spatial data analysis. We can

not do justice to the entire spectrum of
such models. Instead, attention is limited
to a particular class of neural networks
that have proven to be of great practical
importance, the class of feedforward neural

networks.2

The attractiveness of such networks is
due to two features. First, they provide
a very flexible framework to approximate
arbitrary nonlinear mappings from a set of
input variables to a set of output variables
where the form of the mapping is governed
by a number of adjustable parameters,
called weights. Second, they are devices
for nonparametric statistical inference. No
particular structure or parametric form is
assumed a priori. This is particularly useful
in the case of problems where solutions
require knowledge that is difficult to specify
a priori, but for which there are sufficient
observations.
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The objective of this chapter is to provide
an entry point and appropriate background,
for those spatial analysts wishing to engage in
the field of neural networks, required to fully
realize its potential. The chapter is organized
as follows. In section 20.2 we begin by intro-
ducing the functional form of feedforward
neural network models, including the specific
parameterization of the nonlinear transfer
functions. Section 20.3 proceeds to discuss
the problem of determining the network
parameters within a framework that involves
the solution of a nonlinear optimization
problem. Because there is no hope of finding
an analytical solution to this optimization
problem, section 20.4 reviews some of the
most important iterative search procedures
that utilize gradient information for solving
the problem. This requires the evaluation
of derivatives of the objective function –
known as error function in the machine
learning literature – with respect to the
network parameters, and section 20.5 shows
how these can be obtained computation-
ally efficient using the technique of error

backpropagation.
The section that follows addresses the issue

of network complexity and briefly discusses
some techniques (in particular regularization

and early stopping) to determine the number
of hidden units. This problem is shown to
essentially consist of optimizing the com-
plexity of the network model (complexity
in terms of free parameters) in order to
achieve the best generalization performance.
Section 20.7 then moves attention to the issue
of how to appropriately test the generaliza-
tion performance of a neural network. Some
conclusions and an outlook for the future are
given in the final section.

The bibliography that is included intends
to provide useful pointers to the literature
rather than a complete record of the whole
field of neural networks. The readers should
recognize that there are several wide rang-
ing text books with introductory character,

of which Hertz et al. (1991), Ripley (1996)
and Bishop (2006) appear to be most suitable
for a spatial analysis audience. Readers
interested in spatial interaction or flow data
analysis are referred to a paper by Fischer
and Reismann (2002b) to find a useful
methodology for neural spatial interaction
modelling.

20.2. FEEDFORWARD NEURAL
NETWORKS

Feedforward neural networks consist of
nodes (also known as processing units or
simply units) that are organized in layers.
Figure 20.1 shows a schematic diagram
of a typical feedforward neural network
containing a single intermediate layer of
processing units separating input from output
units. Intermediate layers of this sort are
often called hidden layers to distinguish them
from the input and output layers. In this
network there are N input nodes representing
input variables x1, . . ., xN ; H hidden units
representing hidden variables z1, . . ., zH ;
and K output nodes representing output
variables y1, . . ., yK . Weight parameters are
represented by links between the nodes. The
bias parameters are denoted by links coming
from additional input and hidden variables
x0 and z0. Observe the feedforward structure
where the inputs are connected only to units
in the hidden layer, and the outputs of this
layer are connected only to units in the
output layer.

The term architecture or topology of a
network refers to the topological arrangement
of the nodes. We call the network architecture
shown in Figure 20.1 a single hidden layer
network or a two layer rather than a three
layer network because it is the number of
layers of adaptive weights that is important
for determining the network properties. This
architecture is most widely used in practice.3
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Outputs
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parameters w (2)
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Figure 20.1 Network diagram for the single hidden layer neural network corresponding to
equation (20.6). The input, hidden and output variables are represented by nodes, and the
weight parameters by links between the nodes, where the bias parameters are denoted by
links coming from additional input and hidden variables x0 and z0. The arrow denotes the
direction of information flow through the network during forward propagation

Kurková (1992) has shown that one hid-
den layer is sufficient to approximate any
continuous function uniformly on a compact
input domain. But note that it may be
more parsimonious to use fewer hidden units
connected in two or more hidden layers.

Any network diagram can be converted
into its corresponding mapping function,
provided that the diagram is feedforward as
in Figure 20.1 so that it does not contain
closed directed cycles.4 This guarantees that
the network output yk (k = 1, . . ., K) can be
described by a series of functional trans-
formations as follows. First, we form a
linear combination5 of the N input variables
x1, . . ., xN to get the input, say neth, that
hidden unit h receives:

neth =
N∑

n=1

w
(1)
hn xn + w

(1)
h0 (20.1)

for h = 1, . . ., H . The superscript (1) indi-
cates that the corresponding parameters are
in the first layer of the network. The
parameters w

(1)
hn represent connection weights

going from input n (n = 1, . . ., N) to
hidden unit h (h = 1, . . ., H), and w

(1)
h0

biases.6 These quantities are known as
activations in the field of neural networks.
Each of them is then transformed using
a differentiable continuous nonlinear or
activation (transfer) function7 ϕ to give the
output:

zh = ϕ (neth) (20.2)

for h = 1, . . ., H . These quantities are
again linearly combined to generate the
input, called netk , that output unit k (k =
1, . . ., K) receives:

netk =
H∑

h=1

w
(2)
kh zh + w

(2)
k0 . (20.3)

The parameters w
(2)
kh represent the connection

weights from hidden unit h (h = 1, . . ., H)
to output unit k (k = 1, . . ., K), and the
w

(2)
k0 are bias parameters. Finally, the netk

are transformed to produce a set of network
outputs yk(k = 1, . . ., K):

yk = ψk(netk) (20.4)
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where ψk denotes a real valued activation
function of output unit k.

Information processing in such networks
is, thus, straightforward. The input units
just provide a ‘fan-out’ and distribute the
input to the hidden units. These units
sum their inputs, add a constant (the
bias) and take a fixed transfer function
ϕh of the result. The output units are of
the same form, but with output activation
function ψk . Network output yk can then
be expressed in terms of an output function
gk(x, w) as:

yk =gk(x,w)

=ψk

(
H∑

h=1

w
(2)
kh ϕh

(
N∑

n=0

w
(1)
hn xn +w

(1)
h0

)

+w
(2)
k0

)

(20.5)

where x = (x1, . . ., xN ) and w represents
a vector of all the weights and bias terms.
Note that the bias terms w

(1)
h0 (h = 1, . . ., H)

and w
(2)
k0 (k = 1, . . ., K) in equation (20.5)

can be absorbed8 into the set of weight
parameters by defining additional input and
hidden unit variables, x0 and z0, whose values
are clamped at one so that x0 = 1 and
z0 = 1. Then the network function (20.5)
becomes

yk = gk(x, w)

= ψk

(
H∑

h=1

w
(2)
kh ϕh

(
N∑

n=0

w
(1)
hn xn

))

.

(20.6)

Neural networks of type (20.6) are rather
general. They can be seen as a flexible way
to parameterize a fairly general nonlinear
function from some N-dimensional input

space X to some K-dimensional output
space Y .

Several authors including Cybenko (1989),
Funahashi (1989), Hornik et al. (1989)
and many others have shown that such
neural network models, with more or less
general types of activation functions ϕ and
ψ , have universal approximation capabili-
ties. They can uniformly approximate any
continuous function f on a compact input
domain to arbitrary accuracy, provided the
network has a sufficiently large number
of hidden units. This approximation result,
however, is non-constructive and provides
no guide to how many hidden units
might be needed for a practical problem
at hand.

This result holds for a wide range
of hidden and output layer activation
functions. The functions can be any non-
linearity as long as they are continuous
and differentiable. The hidden unit activation
functions ϕh(.) are typically sigmoid, and
almost always taken to be logistic sigmoid9

so that:

ϕh(netk) =
1

1 + exp (−neth)
(20.7)

whose outputs lie in the range (0, 1), while
the choice of the activation function ψk(.)
of the output units is generally determined
by the nature of data and the assumed dis-
tribution of the target variables. Section 20.3
will show that different activation functions
should be chosen for different types of
problems. For standard regression problems
the identity function appears to be an
appropriate choice so that yk = netk . For
multiple binary classification each output unit
activation should be transformed using a
logistic sigmoid function, while the stan-
dard multi-class classification problem in
which each input is assigned to one of
K mutually exclusive classes gives rise
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to the softmax activation function (Bridle,
1994):

yk = ψk (netk) =
exp (netk)

K∑

c=1
exp (netc)

(20.8)

where 0 ≤ yk ≤ 1 and
∑K

k=1 yk = 1.
A neural network with a single logistic

output unit can be seen as a nonlinear
extension of logistic regression. With many
logistic units, it corresponds to linked logistic
regressions of each class versus the others.
If the transfer functions of the output units
in a network are taken to be linear, we
have a standard linear model augmented
by nonlinear terms. Given the popularity of
linear models in spatial analysis, this form
is particularly appealing, as it suggests that
neural network models can be viewed as
extensions of – rather than as alternatives
to – the familiar models. The hidden unit
activations can then be viewed as latent
variables whose inclusion enriches the linear
model.

20.3. NETWORK TRAINING

So far, we have considered neural networks
as a general class of parametric nonlinear
functions from a vector x of input variables
x1, . . ., xN to a vector y of output variables
y1, . . ., yK . The process of determining
the network parameters is called network
training or network learning. The problem
of determining the network parameters can
be viewed from different perspectives. We
view it as an unconstrained nonlinear func-
tion optimization problem,10 the solution
of which requires the minimization of
some (continuous and differentiable) error
function.

This error function, say E, is defined in
term of deviations of the network outputs
y = ( y1, . . ., yK ) from corresponding
desired (target) outputs t = (t1, . . ., tK ), and
expressed as a function of the weight vector w

representing the free parameters (connection
weights and bias terms) of the network. The
goal of training is then to minimize the error
function so that:

min
w∈W

E(w) (20.9)

where W is a weight space appropriate
to the network architecture. The smallest
value of E(w) will occur at a point such
that the gradient of the error function
vanishes ∇E(w) = 0, where ∇E(w) denotes
the gradient (the vector containing the partial
derivatives) of E(w) with respect to w.
A single hidden layer network of the kind
shown in Figure 20.1, with H hidden units,
generally has many points at which the
gradient vanishes. The point w∗ is called a
global minimum for E(w) if E(w∗) ≤ E(w)
for all w ∈W . Other minima are called local

minima, and each corresponds to a different
set of parameters. For a successful applica-
tion of neural networks, however, it may not
be necessary to find the global minimum,
and in general it will not be known whether
the minimum found is the global one or not.
But it may be necessary to compare several
minima in order to find a sufficiently good
solution of the problem under scrutiny.

Training is performed using a training
set Sp = {(x p, t p) : p = 1, . . ., P},
consisting of P ordered pairs of vectors. x p

denotes an N-dimensional input vector and t p

the associated K-dimensional desired output
(target) vector. The choice of a suitable error
function depends on the problem to be per-
formed. We follow Bishop (1995: chapter 6)
to provide a maximum likelihood motivation
for the choice, and start by considering
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regression problems. If we assume that the K

target variables are independent conditional
on x and w with shared noise precision α,
then the conditional distribution of the target
values is given by a Gaussian:

p (t| x, w) = N(t|g(x, w), α−1 I) (20.10)

where α is the precision (inverse variance)
of the Gaussian noise. For the conditional
distribution given by equation (20.10), it is
sufficient to take the output unit transfer
function ψ to be the identity. Given that
t = (t1, . . ., tP), are independent, identically
distributed observations, we can construct the
corresponding likelihood function:

p (t| x, w, α) =
P∏

p=1

p (tp| xp, w, α).

(20.11)

Maximizing the likelihood function is equi-
valent to minimizing the sum-of-squares

function given by:

E(w) = 1
2

P∑

p=1

K∑

k=1

∥∥gk(xp, w) − t
p
k

∥∥2
.

(20.12)

The value of w found by solving equation
(20.9) will be denoted wML because it
corresponds to the maximum likelihood
estimation. Having formed wML , the noise
precision is then provided by:

1
αML

= 1
PK

P∑

p=1

∥∥g(xp, wML) − t p
∥∥2

.

(20.13)

The assumption of independence can be
dropped at the expense of a slightly more
complex optimization problem. Note that
in practice the nonlinearity of the network
function g(xp, w) causes the error E(w) to
be convex, and so in practice local maxima
of the likelihood may be found, which
correspond to local minima of the error
function.

There is a natural pairing of the error
function given by the negative log likelihood
and the output unit transfer function. In the
regression case we can view the network
as having a transfer function ψ that is the
identity, so that yk = netk . The corresponding
sum-of-squares error function then has the
characteristic:

∂E

∂netk
= ( yk − tk). (20.14)

This property will be used when discussing
the technique of error backpropagation in
section 20.5.

Now let us consider the case of binary
classification where we have a single target
variable t such that t = 1 denotes
class C1 and t = 0 class C2. We con-
sider a network with a single output whose
transfer function is a logistic sigmoid so
that 0 ≤ g(x, w) ≤ 1, and we can inter-
pret g(x, w) as the conditional probability
p(C1, x), with p(C2, x) given by 1 − g(x, w).
The conditional probability of targets given
inputs is then a Bernoulli distribution of
the form:

p(t | x, w) = g(x, w)t{1 − g(x, w)}1−t .

(20.15)

If we have a training set of independent
observations, then the error function, given
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by the negative log likelihood, is the cross-
entropy error function of the form:

E(w)=−
p∑

p=1

{tp lnyp +(1−tp)ln(1−yp)}

(20.16)

where yp denotes g(xp, w). Note there is no
analogue of the noise precision α because
the target values are assumed to be correctly
labelled.

For classification problems, the targets
represent labels defining class membership
or – more generally – estimates of the
probabilities of class membership. If we have
K separate binary classifications to perform,
then a neural network with K logistic sigmoid
output units is an appropriate choice. In
this case a binary class label t

p
k ∈ {0, 1}

is associated with each output k. If we assume
that the class labels are independent, given
the input vector xp, then the conditional
distribution is:

p(t | x, w) =
K∏

k=1

gk(x, w)tk [1−gk(x, w)]1−tk .

(20.17)

Taking the negative logarithm of the corres-
ponding likelihood function then yields the
multiple-class cross-entropy error function of
the form:

E(w) = −
P∑

p=1

K∑

k=1

{
t

p
k ln y

p
k

+(1 − t
p
k ) ln(1 − y

p
k )
}

(20.18)

where y
p
k = gk(xp, w). It is important to

note that the derivative of this error function

with respect to the activation for a particular
output unit k takes the simple form (20.14)
as in the regression case.

If we have a standard multiple-class
classification problem to solve, where each
input is assigned to one of K mutually
exclusive classes, then we can use a neural
network with K output units each of which
has a softmax output activation function.
The binary target variables tk ∈ {0, 1}
have a 1-of-K coding scheme indicating
the correct class, and the network outputs
are interpreted as gk(xp, w) = p(t p

k = 1 | x)
leading to the error function, called the
multiple-class cross-entropy error function
(see Fischer and Staufer, 1999):

E(w) = −
P∑

p=1

K∑

k=1

t
p
k ln

(
gk(x p, w)

t
p
k

)

(20.19)

which is non-negative, and equals zero when
gk(xp, w) = t

p
k for all k and p. Once again, the

derivative of this error function with respect
to the activation for a particular output unit k

takes the familiar form equation (20.14). It is
worth noting that in the case of K = 2 we can
use a network with a single logistic sigmoid
output, alternatively to a network with two
softmax output activations.

In summary, there is natural pairing of the
choice of the output unit transfer function and
the choice of the error function, according
to the type of the problem that has to
be solved. For regression we take linear
outputs and a sum-of-squares error, for
(multiple independent) binary classifications
we use logistic sigmoid outputs with the
corresponding cross-entropy error function,
and for multi-class classification softmax
outputs and the multi-class cross-entropy
error function. For classification problems
involving two classes, we can use a single
logistic sigmoid output, or alternatively we
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can take a network with two softmax outputs
(Bishop, 2006: 236).

20.4. PARAMETER OPTIMIZATION

There are many ways to solve the minimiza-
tion problem (20.9). Closed-form optimiza-
tion via the calculus of scalar fields rarely
admits a direct solution. A relatively new set
of interesting techniques that use optimality
conditions from calculus are based on
evolutionary computation (Goldberg, 1989;
Fogel, 1995). But gradient procedures which
use the first partial derivatives ∇E(w),
so-called first order strategies, are most
widely used. Gradient search for solutions
gleans its information about derivatives from
a sequence of function values. The recursion
scheme is based on the formula:11

w(τ + 1) = w(τ ) + η(τ ) d(τ ) (20.20)

where τ denotes the iteration step. Different
procedures differ from each other with regard
to the choice of step length η(τ ) and search
direction d(τ ), the former being a scalar
called learning rate and the latter a vector
of unit length.

The simplest approach to using gradient
information is to assume η(τ ) being constant
and to choose the parameter update in
equation (20.20) to comprise a small step in
the direction of the negative gradient so that:

d(τ ) = −∇E(w(τ )). (20.21)

After each such update, the gradient is
re-evaluated for the new parameter vector
w(τ + 1). Note that the error function is
defined with respect to a training set SP to
be processed to evaluate ∇E. One complete
presentation of the entire training set during
the training process is called an epoch.

The training process is maintained on an
epoch-by-epoch basis until the connection
weights and bias terms of the network
stabilize and the average error over the entire
training set converges to some minimum.
It is good practice to randomize the order
of presentation of training examples from
one epoch to the next. This randomization
tends to make the search in the parameter
space stochastic over the training cycles, thus
avoiding the possibility of limit cycles in the
evolution of the weight vectors.

Gradient descent optimization may pro-
ceed in one of two ways: pattern mode and
batch mode. In the pattern mode weight
updating is performed after the presentation
of each training example. Note that the error
functions based on maximum likelihood for
a set of independent observations comprise a
sum of terms, one for each data point. Thus:

E(w) =
P∑

p=1

Ep(w) (20.22)

where Ep is called the local error while E

the global error, and pattern mode gradient
descent makes an update to the parameter
vector based on one training example at a
time so that:

w(τ + 1) = w(τ ) − η∇Ep(w(τ )). (20.23)

Rumelhart et al. (1986) have shown that
pattern based gradient descent minimizes
equation (20.22), if the learning parameter η

is sufficiently small. The smaller η, the
smaller will be the changes to the weights
in the network from one iteration to the
next and the smoother will be the trajectory
in the parameter space. This improvement,
however, is attained at the cost of a slower
rate of training. If we make the learning rate
parameter η too large so as to speed up the
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rate of training, the resulting large changes
in the parameter weights assume such a form
that the network may become unstable.

In the batch mode of training, parameter
updating is performed after the presentation
of all the training examples that constitute
an epoch. From an online operational point
of view, the pattern mode of training is
preferred over the batch mode, because it
requires less local storage for each weight
connection. Moreover, given that the training
patterns are presented to the network in a
random manner, the use of pattern-by-pattern
updating of parameters makes the search in
parameter space stochastic in nature12 which
in turn makes it less likely to be trapped in
a local minimum. On the other hand, the use
of batch mode of training provides a more
accurate estimation of the gradient vector
∇E. Finally, the relative effectiveness of the
two training modes depends on the problem
to be solved (Haykin, 1994: 152 pp).

For batch optimization there are more
efficient procedures, such as conjugate gra-
dients and quasi-Newton methods, that are
much more robust and much faster than
gradient descent (Nocedal and Wright, 1999).
Unlike steepest gradient, these algorithms
have the characteristic that the error function
always decreases at each iteration unless
the parameter vector has arrived at a local
or global minimum. Conjugate gradient
methods achieve this by incorporating an
intricate relationship between the direction
and gradient vectors. The initial direction
vector d(0) is set equal to the negative
gradient vector at the initial step τ = 0.

Each successive direction vector is then
computed as a linear combination of the
current gradient vector and the previous
direction vector. Thus:

d(τ + 1) = −∇E(w(τ + 1)) + β(τ ) d(τ )

(20.24)

where β(τ ) is a time varying parameter.
There are various rules for determining β(τ )
in terms of the gradient vectors at time τ

and τ +1 leading to the Fletcher–Reeves and
Polak–Ribière variants of conjugate gradient
algorithms (see Press et al., 1992). The
computation of the learning rate parameter
η(τ ) in the update formula (20.20) involves
a line search, the purpose of which is to find
a particular value of η for which the error
function E(w(τ )+η d(τ )) is minimized, given
fixed values of w(τ ) and d(τ ).

The application of Newton’s method to
the training of neural networks is hindered
by the requirement of having to calcu-
late the Hessian matrix and its inverse,
which can be computationally expensive.
The problem is further complicated by
the fact that the Hessian matrix H would
have to be non-singular for its inverse
to be computed. Quasi-Newton methods
avoid this problem by building up an
approximation to the inverse Hessian over
a number of iteration steps. The most
commonly variants are the Davidson–
Fletcher–Powell and the Broyden–Fletcher–
Goldfarb–Shanno procedures (see Press
et al., 1992).

Quasi-Newton procedures are today the
most efficient and sophisticated (batch)
optimization algorithms. But they require the
evaluation and storage in memory of a dense
matrix H(τ ) at each iteration step τ . For
larger problems (more than 1,000 weights)
the storage of the approximate Hessian
can be too demanding. In contrast, the
conjugate gradient procedures require much
less storage, but an exact determination of the
learning rate η(τ ) and the parameters β(τ )
in each iteration τ , and, thus, approximately
twice as many gradient evaluations as the
quasi-Newton methods.

When the surface modelled by the error
function in its parameter space is extremely
rugged and has many local minima, then a
local search from a random starting point



384 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

tends to converge to a local minimum
close to the initial point and to a solution
worse than the global minimum. In order
to seek out good local minima, a good
training procedure must thus include both
a gradient based optimization algorithm
and a technique like random start that
enables sampling of the space of minima.
Alternatively, stochastic global search pro-
cedures might be used. Examples of such
procedures include Alopex (see Fischer et al.,
2003, for an application in the context of
spatial interaction data analysis), genetic
algorithms (see Fischer and Leung, 1998,
for another application in the same context),
and simulated annealing. These procedures
guarantee convergence to a global solution
with high probability, but at the expense of
slower convergence.

Finally, it is worth noting that the question
whether neural networks can have real-
time learning capabilities is still challenging
and open. Real-time learning is highly
required by time-critical applications, such
as for navigation and tracking systems in a
GIS-T context, where the data observations
are arriving in a continuous stream, and
predictions have to be made before all the
data seen. Even for offline applications,
speed is still a need, and real-time learning
algorithms that reduce training time are of
considerable value.

20.5. ERROR BACKPROPAGATION

One of the greatest breakthroughs in neural
network modelling has been the introduction
of the technique of error backpropagation13

in that it provides a computationally effi-
cient technique to calculate the gradient
vector of an error function for a feedfor-
ward neural network with respect to the
parameters. This technique – sometimes

simply termed backprop – uses a local mes-
sage passing scheme in which information
is sent alternately forwards and backwards
through the network. Its modern form stems
from Rumelhart et al. (1986), illustrated
for gradient descent optimization applied
to the sum-of-squares error function. It
is important to recognize, however, that
error backpropagation can also be applied
to error functions other than just sum-of-
squares and to a wide variety of opti-
mization schemes for weight adjustment
other than gradient descent, in pattern or
batch mode.

We describe the backpropagation algo-
rithm for a general network of type (20.6)
that has a single hidden layer, arbitrary
differentiable activation functions with a
corresponding local error function Ep(w).
For each pattern p in the training data set,
we shall assume that we have supplied the
corresponding input vector xp to the network
and calculated the activations of all the
hidden and output units in the network by
applying equations (20.1)–(20.4). Recall that
each hidden unit h has input net

p
h and output

z
p
h = ϕh(net

p
h ), and each output unit k has

input net
p
k and output y

p
k = ψk(net

p
k ).

This process is called forward propagation
because it can be seen as a forward flow
of information (signals) provided by x p

through the network. For the rest of this
section we consider one example and drop
the superscript p in order to keep the notation
uncluttered.

We evaluate the gradient Ep with respect

to a hidden-to-output parameter w
(2)
kh first, by

noting that Ep depends on the weight w
(2)
kh

only via the summed input, netk , to the output
unit k. Thus, we can apply the chain rule for
partial derivatives to get:

∂Ep

∂w
(2)
kh

=
∂Ep

∂netk

∂netk

∂w
(2)
kh

(20.25)
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where

∂netk

∂w
(2)
kh

=
∂

∂w
(2)
kh

H∑

h=0

w
(2)
kh zh = zh. (20.26)

If we define:

δk :=
∂Ep

∂netk
= ψ ′(netk)

∂Ep

∂yk
(20.27)

where the δs are often referred to as errors,
and substitute equations (20.26) and (20.27)
into equation (20.25), we obtain:

∂Ep

∂w
(2)
kh

= δkzh. (20.28)

This equation tells us that the required
partial derivative with respect to w

(2)
kh is

obtained simply by the multiplication of two
expressions: the value of δ for unit k at
the output end of the connection concerned
and the value of z at the input end h of
the connection. Thus, in order to evaluate
the partial derivatives with respect to the
second layer parameters we need only to
compute the value of δk for each output unit
k = 1, . . ., K in the network, and then apply
equation (20.28).

For linear outputs associated with the
sum-of-squares error function, for logistic
sigmoid outputs associated with the cross-
entropy error function and for softmax
outputs associated with the multiple-class
cross-entropy error function, the δs are
given by:

δk = yk − tk (20.29)

while for logistic sigmoid outputs associated
with the sum-of-squares error function the δs

are found as:

δk = yk(1 − yk)( yk − tk). (20.30)

For the input-to-hidden connections we
must differentiate the chosen error function
with respect to the parameters w

(1)
hn , which

are more deeply embedded in the error
function. Using again the chain rule for
partial derivatives, we get:

∂Ep

∂w
(1)
hn

= δh
∂neth

∂w
(1)
hn

= δhxn (20.31)

with:

δh := ϕ′
h(neth)

K∑

k=1

δkw
(2)
kh (20.32)

where the use of the prime signifies differ-
entiation with respect to the argument. In
the case of logistic hidden units we get the
following backpropagation formula:

δh = ϕ′
h(neth)

K∑

k=1

δkw
(2)
kh

= ϕ(neth)(1 − ϕ(neth))
K∑

k=1

δkw
(2)
kh

= zh(1 − zh)
K∑

k=1

δkw
(2)
kh . (20.33)

Since the formula for δh contains only terms
in a later layer, it is clear that it can
be calculated from output to input on the
network. Thus, the basic idea behind the
technique of error backpropagation is to use a
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forward pass through the network to calculate
the zh and yk values by propagating the
input vector, followed by a backward pass
to calculate δk and δh, and hence the partial
derivatives of the error function. Note that for
the presentation of each training example the
input pattern is fixed throughout the message
passing scheme, encompassing the forward
pass followed by the backward pass.

The backpropagation technique can be
summarized in the following four steps:

Step 1 Apply an input vector x p to the network and
forward propagate through the network,
using equations (20.1)–(20.4), to generate
the hidden and output unit activations
based on current weight settings.

Step 2 Evaluate the δk for all the output units
(k = 1, . . ., K ) using equation (20.29) or
equation (20.30), depending on the problem
type to be studied.

Step 3 Backpropagate the deltas, using equation
(20.33), to get δh for each hidden unit
h(h = 1, . . ., H ) in the network.

Step 4 Use equations (20.28) and (20.31) to
evaluate the required derivatives.

For batch procedures the gradient of the
global error can be obtained by repeating
Step 1 to Step 4 for each pattern p in
the training set, and then summing over all
patterns.

20.6. NETWORK COMPLEXITY

So far we have considered neural networks
of type (20.6) with a priori given numbers
of input, hidden and output units. While the
number of input and output units in a neural
network is basically problem dependent, the
number H of hidden units is a free parameter
that can be adjusted to provide the best
testing performance on independent data,
called testing set. But the testing error is not
a simple function of H due to the presence of
local minima in the error function. The issue

of finding a parsimonious model for a real
world problem is critical for all models but
particularly important for neural networks
because the problem of overfitting is more
likely to occur.

A neural network model that is too
simple (i.e., small H), or too inflexible,
will have a large bias and smooth out
some of the underlying structure in the data
(corresponding to high bias), while one that
has too much flexibility in relation to the
particular data set will overfit the data and
have a large variance. In either case, the
performance of the network on new data (i.e.,
generalization performance) will be poor.
This highlights the need to optimize the
complexity in the model selection process
in order to achieve the best generalization
(Bishop, 1995: 332; Fischer, 2000). There are
some ways to control the complexity of a
neural network, complexity in terms of the
number of hidden units or, more precisely,
in terms of the independently adjusted
parameters. Practice in spatial data analysis
generally adopts a trial and error approach
that trains a sequence of neural networks
with an increasing number of hidden units
and then selects that one which gives the
predictive performance on a testing set.14

There are, however, other more principled
ways to control the complexity of a neural
network model in order to avoid overfitting.15

One approach is that of regularization, which
involves adding a regularization term R(w)
to the error function in order to control
overfitting, so that the total error function to
be minimized takes the form:

Ẽ(w) = E(w) + µR(w) (20.34)

where µ is a positive real number, the so-
called regularization parameter, that controls
the relative importance of the data dependent
error E(w) and the regularization term R(w),
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sometimes also called complexity term. This
term embodies the a priori knowledge about
the solution, and therefore depends on the
nature of the particular problem to be solved.
Note that Ẽp(w) is called the regularized error

function.
One of the simplest forms of regularizer is

defined as the squared norm of the parameter
vector w in the network, as given by:

R(w) = ‖w‖2 . (20.35)

This regularizer16 is known as a weight
decay function that penalizes large weights.
Hinton (1987) has found empirically that a
regularizer of this form can lead to significant
improvements in network generalization.

Sometimes, a more general regularizer is
used, for which the regularized error takes
the form:

E(w) + µ ‖w‖m (20.36)

where m = 2 corresponds to the quadratic
regularizer (20.35). The case m = 1 is
known as the ‘lasso’ in the statistics literature
(Tibshirani, 1996b). It has the property that –
if µ is sufficiently large – some of the
parameter weights are driven to zero in
sequential learning algorithms, leading to
a sparse model. As µ is increased, so an
increasing number of parameters are driven
to zero.

One of the limitations of this regular-
izer is inconsistency with certain scaling
characteristics of network mappings. If one
trains a network using original data and
one network using data for which the input
and/or target variables are linearly trans-
formed, then consistency requires obtaining
equivalent networks which differ only by
a linear transformation of the weights. Any
regularizer should possess this characteristic,

otherwise one solution is arbitrary favoured
over an equivalent solution. In particu-
lar, the weights should be scale invariant
(Bishop, 2006: 257–258). A regularized
error function that satisfies this property is
given by:

E(w) + µ1
∥∥wq1

∥∥m + µ2
∥∥wq2

∥∥m (20.37)

where wq1 denotes the set of the weights in

the first layer, that is w
(1)
11 , . . . , w

(1)
h1 , . . .

, w
(1)
HN , and wq2 those in the second layer,

that is w
(2)
11 , . . ., w

(2)
kh , . . ., w

(2)
KH . Under

linear transformations of the weights, the
regularizer will remain unchanged, provided
that the parameters µ1 and µ2 are suitably
rescaled.

The more sophisticated control of com-
plexity that regularization offers over adjust-
ing the number of hidden units by trial
and error is evident. Regularization allows
complex neural network models to be trained
on data sets of limited size without severe
overfitting, by limiting the effective network
complexity. The problem of determining the
appropriate number of hidden units is, thus,
shifted to one of determining a suitable value
for the regularization parameter(s) during the
training process.

The principal alternative to regularization
as a way to optimize the model complexity
for a given training data set is the procedure
of early stopping. As we have seen in the
previous sections, training of a nonlinear
network model corresponds to an iterative
reduction of the error function defined with
respect to a given training data set. For
many of the optimization procedures used for
network training (such as conjugate gradient
optimization) the error is a nondecreasing
function of the iteration steps τ . But the
error measured with respect to independent
data, called the validation data set, often
shows a decrease first, followed by an



388 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

increase as the network starts to overfit, as
illustrated in Fischer and Gopal (1994) for
a spatial interaction data analysis problem.
Thus, training can be stopped at the point of
smallest error with respect to the validation
data, in order to get a network that shows
good generalization performance. But, if the
validation set is small, it will give a relatively
noisy estimate of generalization performance,
and it may be necessary to keep aside
another data set, the test set, on which the
performance of the network model is finally
evaluated.

This approach of stopping training before
a minimum of the training error has been
reached is another way of eliminating
the network complexity. It contrasts with
regularization because the determination of
the number of hidden units does not require
convergence of the training process. The
training process is used here to perform
a directed search of the weight space for
a neural network model that does not
overfit the data and, thus, shows superior
generalization performance. Various theo-
retical and empirical results have provided
strong evidence for the efficiency of early
stopping (see, e.g., Weigend et al., 1991;
Baldi and Chauvin, 1991; Finnoff, 1991).
Although many questions remain, a picture
is starting to emerge as to the mechanisms
responsible for the effectiveness of this
procedure. In particular, it has been shown
that stopped training has the same sort of
regularization effect (i.e., reducing model
variance at the cost of bias) that penalty terms
provide.

20.7. GENERALIZATION
PERFORMANCE

The ability of a neural network to predict
correctly new observations that differ from

those used for training is known as general-

ization (see, e.g., Moody, 1992). To assess
the generalization performance of a neural
network model is of crucial importance.
The performance on the training set is not
a good indicator due to the problem of
overfitting. As often in statistics, there is a
trade-off between accuracy on the training
data and generalization. This is a well-
studied dilemma (see, e.g., Bishop, 1995:
chapter 9).

The simplest way to assess the gener-
alization performance is the use of a test
set. Here, of course, it is assumed that
the test data are drawn from the same
population used to generate the training data.
If the test set is too small, an accurate
assessment cannot be obtained. Test set
validation becomes practical only if the data
sets are very large or new data can be
generated cheaply. As the training and test
sets are independent samples, an unbiased
estimate of the prediction risk is obtained.
But the estimate can be highly variable across
different data splittings.

One way to overcome this problem is by
cross-validation. Cross-validation is a sample
re-use method for assessing generalization
performance. It makes maximally efficient
use of the available data. The idea is to
divide the available data set into – generally
equally sized – D parts, and then to use one
part to test the performance of the neural
network model trained on the remaining
(D − 1) parts. The resulting estimator is again
unbiased, and we can average the D such
estimates. Leave-one-out cross-validation is
a special case, in which each observation is
tested on the remaining (P −1) observations.
This version evidently requires a large
number of computations. Choosing D = P

should give the most accurate assessment,
as the ‘true’ size of the training set is
most closely mimicked, but also involves
the most computation. In addition, cross-
validation estimates of performance for large
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D might be expected to be rather variable.
Taking a smaller D can give a larger bias,
but smaller variance and mean-square error.
This is an argument in favour of smaller D

(Ripley, 1996: 70–71). Bootstrap estimates
of bias can be used for bias correction
(Efron, 1982).

With small samples of data – precisely
when structural uncertainty is greatest –
cross-validation may not be feasible, because
there are too few data values with which
to carry out the estimation, validation and
testing activities in a stable way. Bootstrap-

ping the neural network modelling process –
creating bootstrap copies of the available
data to generate copies of training, validation
and test sets – may be used instead as
a general framework for evaluating gener-
alization performance. The idea underlying
the bootstrap is appealingly simple. For an
introduction see, for example, Efron (1982),
Efron and Tibshirani (1993) or Hastie et al.
(2001).

Suppose, we are interested in a single
hidden layer neural network together with
a sum-of-squares error function to solve a
regression problem. The standard procedure
for estimating and evaluating the neural
network is to split the available data set,
say SP = {zp = (xp, tp) : p =
1, . . ., P}, into three parts: a training set
SP1 = {zp1 = (xp1, tp1) : p1 =
1, . . ., P1}, a validation set SP2 = {zp2 =
(xp2, tp2) : p2 = 1, . . ., P2} and a test
set SP3 = {zp3 = (xp3, tp3) : p3 =
1, . . ., P3}, with P1 + P2 + P3 = P. The
training set serves for parameter estimation
such as by means of gradient descent
on the sum-of-squares error function. The
validation set is used, for example, to deter-
mine the stopping point before overfitting
occurs, and the test set to evaluate the
generalization performance of the model,
using some measure of error between a
prediction and an observed value, such
as the familiar root-mean-square error ρ

of the form:

ρ̂(ŵ) =

P3∑

p3=1

∥∥g(x p3, ŵ) − t p3
∥∥2

P3∑

p3=1

∥∥t p3 − t̄
∥∥2

(20.38)

which is a function of ŵ, obtained by solving
the minimization problem (20.9). t̄ is defined
to be the average test set target vector.
Care has to be taken in interpreting the
results obtained as accurate estimates of the
generalization performance.

Randomness enters into this standard
approach to neural network modelling in two
ways: in the splitting of the data samples, and
in choices about the parameter initialization.
This leaves one question wide open. What
is the variation of test performance as one
varies training, validation, and test sets?
This is an important question, since there
is not just one ‘best’ split of the data or
obvious choice for the initial weights. Thus,
it is useful to vary both the data partitions
and parameter initializations to find out
more about the distributions of generalization
errors. One way is to use a computer
intensive bootstrapping approach to evaluate
the performance, reliability, and robustness
of the neural network model, an approach
that combines the purity of splitting the data
into three disjoint data sets with the power
of a resampling procedure. Implementing this
approach involves the following steps (see
Fischer and Reismann, 2002a, b, for an appli-
cation in the context of spatial interaction
modelling).

Step 1: Generation of bootstrap training, valida-
tion and test sets

Using the sample SP , we first build a test
set by choosing P3 patterns randomly,17

with replacement. The patterns used in
this specific test set are then removed
from the pool SP . From the remainder,
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we then randomly set aside P2 patterns
for the bootstrap validation set. They are
picked randomly without replacement and
removed from the pool. The remaining
patterns constitute the training set. This
process is repeated B times (typically 20 <

B < 200) to generate b = 1, . . ., B

training data sets of size P1, S∗b
P1 =

{∗bzp1 :p1 = 1, . . ., P1}, called bootstrap
training sets; b = 1, . . ., B validation data

sets of size P2, S∗b
P2 = {∗bzp2 : p2 =

1, . . ., P2}, called bootstrap validation
sets; and b = 1, . . ., B test data sets of
size P3, S∗b

P3 = {∗bzp3 :p3 = 1, . . ., P3},
called bootstrap test sets.

Step 2: Computation of the bootstrap parameter
estimates

Each bootstrap training set S∗b
P1 is used

to compute a new parameter vector by
minimizing:

arg min {E (∗bw ) : ∗bw ∈ W ,

W ⊆ RQ } (20.39)

where Q is the number of parameters, and
E (∗bw ) the (global) sum-of-squares error
for the bth bootstrap training sample. This
is given by:

E (∗bw )

= 1
2

P1∑

p1=1

∥∥∥g (∗bx p1, ∗bw ) −∗b t p1
∥∥∥

2

(20.40)

where the sum runs over the bth boot-
strap training set, and b = 1, . . ., B .
The corresponding bootstrap validation set
is used to determine the stopping point
before overfitting occurs and/or to set addi-
tional parameters or hyperparameters. This
yields B bootstrap parameter estimates
∗bŵ (b=1,. . ., B).

Step 3: Estimation of the bootstrap statistic of
interest

From S∗b
P3 calculate ∗b ρ̂ (∗bŵ ), the

bootstrap analogue of ρ̂ (ŵ ) given by

equation (20.38), in the same manner as
ρ̂ (ŵ ) but with resample S∗b

P3 replacing

SP3 and ∗bŵ replacing ŵ . This yields
a sequence of bootstrap statistics,
∗1ρ̂, . . ., ∗B ρ̂.

Step 4: Estimation of the standard deviation
The statistical accuracy of the perfor-

mance statistic can then be evaluated by
looking at the variability of the statistic
between the different bootstrap test sets.
Estimate the standard deviation, σ̂ , of ∗ρ̂

as approximated by bootstrap:

σ̂B
P3 =





1

B −1

B∑

b=1

[
∗b ρ̂ (∗bw )−∗ρ̂(.)

]2






½

(20.41)

where

∗ρ̂(.) =
1

B

B∑

b=1

∗b ρ̂(∗bw ). (20.42)

The true standard error of ρ̂ is a function of
the unknown density function F of ρ, that
is σ (F ). With the bootstrapping approach
described above one obtains F̂ ∗

P3 which is
supposed to describe closely the empirical
probability distribution F̂P3, in other words
σ̂B

P3 ≈ σ (F̂P3). Asymptotically, this means
that as P3 tends to infinity, the estimate
σ̂B

P3 tends to σ (F ). For finite sample sizes,
however, generally there will be deviations.

Step 5: Bias estimation
The bootstrap scheme can be used to

estimate not only the variability of the
performance statistic ρ̂, but also its bias
(Zapranis and Refenes, 1998). Bias can be
thought of as a function of the unknown
probability density function F of ρ that is
β = β(F ). The bootstrap estimate of bias
is simply:

β̂B = β(F̂P3) = E∗[ρ(F̂ ∗
P3) − ρ(F̂P3)]

(20.43)

where E∗ indicates expectation with
respect to bootstrap sampling and F̂ ∗

P3
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the bootstrap empirical distribution.
The bootstrap estimate of bias is:

β̂ =
1

B

B∑

b=1

[
∗b ρ̂ (∗bw ) − ρ̂ (w )

]
.

(20.44)

The bias is removed by subtracting β̂B from
the estimated ρ̂.

20.8. SUMMARY AND OUTLOOK

In one sense neural networks are nonlinear
models having a methodology of their own.
From a spatial analysis point of view neural
networks can generally be used anywhere one
would ordinarily use a linear or nonlinear
specification, with estimation proceeding via
appropriate techniques. The now rather well-
developed theory of estimation of misspeci-
fied models applies immediately to provide
appropriate interpretations and inferential
procedures.

Neural networks have essentially a broader
utility that has yet to be fully appreciated by
spatial analysts, but which has the potential
to significantly enhance scientific under-
standing of spatial phenomena and spatial
processes subject to neural network mod-
elling. In particular, the estimates obtained
from neural network learning may serve
as a basis for formal statistical inference,
making possible statistical tests of specific
hypotheses of interest. Because of the ability
of neural networks to extract complex
nonlinear effects, the alternatives against
which such tests can have power may extend
usefully beyond those with the reach of more
conventional methods, such as linear models
for regression and classification.

Although we have covered a fair amount
of ground in this chapter we have only
scratched the surface of the modelling

possibilities offered by neural networks.
To mention some additional models treated
in the field of neural networks, we note
that competitive learning networks have been
much studied with applications, for example,
to the travelling salesman problem and
remote sensing classification problems, and
that radial basis function networks in which
the activation for a hidden unit is determined
by the distance between the input vector
and a prototype vector are also standard
objects of investigation. Leung (1997), for
example, illustrates the use of radial basis
function networks for rule learning. We,
moreover, did not consider neural networks
for unsupervised feature discovery which in
statistical terms correspond to cluster analysis
and/or latent structure analysis.

For neural networks to find a place in
spatial data analysis they need to overcome
their current limitations, mainly due to the
relative absence of established procedures
for model identification, comparable to those
for spatial econometric modelling techniques.
In particular, providing tests specifically
designed to test the adequacy of neural
models is a research issue on its own
right. Despite significant improvements in
our understanding of the fundamentals of
neural network modelling, there are many
open problems and directions for future
research. From a spatial analytic perspective
an important avenue for further investigation
is the incorporation of spatial dependency
in the network representation that received
less attention in the past than it deserves.
Another is the application of Bayesian
inference techniques to neural networks.
A Bayesian approach would provide an
alternative framework for dealing with the
issues of network complexity and would
avoid many of the problems discussed in
this chapter. In particular, error bars and
confidence intervals can easily be assigned to
the predictors generated by neural networks,
without the need of bootstrapping.
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NOTES

1 Neural networks can model cortical local
learning and signal processing, but they are not the
brain, neither are many special purpose systems to
which they contribute (Weng and Hwang, 2006).

2 Feedforward neural networks are sometimes
also called multilayer perceptrons even though the
term perceptron is usually used to refer to a network
with linear threshold gates rather than with contin-
uous nonlinearities. Radial basis function networks,
recurrent networks rooted in statistical physics, self-
organizing systems and ART (Adaptive Resonance
Theory) models are other important classes. For a
fuzzy ARTMAP multispectral classification see Gopal
and Fischer (1997).

3 A generalization of this network architecture is
to allow skip-layer connections from input to output,
each of which is associated with a corresponding
adaptive parameter. But note that a network with
sigmoidal hidden units can always mimic skip-
layer connections for bounded input values by
using sufficiently small single hidden layer weights.
Skip-layer connections, however, can be easier to
implement and interpret in practice.

4 Networks with closed directed cycles are called
recurrent networks. There are three types of such
networks: first, networks in which the input layer is
fed back into the input layer itself; second, networks
in which the hidden layer is fed back into the input
layer, and third, networks in which the output layer
is fed back into the input layer. These feedback
networks are useful when input variables represent
time series.

5 Note, we could alternatively use product
rather than summation hidden units to supplement
the inputs to a neural network with higher-order
combinations of the inputs to increase the capacity
of the network in an information capacity sense.
These networks are called product unit rather than
summation unit networks (see Fischer and Reismann,
2002b).

6 This term should not be confused with the term
bias in a statistical sense.

7 The inverse of this function is called link
function in the statistical literature. Note that radial
basis function networks may be viewed as single
hidden layer networks that use radial basis function
nodes in the hidden layer. This class of neural
networks asks for a two stage approach for training.
In the first stage the parameters of the basis functions
are determined, while in the second stage the basis
functions are kept fixed and the second layer weights
are found (see Bishop, 1995: 170 pp.).

8 This is the same idea as incorporating the
constant term in the design matrix of a regression
by inserting a column of ones.

9 In some cases there may be some practical
advantage to use a tanh function instead. But note

that this leads to results equivalent to the logistic
function.

10 This viewpoint directs attention to the lit-
erature on numerical optimization theory, with
particular reference to optimization techniques that
use higher-order information such as conjugate
gradient procedures and Newton’s method. The
methods use the gradient vector (first-order partial
derivatives) and/or the Hessian matrix (second-order
partial derivatives) of the error function to perform
optimization, but in different ways. A survey of first-
and second-order optimization techniques applied
to network training can be found in Cichocki and
Unbehauen (1993).

11 When using an iterative optimization algo-
rithm, some choice has to be made of when to stop
the training process. There are various criteria that
may be used. For example, training may be stopped
when the error function or the relative change in
the error function falls below some prespecified
value.

12 The particular form of η(τ ) most commonly
used is described by η(τ ) = c/τ where c is a
small constant. Such a choice is sufficient to guar-
antee convergence of the stochastic approximation
algorithm (Ljung, 1977).

13 The term backpropagation is used in the
literature to mean very different things. Sometimes,
the feedforward neural network architecture is called
a backpropagation network. The term is also used
to describe the training of a feedforward neural
network using gradient descent optimization applied
to a sum-of-squares error function.

14 Note that limited data sets make the determi-
nation of H more difficult if there is not enough data
available to hold out a sufficiently large independent
test sample.

15 A neural network is said to be overfitted
to the data if it obtains an excellent fit to the
training data, but gives a poor representation of
the unknown function which the neural network is
approximating.

16 In conventional curve fitting, the use of this
regularizer is termed ridge regression.

17 Note that a reliable pseudo-random number
generator is essential for the valid application of the
bootstrap approach.
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21
Geocomputation

H a r v e y J . M i l l e r

21.1. INTRODUCTION

Geocomputation concerns the application of
high-performance computers to explore and
analyze digital representations of the Earth
and related phenomena. Geocomputation
is predicated on the belief that computa-
tional techniques are useful for explaining
and predicting geographic phenomena. This
is due to three reasons: (1) astonishing
increases in computational power allowing
new forms of modeling, analysis, and simula-
tion; (2) greater capabilities for collecting and
storing geographic data, allowing unprece-
dented detailed representations of geographic
phenomena, and; (3) a postulate that compu-
tation is meaningful for understanding reality
beyond the computational process itself, and
perhaps better than traditional, analytical
approaches.

The next section of this chapter reviews the
conceptual foundation for geocomputation.
This includes discussions of the broader field

of computational science and the complexity
of natural processes. It also reviews the
motivations for geocomputation, its rela-
tionship to spatial analysis and geographic
information systems (GIS), and elements
of a theory of geocomputation. The next
major section reviews selected techniques to
illustrate the application of geocomputation
principles in spatial analysis. The final
section concludes this chapter by briefly
discussing the future of GC.

21.2. COMPUTATIONAL SCIENCE
AND COMPLEXITY

21.2.1. Computational science

In contrast with computer science or
the study of computers and computation,
computational science (CS) uses comput-
ers to study other scientific problems.
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CS involves the development and appli-
cation of computational techniques using
high performance computers to explore
massive databases and to simulate com-
plex and intricate processes. This com-
plements the use of traditional scientific
techniques such as experimentation, ana-
lytical modeling, and statistical techniques.
These techniques are limited since they
can only explore a small portion of the
vast information spaces implied by some
phenomena and often require harsh assump-
tions that are not met in reality, or by
the data acquired through measuring reality
(Openshaw, 2000).

One motivation behind CS is that comput-
ers have become incredibly powerful and will
continue to do so for the foreseeable future.
These potent platforms can provide new, rev-
olutionary tools for scientific investigation.
Another motivation is the collapse in costs of
data collection and storage.

Moore’s Law
The now famous Moore’s Law of Integrated
Circuits best describes the incredible growth
in computing power. In 1965, Gordon Moore
(one of the inventors of the integrated circuit
and then Chair of Intel, Inc.) noted that the
surface area of each transistor being etched
on an integrated circuit was being reduced
by about 50% every 12 months. In 1975,
he revised this to 18 months. This is known
as Moore’s Law: the processing capacity of
the integrated chip doubles every six months.
Figure 21.1 provides evidence of Moore’s
Law (Kurtzweil, 1999).

Moore’s Law implies exponential growth
in computational power. We have orders of
magnitude more computing power available
to us than to researchers as recently as
10 years ago, and many orders of magnitude
more than the time when many of our analyt-
ical, statistical and experimental techniques
were developed. Perhaps we should re-think
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our tools and methods given this growth in
computing power (Openshaw, 2000).

Data collection and storage
Paralleling the astonishing increases in com-
putational power is an equally stunning
collapse in the cost of collecting and storing
digital data. The computerization of many
government and business transactions as
well as the increasing capabilities for direct
digital data capture through devices such
as bar code scanners and environmental
sensors has greatly reduced the cost of data
collection. At the same time, database, and
data warehousing techniques have become
more powerful and affordable (Chen et al.,
1996). The hardware costs of storing data
are also a minute fraction of the costs a
decade or two ago. These trends are shifting
science from a data-poor to a data-rich
environment.

21.2.2. Nature and complexity

Just because we are drowning in CPU
cycles and data does not mean we should
apply them to understanding non-computer
related phenomena. Computers may not be
appropriate tools for gaining new scientific
understanding about reality apart from the
computational process itself. Perhaps com-
puters should just be used to manage our
data and documents, run our personal digital
assistants and cell phones, and coordinate
transportation and logistics. In other words,
just because computers are great for solving
engineering problems, does not mean that
they are useful to discover knowledge
about the Earth. However, computational
science is also predicated on a belief that
computation can mimic natural processes.
Nature may behave much like a computer;
in fact, perhaps the universe is a computer

(Kelley, 2002).

This may sound far-fetched. But until
recently, science has worked under a similar
but equally pervasive metaphor, namely,
universe as machine. This assumed that the
universe behaved much like an engine, with
continuous and well-behaved processes with
effects that are proportional to causes. Most
importantly, this implied that the whole is

equal to sum of the parts, and we can
understand the whole by studying its parts
independently. The tools for this exploration
were algebra and calculus: these are tools that
examine quantities (magnitudes) in continu-
ous mathematical space (Flake, 1998).

There is a fundamental reason why com-
putation may be a better description of nature
than mechanics: frugality. Natural processes
have a remarkable ability to extract much
from a minimal investment of resources:
consider, for example, the surface area
generated by the leaves of a tree or in
the interface between the lungs and the
circulatory system. Similarly, a great deal of
biological complexity results from a code that
consists of only four symbols, namely, DNA.
Similarly, computing tries to obtain the most
with the least investment of computational
resources and, similar to biological growth,
simple computational rules can result in
complex behavior that is not predictable.
The property of complexity from simplicity

in both nature and computation means that
the whole is greater than the sum of the

parts: phenomena cannot be understood
entirely by independent analysis of their
components. This implies a middle path to
scientific knowledge: instead of looking at
the individual or aggregate, we see how the
aggregate emerges from the interactions of
individuals (Flake, 1998).

There are some powerful mechanisms in
both nature and computation that facilitate
complexity from simplicity. These principles
are parallelism, iteration, and adaptation

(Flake, 1998). Complex systems are often
highly parallel collections of relatively
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simple units, for example, consider an
ant colony (ants), a brain (neurons), an
ecosystem (animals), or a city (people).
Parallel systems are more efficient and
robust than sequential systems since they
can specialize, explore a wider range of
solutions simultaneously, and survive the
failure of many components. Iteration over
time allows feedback from the environment
to determine the success or failure of
different units and their strategies. Iteration
also supports the closely related concept of
recursion or self-reference. Finally, adapta-
tion is a consequence of parallelism and
iteration within an environment with scarce
resources and therefore competition. Many
of the techniques used in computational
science incorporate some or all of these
principles.

21.3. GEOCOMPUTATION

21.3.1. Motivation

Similar to CS, a factor motivating geo-
computation is the increasing ability to
capture, store, and process digital geographic
data. In particular, it is increasingly pos-
sible to capture geo-data at high levels
of spatial and temporal resolution as well
as manipulate very detailed representations
of geography using geographic information
systems (GIS) and related technologies.
Geo-spatial data capture technologies include
intelligent transportation systems, hyper-
spectral, and laser-based remote sensing
systems, environmental monitoring devices,
and location-aware technologies (LATs) that
can report their geo-location densely with
respect to time. GIS allow analysis of
geographic relationships and morphology
at levels of detailed hardly imaginable
even a short time in the past (Miller
and Wentz, 2003). It is possible that

there are surprising and useful patterns
in these data and representations that are
not being discovered by the analytic and
statistical methods in traditional spatial
analysis.

Another motivating force for geocompu-
tation is the increasing recognition of the
complexity of the spatio-temporal systems
of concern in geography and the Earth
sciences (Fischer and Leung, 2001). For
example, the dynamic evolution of an urban
system emerges from the individual agents
of change, their interactions and the co-
evolution of the context in which these
interactions occur. This suggests not only
that these systems are more complicated
than previously supposed, but also that we
cannot engineer their growth; rather, we
can only influence or shape their evolution.
We have seen this time and time again
when a relatively modest change in infras-
tructure or policy (e.g., a new highway
interchange, a change in zoning regulations)
leads to wildly disproportionate outcomes
(e.g., traffic congestion, urban sprawl). This
is not defeatist; rather, it suggests humility
and the need for sophisticated, nuanced
approaches to understanding and directing
these systems to efficient, equitable and
sustainable outcomes.

In addition to increasing recognition of the
complexity of geographic phenomena, it is
also likely that intrinsic complexity of these
systems is increasing. As the world continues
to become more crowded, mobile and
connected, small local actions can have large-
scale outcomes. Saturated road networks
mean that an accident in one location results
in traffic jams across town. Airline networks
distribute diseases across continents and
around the world within hours. The Internet
spreads innovative ideas and wild rumors
throughout the globe nearly at the speed of
light. Interconnected financial networks mean
that decisions made in a conference room can
have huge economic consequences for large
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regions thousands of miles away. Population
pressure and consequent desertification in
Central Asia creates air quality problems in
North America. A crowded planet with high
consumption, mobile and connected lifestyles
creates complex spatio-temporal dynamics at
all geographic scales.

Many in geography and other Earth
sciences have known for quite some time
that the world is more sophisticated, and
becoming even more sophisticated, than the
mechanical metaphor bequeathed to us by
18th century science. The problem is that we
did not have the tools or data for dealing
with basic and applied scientific problems
from a complex system perspective. The
geocomputational revolution is shattering
this barrier.

21.3.2. Distinctive features of
geocomputation

An increasing recognition of the complexity
of geographic systems and the collapse in
the costs of capturing and storing geographic
data does not necessarily justify a separate
field of study. It is possible that standard CS
techniques could be applied to geographic
phenomena with the same success with which
they are applied to other scientific questions.
What is it about GC that makes it distinct
from CS?

A major distinction is the emphasis on
the geospatial framework that conditions the
phenomenon under investigation (Openshaw,
2000). A geo-space is a set of locations with
defined shortest path relationships between
all pairs (Beguin and Thisse, 1979). These
locations often correspond to the Earth’s
surface, although this is not necessarily
the case. Shortest path relationships are
usually based on physical distance, but
other relationships such as time, direction
and connectivity, or some combination, are
possible (see Miller and Wentz, 2003).

Two major properties conditioned by a
geospatial framework are spatial dependency

and spatial heterogeneity; these refer to the
tendency of attributes at locations that are
proximal with respect to shortest paths to
be related and the tendency of processes to
vary by location in geospace (respectively).
Rather than confounding, these properties
are rich sources of information about spatial
processes (Fotheringham, 2000). In addition,
many geographic entities cannot be repre-
sented as simple points in an information
space without significant loss. Geographic
entities have morphological properties such
as size and shape that can have non-trivial
effects on their evolution and interactions
(see Miller and Wentz, 2003). GC is the
development and application of compu-
tational techniques that are sensitive to
spatial relationships and spatial morphology
inherent in geo-spatial phenomena.

21.3.3. Relationship to spatial
analysis and geographic
information systems

At its core, the argument for GC being
unique with respect to CS is identical to
the arguments for the uniqueness of spatial
analysis with respect to statistics, and GIS
being a unique subset of information systems.
What, if anything, makes GC unique with
respect to spatial analysis and GIS?

Fotheringham (2000) distinguishes bet-
ween computer-based spatial analysis and
GC. Computer-based spatial analysis uses the
computer merely as a convenient tool (i.e.,
nothing more than, say, a very fast slide rule
or abacus). GC refers to the case where the
computer drives the form of spatial analysis
instead of just being a convenient vehicle.
In other words, in GC the computer plays a

pivotal role.
GC is more concerned with finding

numerical approximations rather than precise
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analytical solutions. While this may sound
like a drawback (and it is), this is a
necessary trade-off. Traditional modeling
methods rely on simplistic representations
of space and behavior in order to facilitate
precise analytical solutions. GC determines
numerical approximations of solutions for
systems with more complex representations
of space and behavior. The argument is that
it is better to have an approximate solution
to a richly represented system than an exact
solution to a sterile representation. Numerical
approximations are necessary consequences
of richer, more accurate representations of
geographic phenomena.

Much of the digital geographic data
available to researchers no longer meets
many of the assumptions of inferential
statistics, including the more relaxed assump-
tions of spatial analysis. Geographic data is
increasingly no longer carefully structured
and limited samples from a much larger
population. Rather, digital geographic data
are often monitored entire populations (in the
statistical sense) collected using ill-structured
and ‘noisy’ methods. Computational tech-
niques that do not require strict assumptions
are better suited for these rich but sloppy data
(Atkinson and Martin, 2000).

GIS provides a source of data and a
toolkit environment for GC. GC is distinct
since it emphasizes dynamic processes over
static form and user interaction over passive
receipt of information. GC is about matching
technology with environment, process with
data model, geometry with application, anal-
ysis with local context, and, philosophy of
science with practice (Longley, 1998). We
can also make a distinction between GIS
and GC that is similar to Fotheringham’s
(2000) distinction between computer-based
spatial analysis and GC. In many respects, the
computer is nothing more than a convenient
vehicle for GIS. For example, the overlay
operation pre-dates much of the development
of computer-based GIS (see McHarg, 1969).

We have also been constructing, storing
and using maps for 5000 years. In other
words, we can ‘do’ GIS even without
computers, although it would be very slow
and tedious. GC is about what we could
not do before the development of powerful
computers.

In sum, GC uses the traditional techniques
of spatial analysis (statistics, mathematical
modeling) and GIS as parts of a more flexible
and expansive tool kit. GC is concerned
with the use of computational techniques
and technologies within a scientific frame-
work. This involves GIS as the data and
information manager, computational methods
as the tools, and high performance com-
puting as the driver (Fischer and Abrahart,
2000; Fischer and Leung, 2001; Openshaw,
2000).

21.3.4. A theory of
geocomputation?

Couclelis (1998a, b) provides a more skep-
tical view of GC. She argues that GC is
in fact a loosely connected ‘grab-bag’ of
techniques rather than a focused scientific
endeavor. She challenges the GC community
to develop a rigorous computational theory
of spatiotemporal processes that justifies the
prefix ‘geo.’

Couclelis points out that computational
science is based on the theory of computation,
a highly developed and rigorous theory
of what can (and cannot) be computed
and how things that can be computed
should be. This involves questions such
as determining which processes in the
world can be described in the precise
manner required by computation, and what
is the appropriate language for describing
specific processes. These are much deeper
questions than what available computational
technique is best for a particular data set
or problem. (For an excellent introduction
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to the theory of computation, see Sipser
(1997).)

Noting the formal equivalence between
the theory of computing and the theory of
algebra, Couclelis (1998b) also develops a
rough typology that demarcates the types of
techniques that can legitimately be called
geocomputation. In Table 21.1, the upper
left quadrant contains techniques that are
definitely geocomputational. The lower right
quadrant contains techniques that are defi-
nitely not geocomputational. The upper right
and lower left quadrants contain borderline
cases.

Couclelis also distinguishes between hard
GC and soft GC, paralleling a similar
distinction between hard and soft artificial
intelligence. Hard GC involves efforts to
understand and represent complex geograph-
ical processes using computational tech-
niques. Soft GC refers to the development of
geographic problem representations and solu-
tions using spatially oriented computational
techniques.

Couclelis’ (1998a, b) challenge has
yet to be met by the GC community.
Answering these fundamental questions
can indicate the deep connections between
different geocomputational tools as well as
between different geographic phenomena;
this will undoubtedly advance the field as
well as provide it with a more rigorous
foundation.

21.4. GEOCOMPUTATIONAL
TECHNIQUES

This section reviews selected geocompu-
tational techniques, specifically, fractals,

dynamical systems and chaotic behavior,

cellular automata, agent-based modeling,
and artificial neural networks. This is not
an exhaustive list. Other techniques such as
geographic knowledge discovery, visualiza-
tion, local spatial statistics, and optimization
techniques such as genetic algorithms could
also be included since these are data and
computation-hungry techniques where the
computer plays a pivotal role. However, some
of these techniques are better treated indepen-
dently, as indeed they are elsewhere in this
volume. The survey below intends to provide
illustrative examples of geocomputation, as
well as demonstrate the pervasive theme of
complexity from simplicity that underlies
most geocomputational techniques.

21.4.1. Fractals

Platonic objects such as points, lines, poly-
gons and solids are simple, smooth and
ideal, and typically only result from delib-
erate design. In contrast, naturally occurring
objects such as coastlines, clouds, trees and
the human circulatory system are highly self-
similar, hierarchical and irregular. Each part

Table 21.1 A general classification of geocomputational
and non-geocomputational techniques (Couclelis, 1998b)

Operators

Spatial Nonspatial

Operands Spatial Cellular automata Map classification

Shape grammars Neural networks

Fractals Multimedia imaging

Nonspatial Cartographic labeling Traditional modeling

Global statistics
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appears to be a scaled-down version of the
entire object, these self-similar features form
a hierarchy, and the boundaries of these
objects are highly irregular (Mandlebroit,
1983). Also, many human-made objects such
as transportation networks and cities that
grow in a bottom-up, organic manner also
appear irregular, hierarchical and self-similar
(Batty and Longley, 1994).

A fractal is a class of complex geometric
shapes that have fractional dimension, a con-
cept first introduced by the mathematician
Felix Hausdorff in 1918. Benoit Mandelbrot
coined the term ‘fractal’ from the Latin word
fractus (‘fragmented,’ or ‘broken’) since
the shapes are irregular rather than smooth
(Batty and Longley, 1994; Encyclopedia
Britannica, 2000). For example, points, lines
and polygons have dimensions of zero, one
and two, respectively. In contrast, a fractal
curve has a dimension between one and
two, and has a highly irregular and complex
shape, while a fractal region has a dimension
between two and three.

Fractals were discovered well over a
century ago, but were considered to be
‘pathological’ and ‘monsters’ (Mandlebroit,
1983). The rise of the digital computer has
facilitated the analysis and appreciation of
these monsters since they seem to be based
on the computational principles of iteration
and recursion. Indeed, it is possible that
many natural objects and processes exhibit
fractal properties since iteration and recursion
are efficient ways to grow objects. Many
fractals can be generated through recursive
functions that are very compact and require
little information to encode their algorithm.
Fractals are also very good at maximizing
functionality with minimal resource inputs.
Fractals such as the Koch snowflake and
Peano curve can cram an incredible amount
of length (in fact, infinite) into a finite area
(Flake, 1998).

Since many natural and geographic phe-
nomena display fractal properties, they are

becoming important in spatial analysis and
geocomputation (Goodchild and Mark, 1987;
Longley, 2000). Fractals can also serve as
the basis for spatial sampling strategies and
other forms of spatial analysis (e.g., Appleby,
1996; De Cola, 1991; Lam and Liu, 1996).
Because of their natural look, fractals are
also becoming popular in computer graphics,
particularly for rending natural landscapes
such as mountains or other complex terrain
(Clarke, 1993; Illingworth and Pyle, 1997).
Fractals also provide principles for spatial
data structures that map two- and three-
dimensional data to the one-dimensional data
structures in computers; examples include
space-filling curves such as the Peano
curve and the Hilbert curve (Goodchild and
Mark, 1987).

Measuring the fractal dimension
As the properties discussed above suggest,
fractals are more complex than Platonic
objects. The fractal dimension is a measure
of this complexity: Mandlebroit (1983) noted
that the often paradoxical properties of
fractals (such as enclosing a finite space with
in infinite boundary, or packing an infinite
length into a finite space) are a result of their
‘dimensional discordance’.

The complexity of a fractal object relates
to scale-dependency when measuring its
size. The first person to notice this was
Lewis Richardson, although this recognition
may go back to the ancient Greeks (Batty
and Longley, 1994). In 1967, Mandelbroit
published a paper based on Richardson’s
insight entitled ‘How long is the coast of
Britain?’ (Mandlebroit, 1967). The apparent
length of a coastline seems to increase
whenever the resolution of the measurement
unit is increased: higher resolutions mean
that smaller and smaller features become
relevant, increasing the measured length.
At the extreme, using an infinitely precise
measure, the coast will appear to be infinite
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in length. Therefore, we must conclude that
the length of this naturally occurring object
is meaningless, independent of the scale of
measurement.

We can estimate the fractal dimension of
an entity by comparing the growth in its
apparent length or size with the change in the
scale of the measurement. Essentially, this is
an attempt to estimate the following power
law (Peitgen et al., 2004):

y ∝ xd

where y is the size of the object, x is the
measurement scale, and d is an empirical
parameter related to the dimension of the
object. In practice, estimating this relation-
ship is complex: there are several definitions
and measures of the fractal dimension, not all
of which agree (see Lam and De Cola, 1993;
Moon, 1992; Peitgen et al., 2004). Common
fractal dimensions include the similarity,
capacity, and Hausdorff–Besicovich dimen-
sions (Batty and Longley, 1994; Goodchild
and Mark, 1987; Williams, 1997). Methods
for calculating these dimensions include
box-counting, compass, area-perimeter, and
variogram methods (Burrough, 1993; Peitgen
et al., 2004).

Measuring the fractal dimension of geo-
graphic phenomena allows determination
of its scale-invariance (self-similarity at
different scales) as well as other fractal
properties such as space-filling and irregu-
larity. The increasing availability of digital
geographic data as well as GIS tools
for handling these data can support these
analyses, allowing more detailed examination
of the relationships between spatial process
and geographic form (Batty and Longley,
1994; Longley, 2000). Applications include
spatial population distributions (Appleby,
1996), transportation network morphology
(Benguigui and Daoud, 1991), urban mor-
phology (Batty and Longley, 1987, 1994;

De Keersmaecker et al., 2003; Shen, 2002)
land cover patterns (De Cola, 1989), land-
scape analysis (Burrough, 1993; Clarke and
Schweizer, 1991) and riparian networks
(Phillips, 1993a). Wentz (2000) uses a fractal
dimension measure as a component of a
general, trivariate shape measure.

Simulating fractal growth
In addition to fractal analysis of geographic
patterns, it is also possible to simulate fractal
growth using rule sets and iterated systems.
Simulating fractal growth from finite systems
such as rule sets and iterated systems
captures a key property of fractal growth
in the real world: the ability to generate
highly complex entities using very simple
processes. Physical, biological and human
systems evolve from some baseline appar-
ently without encoding complex information
such as systems of simultaneous equations,
constrained optimization problems, or partial
differential equations to govern their growth.
Rather, real world phenomena may emerge
through simple growth mechanisms applied
recursively. Many methods for simulating
fractal growth use the powerful technique of
recursion to generate complex structures with
minuscule base information.

Two well-known recursive methods for
generating fractals are iterated functional

systems (IFS) and L-systems. The IFS algo-
rithm starts with a seed object and maps a
point on that object back onto itself through
some randomly chosen affine transformation.
This recursive process iterates and the object
approaches a fractal object consisting of the
union of smaller copies of the seed object (see
Batty and Longley, 1994; Barnsley, 1988;
Flake, 1998). L-systems simulate biological
growth through a rule-based system that gen-
erates progressively complex strings through
recursively applying the production rules to
the axioms and the strings generated through
these applications. This results in structures
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with fractal properties that can be visualized
using systems such as turtle graphics (Flake,
1998; Peitgen et al., 2004).

Other methods that simulate fractal growth
include tessellation methods such as cellular
automata (White and Engelen, 1993; also
see below) and diffusion-limited aggrega-
tion (Batty, 1991; Fotheringham et al.,
1989); these methods have been applied
to simulating urban dynamics. Brownian
motion methods have been applied to sim-
ulate natural objects with fractal proper-
ties such as riparian networks, geological
time series and terrain (Goodchild and
Klinkenberg 1993).

Fractal analysis and fractal simulation
appear to be powerful methods that can
reveal or mimic the structure and processes
underlying many natural and human systems.
The critical question remains whether explicit
linkages can be identified between fractal
processes and the natural and behavioral
mechanisms identified from the domain sci-
ences. It is important to note that some fractal
algorithms are heuristics that imply unrealis-
tic growth processes. To this end, correspon-
dence between fractal processes and central
place theory (Arlinghaus, 1985; Arlinghaus
and Arlinghaus, 1989) and von Thünian
theories of urban structure (Cavailhès et al.,
2004) have been established.

21.4.2. Dynamical systems and
chaotic behavior

A dynamical system is a system that
experiences some change or motion. Many
(if not most) natural and human made
systems are dynamic. The traditional way
to study dynamical systems is through
differential equations and difference equa-

tions. Differential equations are continuous-
time equations where one or more of the
variables are rates of change expressed
as derivatives. Difference equations capture

discrete-time dynamics, with rates of change
expressed in terms of differences in the
values of variables at different points in time.

For many years it was assumed dynam-
ical systems exhibited one of three types
of behavior with respect to time (Flake,
1998): (1) fixed point (static); (2) periodic
(orbit), and; (3) quasi-periodic (orbits that
never quite repeat themselves). However,
it was also known that certain types of
dynamical systems exhibited behaviors that
were intractable analytically. In particular,
non-linear dynamical systems were known
to be notoriously difficult. Since the rise of
the digital computer, it has become easier
to study non-linear dynamical systems using
numerical simulation. This has led to the
discoveries that these systems are not just
intractable: they show very complex behavior
now referred to as chaos.

Chaos is not randomness: completely
deterministic systems can exhibit chaotic
behavior. Yet this behavior is seemingly
random with respect to prediction: fore-
casts about these systems over the long-
run are poor, even though the mechanisms
of the system are known. In particular,
chaotic systems are highly sensitive to
initial conditions: small differences in the
starting points can lead to huge differences
in their trajectories later in time. Chaotic
behavior seems to be inherent in many
types of nonlinear dynamical systems, even
those with very simple structures: population
dynamics, predator–prey dynamics, weather,
and the stock market are all examples of real
world processes that can be difficult to predict
even if we know the underlying mechanics
(Flake, 1998).

Chaotic behavior and strange attractors
Two well-known non-linear systems that
generate chaotic behavior are the Lorenz

attractor and generalized Lotka–Volterra

systems. The Lorenz attractor consists of
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three linked differential equations that
model convection flow in weather sys-
tems. Generalized Lotka–Volterra systems
model predator–prey relationships through
n linked differential equations, where n is
the number of species. This system displays
of wide range of dynamic behavior under
different parameterizations, including chaotic
behavior (Flake, 1998).

The Lorenz attractor and generalized
Lotka–Volterra systems capture many of the
characteristics of chaotic dynamical systems.
Both are non-linear and incorporate feed-
back: for example, in Lotka–Volterra systems
the number of predators affects the number
of prey through culling the latter, while in
turn the number of prey affects the predators
that can be supported. Both systems are very
simple, but generate very complex behavior –
behavior that often cannot be distinguished
from randomness. However, the trajectories
of these systems contain order, at least in
a global sense. Finally, these systems are
hypersensitive to initial conditions, with the
consequence that while short-term behavior
can be predicted, long-term predictions are
meaningless (Williams, 1997).

An attractor is the bounded region within
the phase space towards which dynamic
systems evolve: examples include the fixed
point, period, and quasi-periodic behaviors
mentioned above. Chaotic systems are char-
acterized by strange attractors. The system
evolves within a finite space, but with an
infinite period: visiting every location within
the region but never the same location twice.
Consequently, the calculated dimension of
chaotic trajectories will often be fractional:
contained within a finite area, but space-
filling. These trajectories are often infinitely
self-similar: increasing the resolution of the
calculations and subsequent trajectory plots
will reveal the same structure repeatedly.
Thus, there is a deep linkage between fractals
and chaos: both exhibit the computational
principle of complexity from simplicity

(Flake, 1998; Peitgen et al., 2004; Williams,
1997).

Spatial chaos
The non-linear dynamical systems we have
discussed thus far exhibit temporal chaos,
that is, chaotic behavior in the dynamic
evolution of aggregate system parameters.
A reasonable question is whether temporal
chaos can lead to spatial chaos or complex
spatial patterns that exhibit a high degree
of sensitivity to conditions at particular
locations. Theoretically, it turns out that
spatial chaos can emerge from temporal
chaos under very broad conditions: unless
the system is perfectly isotropic with respect
to space, spatial chaos will emerge and
increase over time (Phillips, 1993b, 1999a).
Given the broad conditions under which
spatial chaos can emerge, it is not surprising
that spatial chaos has been detected in
physical and human geographic models
and data. These include physical systems
such as geomorphologic, hydrological, and
ecological systems (see Phillips, 1999a, b),
retail dynamics (Wilson, 2006), economic
systems (White, 1990), urban systems (Wong
and Fotheringham, 1990), and spatial choice
processes (Nijkamp and Reggiani, 1990).

There are three general approaches to
detecting spatial chaos (Phillips, 1993b). One
method is to test for sensitivity to initial
conditions by analyzing the Lyapunov expo-
nents: these describe the average rate of con-
vergence or divergence of two neighboring
trajectories in phase space (Williams, 1997).
A second method is numerical simulation:
simulate and plot the behavior of the system
in phase space, and analyze the plot using
graphical techniques. A third approach is to
examine an empirical temporal or spatial
series for signatures of chaos, with the
latter series derived by generating a spatial
gradient by choosing some transect across
space (see Phillips, 1993b).
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Although techniques exist for detecting
spatial chaos, this is nevertheless challenging
since chaos often co-exists with stochastic
uncertainty in real-world systems. Therefore,
it can be difficult to extract the chaotic
signature, particularly with systems that
have a large number of variables and/or
with datasets that are small and imperfectly
measured. Consequently, a major challenge
is to develop detection techniques that work
given these real-world conditions (Phillips,
1993b; Williams, 1997).

21.4.3. Cellular automata

Cellular automata (CA) are discrete spatio-
temporal dynamic systems based on local
rules. Using relatively simple rule sets, CA
can generate very complex spatio-temporal
dynamics, including chaotic behavior (Flake,
1998). The potential for CA in spatial
analysis has been recognized for quite some
time. In a pioneering paper, Waldo Tobler
describes the theoretical foundation for a
cellular geography and defines five general
classes of models, with CA being one
of these classes (Tobler, 1979). Couclelis
(1985, 1988) followed this with discussions
of the potential of CA for capturing micro–
macro spatial dynamics and the emergence
of complex geographic systems from simple
behaviors.

CA are becoming very popular in geo-
graphic research for a number of reasons.
One is that they are inherently and explicitly
spatio-temporal. A second reason is that
they are computationally efficient and can
be applied to problems with very high
spatial resolution. There is also a natural
link to GIS. GIS provides a platform for
managing the spatial data required for CA.
In return, CA allow GIS to go beyond static,
geometric representations to include non-
localized spatial processes such as spatial

organization, configuration, pattern, dynam-
ics, transformation, and change (White and
Engelen, 1997).

CA components
A cellular automaton consists of the fol-
lowing components (Batty, 2000). The basic
element of a CA is the cell. A cell is
a memory element that stores different
states. In the simplest case, each cell can
have the binary states 1 or 0. In more
complex simulation the cells can have several
different states. The cells are arranged in a
regular, discrete spatial configuration, usually
a lattice. However, the grid configuration is
not required; see O’Sullivan (2001) and Shi
and Pang (2000). The state of each cell for
the next time step is based on the states
of the cells in its neighborhood. Common
definitions of neighborhoods include von

Neumann (a neighborhood with radius = 1
following the rook’s case), Moore (an
enlargement of the von Neumann neigh-
borhood to contain diagonal cells), and
extended Moore (a Moore neighborhood
with radius = 2). It is also possible to
relax the assumption of neighborhood to
allow non-local effects (see Takeyama and
Couclelis, 1997).

Transition rules determine the state of a
cell at time t + /t based on the pattern
of cell states within its neighborhood at
time t. The set of transition rules are finite
and constant across all cells. The number of
possible transition rules can be enormous.
If , is the number of possible states and
h is the size of the neighborhood, then the
number of possible cell patterns is p = ,h.
Given these patterns, there are R = ,p

different transition rules for the cell. For
example, in a Moore neighborhood with
binary states, there are 29 = 512 possible
cell patterns and 2512 = 1.340780793 E 154
possible rule sets; a number that is larger
than the number of elementary particles
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in the universe (Batty, 2000). However,
although the number of possible transition
rules is enormous, in practice the rules are
typically very simple and refer to aggregate
properties rather than detailed patterns within
neighborhoods.

Empirical studies by Wolfram and others
show that even the simple linear automata
above behave in ways reminiscent of
complex biological systems. For example,
the fate of any initial configuration of
a cellular automaton is to (1) die out;
(2) become stable or cycle with fixed
period; (3) grow indefinitely; (4) grow and
contract in a complex manner (Wolfram,
1984). The important implication of these
properties is that models of complex systems
need not be complex themselves: simple
rules can generate the complex behav-
ior we associated with biological entities,
ecosystems, economic systems, and cities
(Couclelis, 1988).

Global from local
A very important property of cellular
automata is the emergence of global patterns
from local rules. The transition rules that
drive the system are purely local: each cell’s
future state is based on neighboring cells
only. Yet, higher-level global patterns and
structure emerge from these purely local
rules. The system self-organizes at the global
level: there are no overarching rules yet
global patterns emerge. Applications of CA
span a wide range of emergent geographic
phenomena: these include urban dynamics
and land-use (Clarke and Gaydos, 1998;
Clarke et al., 1997; White and Engelen,
2000; Xie, 1996; also see Benenson and
Torrens, 2004, chapter 4), wildfire propaga-
tion (Clarke et al., 1994), traffic simulation
(Esser and Schreckenberg, 1997) as well
as physical geographic phenomena such as
forest succession, land cover, and species
composition (see Parker et al., 2003).

Despite the increasing popularity of CA
in geocomputational modeling, standard CA
have some restrictions that can cause some
concerns when modeling geographical pro-
cesses. One limitation is the assumption of
time–space stationarity: a cell’s future state
is completely characterized by the states in
its neighborhood according to static transition
rules. Cells have no inherent characteristics
that can affect its transitions. Therefore,
a given configuration of cells in the neigh-
borhood of that cell will result in the same
transition regardless of that cell’s location in
space and time (White and Engelen, 1997).
Phipps and Langlois (1997) note that time–
space stationarity is particularly problematic
when modeling geographic processes such as
land use dynamics. The location of a parcel
of land with respect to the rest of the system
can affect its land use over time. Similarly,
the conditions that affect land use at one
time can change; for example, zoning laws
may change as vacant parcels are filled and
pressure builds to relax zoning restrictions.

Another problem is the assumption of
unconstrained transitions: the number of
cells in each state is determined endoge-
nously by the application of transition rules
to the current configuration with no recog-
nition of potential exogenous constraints.
Li and Yeh (2000) address the unconstrained
transition problem by incorporating environ-
mental constraints into their CA-based urban
dynamics model.

A third weakness of using CA to model
geographic processes is that a deterministic
rule set is unrealistic. Other unobserved fac-
tors (such as individual choice) can influence
state transitions. Phipps and Langois (1997)
develop a stochastic framework for CA-based
modeling of land-use dynamics. Also see
de Almeida et al. (2003), Batty (2000), and
Wu (2002) for discussions and examples of
stochastic CA.

Scale is also a critical issue in CA model-
ing of geographic phenomena. Scale issues
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are inherent in the choice of cell size as
well as the neighborhood definition. Ménard
and Marceua (2005) perform a sensitivity
analysis of scale and the resulting spatial
patterns and dynamics in a CA model of land-
cover change. They discover substantial,
non-linear relationships between these scale
issues and the simulation results.

21.4.4. Agent-based modeling

An agent is some independent unit that
tries to fulfill a set of goals in a complex,
dynamic environment. These goals can be
‘end goals’ or ultimate states that the agents
try to achieve, or they can be some type
of reinforcement or reward that the agent
attempts to maximize. The environment can
be very general, and often includes other
agents. An agent is autonomous if its actions
are independent, i.e., it makes decisions
based on its sensory inputs and goals. An
agent is adaptive if its behavior can improve
over time through some learning process
(Maes 1995). Agents interact by exchanging
physical or virtual (informational) resources.
These interactions are typically very simple:
they can be described by a small set of
rules. From the pattern and intensity of these
interactions emerge complex behavior that is
not completely predictable or controllable:
it materializes from the interactions of these
rules (Flake, 1998).

The agent perspective is very general:
many systems can be viewed as collections of
autonomous, adaptive, and interacting agents.
In agent-based modeling (ABM), we are
concerned with simulated agents (software
representations) as opposed to embodied
agents (such as humans). Multi-agent systems

(MAS) are ABMs that contain a distribution
of simulated and interacting agents (Boman
and Holm, 2004). ABM and MAS are
bottom-up, individual-based approaches to
simulating physical and human phenomena.

The objective is to simulate the dynamics of
complex systems through the behaviors and
interactions of its individual agents. Agents
can represent people, households, animals,
firms, organizations, regions, countries, and
so on, depending on the scale of the analysis
and the elemental units hypothesized for
that scale.

Similar to CA, ABM in many respects
exemplifies the geocomputational approach.
ABM is motivated by the view that many
geographic phenomena are emergent: sim-
ple processes generate complex structure
and patterns. In addition, the increasing
availability of high-resolution data and GIS
tools for handling these data facilitate
ABM in geographic research (Benenson and
Torrens, 2004).

Generative geographic science
ABM is a critical tool in a distinct, generative
approach to science that focuses on the
following question: How could the decen-
tralized local interactions of autonomous
agents generate a given pattern? The analyst
attempts to answer this question by situ-
ating an initial population of autonomous
agents in a relevant spatial environment
and allowing them to interact according
to simple rules, thereby generating the
macroscopic regularity from the bottom up.
If the analyst can reproduce the macro-
scopic pattern, than the microspecifica-
tion is a candidate explanation (Epstein,
1999).

ABM is well-suited as a central tool in gen-
erative science due to the following realistic
characteristics (Epstein, 1999): (1) hetero-

geneity – agents represent individual entities
with unique characteristics that can change
over time, as opposed to the static, aggregate
representative agents in traditional social
and other sciences; (2) autonomy – there
is no central control over individuals in
agent-based models, except for feedback
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between macrostructures to microstructures
(such as newborn agents learning social
norms or shared culture), and therefore no
need to postulate an abstract central authority
or governing equations to facilitate the
modeling; (3) explicit space – agent behavior
and events occur in an explicit space, whether
it is real (e.g., geographic) or abstract (e.g.,
social networks); (4) local interactions –
agents interact only with other agents and
environmental factors within some bounded
regional of space and time; and (5) bounded

rationality – agents have limited information,
often based on their local neighborhoods, and
limited abilities to process this information.

Similar to CA, explicit representations of
space and local neighborhoods for interaction
make ABM a natural tool for analyzing
geographic phenomena. Unlike CA, the
neighborhood over which an agent interacts
can be more fluid and flexible. In addition,
an agent can be mobile: in addition to
changing its state, it can change its location
in space over time. In some respects, these
distinctions are arbitrary and historical: CA
and ABM can be seen as special cases
of a more general geographic automata
system containing spatially fixed (CA) and
non-fixed (ABM) automata (Benenson and
Torrens, 2004). Similarly, Boman and Holm
(2004) argue that time geography (see
Hägerstrand, 1970) can serve as a unifying
principle for ABM and the older tradition
of microsimulation by providing a more
explicit representation of real-world spatial
and temporal constraints on agent behaviors
and interactions.

ABM have been applied in diverse
domains such as economics (see Epstein,
1999; Tesfatsion and Judd, 2006), environ-
mental management (Gimblett et al., 2002;
Hare and Deadman, 2004), land-use/land-
cover change (Parker et al., 2003), urban
dynamics (Benenson and Torrens, 2004),
societies and culture (Epstein and Axell
1996), transportation (Balmer et al., 2004),

and human movement at micoscales (Batty
et al., 2003).

Automata-based modeling such as ABM
and CA does have some substantial weak-
nesses and challenges (Epstein, 1999). First,
automata-based modeling lacks standards
for model comparisons and replication of
results (Axtell et al., 1996). Unlike analytical
modeling, subtle design differences (such
as asynchronous versus synchronous agent
updating) can make huge differences in
the results, and there are no standards for
reporting these decisions. Second, solution
concepts are weak: a simulation run is
only one possible path of a (typically)
stochastic process, not a general solution.
Consequently, there is need for careful
experimental design to fully explore or
sample from the information space implied
by the model. However, this leads to a
third challenge. While the parameter space
given a postulated rule set is usually
small, the space defined by combinations
of possible agent rules can be enormous
and difficult to explore fully (recall the
earlier discussion regarding the number of
potential CA rules). However, this can be
mitigated to some degree by theory: similar
to any good modeling, theoretical correctness
should help distinguish between plausible
and implausible rules.

21.4.5. Artificial neural networks

Continuing development and deployment
of technologies for capturing geographic
information such as remotely sensed imagery,
vehicle-based GPS receivers, flow gauges,
and automated weather reporting stations
are generating huge but error-prone datasets.
To exploit this noisy data requires tech-
niques that are robust (fault-tolerant) and
scalable (process large databases in rea-
sonable, perhaps even real, time). Artificial

neural networks (ANNs) are an important
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class of computational techniques that can
exploit noisy data, as well as solve difficult
optimization problems.

ANNs are an analog to biological neu-
ral networks such as the brain. Biologi-
cal neurons adjust their firing frequencies
over time to other neurons in response
to the firing frequencies from their input
neurons. Some of these neurons are con-
nected to external sensors (such as eyes).
Through a learning process, the biological
neural networks adjust firing frequencies
until an appropriate response is achieved
(e.g., ideas, behavior). An ANN replicates
(on a very limited scale) the behavior
and connectivity among biological neurons
in a brain. ANNs adapt their structure
based on subtle regularities in the input
data. They are robust with respect to error
and can find patterns in noisy data in a
short amount of time. ANNs offer these
advantages over ‘brittle’ statistical methods
that require strict, well-behaved and known
error distributions (Fischer and Abrahart,
2000).

ANN application modes
ANNs are very flexible and can be
applied in many different modes, including
pattern classification, clustering, function

approximation, forecasting, and optimization

(Fischer and Abrahart, 2000).
Pattern classification involves assigning

input patterns into one of several prespecified
categories. Supervised classification is one of
the central problems in remote sensing: each
pixel must be classified into one of several
known land cover classifications based on its
spectral signature and perhaps other spectral
signatures in its neighborhood. However, tra-
ditional methods for supervised classification
in remote sensing are failing relative to
the vast amount of information available in
emerging remote sensing technologies that
have high spatial and spectral resolution.

Also, integrating ancillary information into
remote sensing to aid in classification also
increases the complexity of the problem
(Fischer and Abrahart, 2000). ANNs have
considerable promise as pattern classifiers
that can effectively handle the vast and noisy
information in remotely sensed imagery and
imagery combined with ancillary data (see
Foody, 1995; Gong et al., 1996; Hepner
et al., 1990).

In contrast to pattern classification, we
often have the case where we do not have any
pre-specified categories for the data. Instead,
we wish to find natural groupings or clusters
of the data based on inherent similarities
and dissimilarities. Cluster analysis refers
to attempts to classify a set of objects into
classes or clusters such that objects within
a cluster are similar while objects between
clusters are dissimilar. Unsupervised ANNs
such as Kohonen Maps are a type of neural
clustering where weighted connectivity after
training reflects proximity in the information
space of the input data (see Flexer, 1999).
ANNs have been used to cluster river flow
data into different event types (Fischer and
Abrahart, 2000).

ANNs can also be viewed as a type
of universal function approximation tech-
nique. Assume a large stream of paired
inputs and outputs generated from some
unknown noisy function. We can view
ANNs as an attempt to approximate the
unknown function with an approximate
function determined by the pattern of
weights in the ANN (Fischer and Abrahart,
2000). Applications of ANNs as function
approximations include spatial interaction
(Fischer and Gopal, 1994; Gopal and Fischer,
1996; Mozolin et al., 2000; Nijkamp et al.,
1996) and spatial interpolation (Rizzo and
Dougherty, 1994).

The problem of function approximation is
very similar to the problem of forecasting
events over space and time. Formally, the
problem is: given a set of n samples of
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a time series, predict the value(s) of n + 1,
n + 2, . . . . (Fischer and Abrahart, 2000).
See Hill et al. (1996) for more detail on
ANNs in time series forecasting. Applications
in physical geography include rainfall-runoff
responses (Smith and Eli, 1995; Fischer
and Abrahart, 2000). Gopal and Scuderi
(1995) use ANNs to predict sunspot cycles
and solar climate conditions. ANNs are
also being used to predict traffic conditions
and flow within transportation networks; see
Dougherty et al. (1994).

ANNs have also proven effective at
solving complex optimization problems. This
requires transforming a given optimization
problem to a neural network representation.
Applications to classic optimization problems
include the traveling salesman problem,
scheduling, and the knapsack problem (see
Peterson and Söderberg, 1993).

21.5. CONCLUSION: THE FUTURE
OF GEOCOMPUTATION

The future of geocomputation can be summa-
rized in the following sentence: more data,
more power, and greater access to both.
Data collection and storage costs continue
to fall, and computational power continues
to increase and will likely increase through
the mid-part of the 21st century, perhaps
beyond, and the nature of computer interfaces
is changing.

Currently emerging are new computing
environments that have great potential for
geocomputation. Parallel processing has
promise in geocomputation and GIS since
most procedures can be decomposed into
parallel tasks or data streams. However,
this decomposition is not trivial due to
the overhead involved (see Healy et al.,
1998; Mineter and Dowers, 1999; Turton,
2000). Grid computing environments
software (called middleware) can distribute

processes across networked computers,
exploiting unused resources in these
clients. Grid environments can rival
the performance of a high-performance
mainframe at a fraction of its cost (Armstrong
et al., 2005).

Over the longer run, computational power
should continue to increase at its exponential
rate for several more decades. Moore’s
Law was developed specifically to describe
electronic computing based on the integrated
circuit. However, Kurtzweil (1999) notes
that an exponential increase in computing
capabilities has been occurring for over a
century. This includes the mechanical com-
puter (1900–1930), electromagnetic comput-
ers (1930–mid 1940s), vacuum tube comput-
ers (mid-1940s to 1956), transistor computers
(1956–1968), and the current paradigm of
integrated circuit based computing (1968–
2030?). Thus, Moore’s Law of integrated
circuits is only a special case of a more
general trend that may continue through the
21st century. Limits to integrated circuit
engineering techniques, as well as the
laws of physics, could, however, mean
an end to this growth sometime within
the next few decades. But even with a
conservative estimate of reaching the limits
in the year 2030, we are still looking
at over twenty more years of continued
exponential growth in computing. It is also
possible that another computing paradigm
may emerge that may shatter these limits.
For example, quantum computing would not
only shatter these limits, but would also
require an entire new theory of simultaneous

computation.
The nature of the interface between

computation, data collection, and information
access is also changing. We are currently
in an era of ubiquitous or pervasive com-
puting characterized by the connection of
things in the world through computational
devices that are small, lightweight, embed-
ded in other things (such as automobiles,
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cell phones, and home appliances) and often
Internet-enabled. The continuation of this
trend is the nanoclients that are extremely
small and specialized. Nanoclients include
wearable computers, smart dust, and wire-
less geo-sensor networks. These extremely
‘thin’ clients combined with very ‘fat’
high-performance servers can revolutionize
geocomputation. Not only do nanoclients
allow for ambient geographic data collection,
but the environment itself can become a type
of computer. Space becomes a metaphor for
itself, landscapes or maps become models of
themselves, and geographic objects become
context-aware and know their own positions
and relationships to other geographic objects
(Clarke, 2003).

The continuing increase in computing
power, capabilities for collecting and stor-
ing geo-spatial data, and the merging of
computation with the geographic environ-
ment will require entirely new modes of
thinking about computation in general and
geocomputation in particular. While there
will always be limits to computing (at least
as we now understand it) the phenomena and
problems that can be analyzed and under-
stood through geocomputational methods
are limited as much by our creativity and
imagination.
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22
Applied Retail Location

Models Using Spatial
Interaction Tools

M o r t o n E . O ’ K e l l y

22.1. RETAIL LOCATIONAL
ANALYSIS1

22.1.1. Spatial retail location

The demand by consumers for retail goods
and services is a function of the attributes
of the commodity, household income, and
other factors such as home ownership status.
For example, a home improvement store is
likely to target a market with a housing
stock that has lots of possibilities for repair,
upgrades, and remodels. Both home-owning
and renting populations might yield adequate
density of demand, but the effective demand
for goods and services by homeowners is
much more likely to be attractive to this par-
ticular service. An electrical supplier would

have a demand for services also, but for
that business it could be some combination
of over-the-counter sales (light fixtures) and
more substantial electrical equipment sold to
contractors and builders. A business with a
traditional central market place location (in
an older mixed use inner city neighborhood
for example) might conceivably want to
branch out its locations to catch the growth
in the suburbs and even the outlying
communities in the hinterland of that main
market. In fact there are so many different
ways to imagine the dynamics of retail site
location that there is a real need for a general
purpose simulation tool that might enable the
estimation of the merit of various growth
proposals (Baker, 2000; Munroe, 2001). In all
these cases, it is important to have an accurate
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estimate of the spatial distribution of effective
demand as arising out of a combination of
preferences, and disposable income.

Central place theory has long held
that there is a hierarchy of goods, from
frequently demanded inexpensive items to
high-end expensive goods. There is both
a higher spatial frequency of demand for
(and provision of) the so-called lower-order
goods, and a corresponding scarcity on the
landscape of higher-order goods. Thus for
every Mercedes or Lexus dealership in the
city there might be numerous Ford and
Toyota dealerships. The higher the order of
goods provided, one assumes that there is
a wider market scope required to provide
sufficient demand to cover the operating costs
of the business (the so-called threshold).
Similarly, the higher-order goods, because
of their relative scarcity on the landscape,
require longer trip lengths; the break even
calculation for the retailer is whether the
spatial extent of the market required to
cover costs is matched by a corresponding
willingness of consumers to travel to the
center for the goods (see the classic study
by Berry (1967)).

Inexpensive ‘low order goods’ are some-
times sold in combinations with higher priced
items from superstores that do not necessarily
have a small range: they can in fact be
attractive over a large distance, provided
the assortment and price point allows the
large agglomerated retailer to undercut the
smaller more widely dispersed providers of
retail services. This formula is used by
Wal-Mart or other ‘big box’ retailers; they
have a large assortment of goods, and price
points that are competitive, and locations that
in themselves act as a magnet for spatial
interaction (Munroe, 2001). Customers travel
to stores and therefore the spatial interaction
of the purchasers must be recognized as
an important behavioral factor. The retail
and trade area service location problem
requires knowledge of what customers want,

where they are located, and that they have
income that covers the price and market
segment of the goods. In common with many
levels of retail operation, many of the most
successful chains study a massive amount
of geo-demographic profile data that enables
a rich portrait of customers and consumer
behavior to inform the merchandize and
market planning of their operations.

22.1.2. Consumer demand and
behavior 3

Measuring the total income and pool of
expenditure is accomplished by combining
a count of households by geo-demographic
cluster (e.g., Claritas PRIZM, MapInfo
PSYTE, ESRI Tapestry, AGS Mosaic etc.),
the index value for each group (m), the pen-
etration rate and some index of average
per household expenditure.4 To calculate
the potential pool of expenditure for the
zone i and commodity ‘c’ a formula such as
the following might be used:

Oic =
∑

over all groups
Nim ymc

where Oic is the demand in zone i for
commodity c, Nim is the number of group m
households in zone i, and ymc is an
expenditure rate per household cluster m on
commodity c.

From this aggregate, demand shares
allocated to a particular store have two
components: on the one hand the share is
smaller for the more distant competitive
stores (holding other factors constant), but
additionally it is felt that the demand for
a store increases with the accessibility of
that origin zone to any shopping destination.
Zonal accessibility, and hence aggregate
demand is a function of where the stores
are located, and so unlike conventional
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location models, we should not treat demand
as an exogenous factor (O’Kelly, 1999).
While it would be naive to say ‘build
it and they will come’, it is certainly
reasonable to think that the provision of
retail services can induce demand for that
service that would otherwise be allocated
to other discretionary uses. Some insight
and market-based intelligence is needed to
capture the correct demand parameters and
sensitivity to locational access. The basic
accessibility of each zone can be predefined,
and the demand in the immediate area of
a new potential store opening can increase,
as a result of improved accessibility. One
practical estimation approach that can be
effective is to have a variety of alterative
sources of judgment (like the so-called
‘Delphi’ method, and a variant of the
judgmental methods advocated for several
years by Seldin (1995)) with perhaps one
figure coming from an estimate of per capita

expenditure and saturation, one coming from
pro forma estimates of expected sales per
square foot and yet another estimate coming
from an experienced local commercial real
estate professional. The best model is likely
to use some aspect of these data as controls on
the judgmental estimate. In other words, no
analyst will simply apply a sales per square
foot figure to an arbitrary new built store and
say that the expected sales are a product of
the coefficient and the store size. Much more
likely is an analysis that takes the current
sales situation of the competition into account
and then projects how much of these existing
sales can be captured by the new proposed
location. Even more significant is recent
research that has shown that whatever the
general relationship between the variables,
the strong likelihood of spatial variability in
such a relationship ought to be taken into
account (Fotheringham et al., 2002; Rust
and Donthu, 1995). Thus, if a cross-sectional
regression analysis provided evidence of a
coefficient of say $30 weekly sales per square

foot, then a spatially varying parameter
might trend significantly with location given
the socio-economic patchwork of the city,
by analogy with a similar argument in
the context of house prices (Fotheringham
et al., 2002).

One way to make operational estimates
is through spatial interaction models. These
models are the topic of this chapter, which
covers a variety of models largely inspired by
several years experience as both an applied
and as a theoretical exploration of retail sales
and interaction.

22.1.3. The role for models

Among the most basic general questions
for spatial interaction modelers are the
following: Where do the customers come
from? What are the spatial interaction
patterns governing the distribution of
distance and attraction parameters? What is
the probability that a customer at i patronizes
a store at j? Conditional upon the location of
i what is the probability of being a customer
of destination j?

Example
A grocery store has an upper income target
consumer. Their research shows that these
are very likely to be loyal customers of
the produce and fresh foods departments
(which in turn are highly profitable assuming
that stock can be turned over rapidly to
avoid waste/spoilage). In seeking new store
locations, where are there sufficient pockets
of un-met demand among this target popula-
tion? In the analysis of existing ‘own-brand’
stores, which may or may not be currently
well-located vis-à-vis the standard customer
profile, is there any need to modify their type
of store to meet consumer needs?

These kinds of questions can be answered
with spatial models. Before we get into the



422 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

details of how to formulate and apply such a
model, it may be very helpful to get a preview
of some of the uses to which a model might
be put. One common usage is in ‘impact
analysis.’ With a fitted model, purporting
to describe the allocation of consumers to
demand centers, we can estimate impact on
remaining stores if a branch is to be closed,
or indeed if we open a new one. Both of
these changes have impacts across the system
of stores, but of course the ‘first law of
geography’ (Tobler, 1970) which holds that
things are more highly interrelated when they
are in close proximity, leads us to expect that
the impacts are greatest on the centers and
competitors closest to the site of the change.

Other uses for fitted models in locational
analysis include assessment of the desirability
of overhauling various stores or facilities.
The applied retail analyst is often asked
to estimate the impact of a change on the
expected sales of the store: thus having
a model which has as its ‘independent
variables’ some measures which can be
adjusted to reflect the new attraction of the
store can be useful to estimate the change
in the retail trade area, expected sales, and
so on. By estimating a well-fitted model to
these data, we replace the specifics of the
data instance with a model that has ‘effects’ –
these are systematic influences on the trends
in the levels of spatial interaction, and are
likely to include roles for distance and
retail attraction (typical basic variables in SI
models – see Guy (1991)). In more elaborate
settings these models can also include many
other independent variables (see especially
the Multiplicative Competitive Interaction
Models MCI – Nakanishi and Cooper
(1974)). Once these models are fitted, the
analyst can then dial in various changes in
the driver variables, and assuming that the
model is reasonably robust to changes in
these data, the impact of the changes on the
expected sales and interaction levels can be
determined.

Models can also be used as a tool in
assessment of complex strategic questions.
For example, a chain that is considering
opening a new branch in a growing suburb
might be faced with the question of whether
to keep an existing older store in a nearby
location. The question is then one of strategy:
do stores A and B together make a better
combined profitable solution than the option
of closing B, presumably giving A an
even greater new opening sales level, but
possibly exposing the chain to the risk that
a competitor might take the abandoned site?
Not only does the decision hinge on the
aggregate sales of the various combinations
of open stores but it also must answer
questions about the probable impact of
competitors. Retailers engage in strategic

behavior, and open or close locations as part
of a system of decisions; such analyses often
include issues of pre-emption and blocking
competition, and beating competitors to the
punch in new areas of expansion (Ghosh and
Craig, 1983).

Models are also useful in assessing
ongoing measures of store performance and
may be used in this way as an early
warning of emerging shifts in the market.
Assuming that the chain can collect data
throughout its system on the performance of
each store, and some appropriately calculated
variables to describe the stores site and
situation the analyst can embark on the
kind of ‘analog’ assessment made popular
in the early days of quantitative analysis.
This method, in its modern guise, uses the
stores sales (as a dependent variable) and
a selection of measurements of the trade
area characteristics, and develops a multiple
regression model to assess the expected
(or predicted) sales vs. the actual observed
levels. Fundamental to this operation is a
meaningful definition of trade area: it makes
no sense to include measurement of the
‘attributes’ of areas far away from a store,
if indeed it is known that few if any shoppers
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come from that area. So, in other words,
the measurement of the trade area of the

store becomes the first and most important
operation. There is no hard and fast consensus
on how to define a trade area, and much
more will be said on this matter later. For
now, suffice it to say that the trade area
could be objectively defined as an area within
5 min drive time of the store. That leads
to a computation of the demand that exists
within that area, and that could be one of
the independent variables. (Clearly if we use
more sophisticated definitions of trade areas,
the trade area demand calculation would have
to be re-computed.)

Independent variables collected for all the
stores are saved as the columns of a table.
GIS is especially helpful to calculate features
of trade area and give a quantitative descrip-
tive nature of a trade area. The dependent
variable is the actual sales performance: there
is often a challenge obtaining these data
(i.e., weekly sales) in academic research; but
it is important to know how these data would
be used in an applied case study.

Basing store closing decisions on this kind
of result places a lot of faith in the fitted
model (and so the importance of regression
diagnostics, measures of goodness of fit,
and significance levels on the estimated
coefficients). What looks like an under-
performer may not actually be an instant
argument for store closure: for instance a
store is projected to draw $400,000 per week,
but actual sales come in at $350,000 (i.e.,
$50,000 below the regression line). While
all might agree that it could be doing better
(i.e., it is performing below potential) there
may be good reasons that the store has
not yet reached its full potential. It might
be under attack from particularly aggressive
competitors, be poorly managed, or it might
be built ‘over-sized’ in anticipation of further
population growth in the area. The store may
suffer from a depressed regional economy,
and so a chain may consider shutting it down

or attempting to reinvigorate the system by
investing a lot of money into the regional
advertising campaign. It all boils down to
choices, and these choices are best informed
by analytic models.

The ease of obtaining a good fit
to the model will clearly vary across
sectors. Department store sales volumes are
notoriously difficult to predict, in that their
aggregate sales volume is a combination
of the various heterogeneous departments,
and the extent of competition for spe-
cific categories in these stores could very
well vary in an unsystematic way across
locations. On the other hand goodness-
of-fit for convenience related stores such
as grocery chains are likely to be quite
acceptable, in that there are a few predictable
variables that are very highly correlated
with the aggregate performance of the
store. For example, the store’s size, its
population base, and the immediate com-
petitive environment undoubtedly account
for the bulk of the store-to-store variation
in sales levels. Thus, it is expected that
the coefficient of store size, and population
and competition will be significant, and
that the resulting fitted model will have a
strong R-square.5 Refinements to the model
to include regional dummy variables and
other more precise measures of target market
demand (through surrogates such as parking
studies, or traffic flow) are likely to help to
improve the model.

Some sectors lend themselves readily to
analysis by multivariate regression models
(grocery stores) but others require a different
approach. If a shoe store, book store, or
branch of a chain of clothing stores is
typically located in shopping centers, then the
analyst might use the center as a surrogate for
the size of the market in which the individual
store is located (see also Prendergast et al.,
1998). Similarly if a chain of this type is
planning to enter a new regional market,
it could very well limit its attention to
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the shopping centers. This type of work is
useful because it is frequently necessary to
manage thousands of location across many
areas/regions.

It is hard to get information on gross sales
(what is also called ‘turnover’ in the British
literature) in academic case studies, though
practitioners and consultants can of course
gain access to their client’s data as part of
their confidentiality agreement. Many of the
ideas in this chapter have been framed as a
result of real world experience. In practice,
one has access to lots of data; in theory one
might have to learn these techniques in a data
vacuum, recognizing that the proprietary data
would become available to a consultant doing
these analyses for a private sector client. This
perhaps accounts for the lack of precision in
the published literature – a lot of literature in
retailing location modeling is quite imprecise
mathematically – and the details are often not
published in a way that makes verification
and validation easy.

22.1.4. Consumer choice

The probabilistic assignment of consumers
to retail destinations can be formulated as
a production constrained spatial interaction
model:

Pij = AiOiWj exp(bCij).

Such models calculate the probability that a
user at a specific origin location will select
one from a number of available alternative
attractive destinations. If these destinations
are shopping centers, for example, the
attraction of those centers can be represented
by a measure of their total retail square
feet of selling area. Once a calibrated
production constrained spatial interaction
model has been formulated for a specific set
of destinations, the estimated table of such

flows provides an idea of the likely inflow
to each of the unconstrained destination
trip ends:

Dj =
∑

i
Pij =

∑
i
AiOiWj exp(bCij).

The production constrained model leaves the
amount and type of flow arriving at each
center or store open to calculation. With
such calculated inflows, the analyst has an
access to a predictive model for the likely
composition and size of any centers for its
capture area. Think of a column of the spatial
interaction matrix that leads to a specific
destination as a listing of the contributions
to that particular destination. Of all the flows
that arrive at the destination, we may estimate
the percentage that comes from each one of
the surrounding regional sources. From all
of those, the core or primary contributors
may be determined by sorting the origins
from largest to smallest and cumulating their
contributions until arriving at a subset that
contributes a very significant fraction of
the total business of the store of interest.
This is none other than Applebaum’s (1966)
concept of primary trade area being the
region from which a particular store draws
a high percentage (say 75%) of its business.

22.2. ANALYSIS WITH RETAIL
TRADE AREA MODELS

22.2.1. Spatial interaction6

Spatial interaction models in general assume
that interaction is determined by the
attraction of the alternative facilities and
by the distance separating the consumer
from those alternatives. Huff (1962, 1963,
1964) and Lakshmanan and Hansen (1965)
are credited with developing specialized
‘retail’ variants of the spatial interaction
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based allocation model. From an operational
perspective, Huff introduced a practical
approach to defining the ‘attraction’ of a
center as the amount of floor space, rather
than the population of the surrounding area as
was commonly used in previous models. This
opened up the interpretation of attractiveness
and allowed it not only to be determined
by a number of variables (e.g., number
of functions, parking capacity, etc.) but
also allowed attractiveness to be treated
as an independent variable that could be
estimated in its own right. Another major
operational consideration was that Huff fitted
the exponent for distance in trip-making
behavior (the influence that distance has
on a consumer’s store choice) to particu-
lar circumstances. Finally, he introduced a
balancing term that constrained the sum of
individual or zonal travel or sales to fit within
an overall travel or sales limit.

With respect to the attractiveness or
drawing power of a facility, Huff’s use of
retail floor space has been widely adopted
and adapted to include other important
characteristics. Most important, though, this
model demystified the idea of drawing power
or attraction and allowed its direct estimation
by focusing on the weight associated with it.
Nakanishi and Cooper (1974) were particu-
larly effective at utilizing Huff’s probabilistic
choice framework and operational perspec-
tive to develop a linearization procedure for
direct estimates of attractiveness. The MCI
model is one of the best tools available
for the allocation of consumer demand to
facilities. The main advantages of this model
is that it can incorporate a variety of attributes
of the facilities under consideration by the
consumer, yet it is easy to estimate. In cases
where more data on the influence of various
store attributes are available, the MCI model
is apt to provide a more accurate estimation
of market share than the original Huff model.

With spatial interaction models, then,
facilities no longer have a well-defined

geographic market area. Instead each store’s
market area is a probabilistic surface that
shows the probability of a customer from
each small geographic area patronizing that
facility. The exact nature of this probabil-
ity surface depends on the parameters of
the spatial interaction model. Incorporating
spatial interaction models into a location–
allocation model represents the state of the
art in modeling retail site selection.

22.2.2. Primary trade area

Imagine a store attracting customers from
surrounding census tracts or city blocks. Such
data have long been analyzed by proponents
of the applied school of retail trade area anal-
ysis (Applebaum, 1966). As a starting point,
examine the distribution of the customers of
a particular store, with regard to their origins.
If the store has a weekly volume of V , then
the customer distribution is used to spread
around that demand to the originating areas,
in proportion to their draw of customers.
That spatially distributed demand in turn can
be compared to the potential pot of money
that exists in those zones available to be
spent somewhere, in order to compute a
measure of store penetration of the market.
From the data, the top 75% (say) of the
sales area may be devised, followed by
the next 20% and the rest (all these are
hypothetical numbers). Unless some added
spatial constraints are added, it is important
to note that it is not essential for the top
contributing area to a store to be compact
(having for example disconnected outliers).
Analytically, the primary trade area, P, is
defined such that

∑
i∈P Pi | j = 0.75 and

the secondary trade area, S, is defined such
that

∑
i∈S Pi | j = 0.20. The remaining or

‘tertiary’ trade area, captures the remainder of
the customers, often sparsely dispersed over
a very wide area. For most practical purposes
in the convenience sector, ‘tertiary areas’ are
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irrelevant to routine operations. On the other
hand, significant shopping centers drawing
from a large region may well have to treat
the marginal sales to the edge of their
tertiary area as significant ‘icing’ on the sales
forecast, and may in fact be the key to
understanding top-performing locations.

Retail executives are especially interested
in market share, strength versus direct
competitors, and in the yield of customers
from a pool of potential sales dollars. It
seems that the only thing worse than a
store that has a small sales level is one
with a large volume but under-performing
its projected potential! These analyses are
directed to the question: how well are
our stores capturing the market? Are we
leaving potential sales untapped? Or are our
competitors out-maneuvering us? Penetration
of the market area hinges on an assessment
of how much demand is available there, and
how much our particular branch is capturing.

22.2.3. Characterization of the
demography of the
trade area

The attributes and weights of demand from
the particular types of respondents in the
trade area can then be recovered. Say, for
example, that the numbers of household
in the various tracts that have particular
levels of household income are given. Many
useful statistics can be computed from
these data. Among these are the expected
values of customer characteristics over the
primary, secondary, and tertiary trade areas
respectively. For example, if we have a
defined area that encloses the primary trade
area, and the total volume of expenditure
in that area is X , then the total volume
attracted to the store of interest from within
that same are is Z , the ratio of X to Z

is very useful information about penetration
of the market. These analyses provide the

tools to diagnose practical issues in the
trade area’s effectiveness, for example, by
indicating untapped sales potential, the need
for more intense marketing, or special
circumstance arising from unique factors
(ethnicity, mobility, etc.).

22.2.4. Connecting retail location
models and competing
destinations

Retail locational analysis is frequently carried
out with the aid of spatial interaction
modeling. Many features of the trade area
are derived from calculations based on either
actual customer origins (from a survey) or
from a model of such a distribution that has
been fitted from observations. In either case
assume that the probability that a customer
in area i shops in store j is given by Pij. This
joint probability can be further manipulated
to give Pi | j and Pj | i, respectively these are:

Pi | j = Pij/
∑

i
Pij is the conditional

probability that a customer who

shops in j originates from i,

and:

Pj | i = Pij/
∑

j
Pij is the conditional

probability that a customer from

origin i shops in zone j.

It is this later probability that is highly
useful as it allows a prediction from a given
zone i, of how much traffic or business might
be expected to arrive at a destination in
zone j, and this of course can be applied
either to pre-existing stores (to check model
fit and validity) as well as the use of the
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model to forecast the likely patronage of a
new or proposed location at j. In that these
probabilities are analytically derived from
data that are exogenously available (travel
times, demand expenditure parameters, and
so on) they are quite easily manipulated to
give forecasts of ‘what if’ for cases where
there are expected changes in the data or the
parameters. This kind of sensitivity analysis
can provide a useful cross check on the
validity of the model – for example, a
sensitivity analysis should predict changes
that make sense. Further, extreme values
of the parameters often provide consistency
checks in that the model collapses to other
easily recognized forms in these special
circumstances: thus a model with a distance
decay parameter collapses to an all-or-
nothing nearest center allocation model in
the case that the beta parameter is driven
to the extreme value. In this case the trade
area should take on characteristics such
as that seen in the ‘Voronoi’ diagram or
Thiessen polygons.

In macro spatial analysis (e.g., at the scale
of interregional interactions) the peripheral
areas have, by definition, lower access to the
dense cluster of the urban core. So, for a
resident of the periphery the number of com-
petitive alternatives in short range is com-
paratively small, and according to the theory
of competing destinations (Fotheringham,
1983), the demand is therefore spread over
few alternatives (hence is not divided up
so thinly). It would be expected therefore
that interaction levels over short distances
are enhanced (and comparably the interaction
over the longer distances is spread thinly,
and hence the slope of the flow vs. distance
curve is steeper than it would be expected
to be, absent a spatial structure effect). At
macro scales then the large beta for peripheral
zones results from mis-specification, and
does not correctly imply that there are
larger distance decay impacts for peripheral
residents; in fact, once the mis-specification

is corrected, the expectation might be that
peripheral residents might show a willingness
to travel to distant alternatives at a rate
that exceeds those of the comparatively well
served central residents.

This notion of a process at one density
regime being adapted for other situations
was nicely foreshadowed in Berry’s (1967)
classic work on commercial centers when
the expected sales territory size was con-
trasted in low density rural Iowa with the
more commercially dense built up areas of
Chicago. Thus there is some interest in
whether this theory might be adapted to a
more dense urban retail scenario. In the retail
scenario the central or core resident has lots
of alternatives within short range, and these
can provide opportunity for multipurpose
trips and shopping on a scale that combines
multiple activities. As Eaton and Lipsey have
shown, such retail agglomerations then gain
more from their collocation than they lose
from the presence of intensified competition.
Thus the theory of competing destinations
developed at a primarily interurban scale
might be refined for the case of flows within
an urban area, and indeed the opportunity
to make multi-purpose trips to clusters of
shops in a city might lead to an expected
agglomeration effect: what we might coin the
‘cooperative destinations’ effect arising from
spillovers in retail demand (see early theory
of Eaton and Lipsey, 1982).

22.3. CALCULATIONS

22.3.1. Data issues

An interesting aspect of retail trade area
analysis is that the most commonly col-
lected data (choice-based samples) are not
especially well suited to direct manipulation
in calibration (see a series of papers on
choice based samples by O’Kelly (1999) and
Ding and O’Kelly (2008)). Choice based data
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from frequent shopper cards at the point of
sale or from check based data can tell us
the distribution of actual demand around a
current store. Clearly the interest in these
data from a predictive point of view is to be
able to use them to devise some origin based
parameters such that the trade area attributes
that determine the store success/failure can
be studied and translated into parameters that
can predict how a proposed new location
(assuming that represented stores provide a
decent analog for the new operation) might
be expected to perform. One could expect
to take data about existing operations, and
develop a list of those parameters of the trade
area that are expected to correlate heavily
with good retail performance. The interaction
model is simply an improved way to gather
data and summarize standardized aspects of
these trade areas to provide data about the
branches. In applications, these data can then
be entered into regression or other models to
determine the different aspects of the trade
areas that are especially highly correlated
with successful operations.

An important step in managing a retail
trade area data set is to understand the scope
and reach of the center to the areas sur-
rounding the store. In fundamental economic
geography we learn concept of the range of
the good: this is the maximum distance a
customer would be willing to travel to reach
the store. This maximum radius or reach has
relevance for the concept of spatial interac-
tion and trade areas as there is clearly no
necessity to include demand from a place that
is so far from the store as to be unable to reach
that store’s trade area. Distance impedance
and maximum travel radius are critical to the
accurate specification of gravity models. In
the case of a maximum travel radius, one
has to be sure to set up a spare or ‘dummy’
destination to allow for demand that has no
feasible option within range to be ‘parked’
there pending either some additional site, or
some relaxation of the maximum range.

Very large energy costs cause a contraction
in peoples’ willingness to travel long distance
or make excess discretionary trips; instead
one would expect two countervailing forces:
to make a smaller number of multipurpose
trips to major agglomerations would serve
to support the development of a small
number of heavily clustered mega malls;
on the other hand the smaller willingness
to travel might cause a stronger tendency
to use the closer alternatives and activate
the incentive to build a series of small
decentralized regional centers. This trade-off
between agglomeration and convenience is
an interesting empirical question.

22.3.2. Determination of market
effectiveness and
penetration

The idea in retail interaction modeling
is to use a probabilistic estimate of the
demand originating in each sub-area, and
its likelihood of being spent at a particular
store of interest. It is convenient, though
perhaps increasingly less realistic, to assume
that the pool of available money is all
allocated to ‘bricks and mortar’ stores, and
that the demand is a simple function of
the population, its income, and expenditure
habits. With that assumption it is possible
to take readily available census expenditure
data and predict how much would be
available for particular product categories in
each micro-demographic area. Such micro
marketing data have been used with great
precision by the package goods industry,
car industry, banks, and retailers in general.
These applications represent one of the most
powerful uses of the gravity model. Some
industry specific intelligence is needed with
regard to the reasonable range of potential
destinations from the point of view of an
origin. This is because it is necessary to
be able to make an all-inclusive list of the
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probabilistic choice sets that exist or that
might provide opportunities for the shoppers
to make choices. To adapt this base case
to the more realistic case of alternative
non-spatial alternatives (in competition with
conventional alternatives), we need to be
able to estimate leakage from an origin
area to electronic, catalog, and on line
purchases. From the retailer’s point of view
at a specific location, it is necessary to be
able to circumscribe the potential originating
zones from which the trip makers might
be attracted. For a convenience-oriented
store like a supermarket, one can imagine
a reasonably compact service area. For
department stores, or retailers co-located with
attractions that can draw from farther places
(think of Mall of America as a destination), it
is perhaps a little more difficult to know the
universe of the attraction, and hence difficult
to make computations of the share of the
attraction provided for by local or further
away origins.

22.3.3. Performance assessment of
existing stores

It is reasonable to assume that the primary
trade area, which accounts for say 70% of
the branch business is key to characterizing
the stores potential customers. In an applied
context, working for a retailer, we would
need them to provide us with some measure
for each store of the total retail volume
and perhaps some breakdown by product
line or class, and also an indication from
the stores perspective if the chain regards
the branch as successful. With the sales data
we can produce measures in the surrounding
zip codes for sales/household and this could
give some indication of penetration rate.
From that we can characterize the trade area
make up for the store (Hispanic, middle
class, etc.). While these data are a very
big part of the puzzle, what we cannot

do with such data alone is to talk about
the residents in a particular subareas and
their probability of being a customer. For
those who are customers (and for those who
are not) we need some additional way to
measure reasons as to why or why not. To
get at these added questions we either need
prior theoretical expectations, or to employ
a survey to ask residents in a residential
area about their reasons for shopping or not
shopping at our chain. As surveys tend to
be very expensive, a controlled theoretical
choice experiment is perhaps a worthwhile
future framework for such destination choice
problems (see Eagle, 1984).

From these two sources of data detailed
intelligence about the trade areas of the
various branches can be accumulated and
the results used to characterize the stores; if
there are added data from the retailer about
which stores are under- or over-performing,
we could do some correlation analysis, or
perhaps data envelopment analysis (Donthu
and Yoo, 1998) which allows a gauge of
performance vis-à-vis peer benchmarks.

22.3.4. Impact assessment

One of the most frequently asked question
from an applied perspective is to determine
the loss of sales at existing stores to new
entrants or competitive analysis for the diver-
sion of existing dollars to the store of interest
either from ones own chain (cannibalism) or
preferably from competition.

Impacts of changed conditions are quite
well accommodated by the gravity model,
because the difference between two scenarios
may be quite instructive. The impact of new
store k on existing store j, from the point of
view of zone i, is measured as:

Ii,j,k = (P′
ik/
∑

over all new sites
P′

ik)[Pij −P′
ij]
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where Ii,j,k is the impact of new store k on
existing store sales in zone i, P′

ik is the new
allocation to center k from zone i, and Pij is
the allocation to center j from zone i.

The types of scenario that can be handled
using the methodology are as follows:

• analyze the trade areas of current stores (run with

just fixed locations)

• pick sites from candidates (run with fixed and

potential locations)

• re-consider current sites (make currently fixed

sites flexible or optional)

• examine specific proposed sites (lock in particular

new sites)

• analyze specific closings (lock out particular site

and see what happens)

• analyze the opening of a known competitor (add

fixed locations).

All of these versions of the problem
have been deployed in practice with good
empirical and quantitative results.

22.3.5. Temporal and seasonal
variations in trade areas

Clearly, the volume of business is not simply
related to the local demand, and the seasonal
adjustment for external visitors is something
that would have to be taken into account in
developing accurate sales forecasts. Imagine
a seaside resort such as Hilton Head, South
Carolina: its sales would be quite variable
over the seasons, in a cycle tied to the
peak tourist demand in the northern winter.
One way to do this is to examine sales
records and develop a set of monthly seasonal
adjustments. Whatever the base level of
demand, the modeler could then devise

factors to scale up or down the sales for
specific months.

A simple time series model, with a set of
monthly or seasonal dummy variables can
be used to make an empirically fitted set
of correction factors. Another way that trade
area models need to be corrected is for the
excess in demand that often accompanies a
new store opening as the novelty of that
location is added to the mix of existing
stores and, at least initially, there may be
large incentives or advertising efforts made
to attract customers. Clearly, it would be
advisable to temper these initial sales figures
with some kind of decay or dilution effect that
would bring the stores sales into alignment at
moderate levels (see Kaufmann et al., 2000).
Rules of thumb abound in this area, and
equilibrium sales after opening may settle
down to say 60% of the initial week sales.

22.4. LOCATION ALLOCATION
MODELS

22.4.1. Introduction to location
allocation models

The use of the location allocation model in
retail site selection has greatly advanced over
the past 15 years. Examples include the use
of interaction models to develop optimal site
locations for stores in a variety of different
types of retailing including supermarkets,
department stores, big box retailers, and retail
banking.

Successful use of these models led to their
commercial acceptability and widespread
adaptation in retail outlet location study (see
the Thompson site selection book (Buckner,
1998)). Commercial examples in Britain
include the G-MAP package (see Longley
and Clarke, 1996). Specialized programs in
business-GIS packages now provide routine
access to methods that were previously
only obtainable in customized software and
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research publications.7 This diffusion of the
innovation of retail trade area analysis from
specialized journals such as Environment and

Planning A, into many applied sectors has
been a major success for analysts. These
models serve as a critical underpinning of
the site selection analysis that goes into many
large format stores in almost every urbanized
area in the U.S. and Europe. The reason that
such models are widely used is that they are
essential to the rapid ‘pro-forma’ evaluation
of numerous site proposals. The models
provide the kinds of rapid computations that
would ordinarily have taken a great deal
of manual computation; and certainly when
a chain is screening as many as 10 sites
for every actual chosen location, the need
for rapid analysis is obvious. For example
the early studies by Applebaum (1966),
directly predate the computation of trade area
penetration models that may now be made
using spatial interaction models.

One of the goals of this chapter is to
provide the analytical background to the
models that are now a commercial fact
of life for retail analysis. The idea that a
model of retail attraction could be deployed
as a model for retail site location is an
extension over the simple, earliest work
in central place theory, where consumers
were assumed to patronize closest centers
(see also Ghosh, 1986). In turn the central
place approach defined a region in close
proximity to the store from which it would be
reasonable to expect that the demand would
be assigned to that particular store. Following
a large amount of study of consumer behavior
indicating dispersal of choices over many
alternatives beyond just the most convenient
(Clark, 1968; Hanson, 1980; O’Kelly, 1981),
market researchers and others devised more
precise means of estimating likely consumer
behavior. The deterministic ‘all-or-nothing’
allocation of demand to the nearest or
most convenient branch is no longer a
necessary or indeed acceptable simplifying

hypothesis about spatial behavior. Instead,
we now expect that consumer behavior
may be examined with the same tools
that econometricians have devised for the
analysis of discrete choice. Databases in
turn provide a wealth of data. Geographers
have derived a representation of consumer
behavior with a model that locates services;
this involves a breakthrough in the use of
spatial interaction models. The key idea was
to replace the nearest center assignment of
customers in central place theory, with a
more realistic gravitationally based estimate
of likely destination choice (O’Kelly, 1987).
Thus, the customer might have a certain
probability of visiting a large center that is
a bit further away than a small center close
to the consumer. In gauging these trade-
offs, the model makes a carefully calibrated
estimate of the impact of size and distance
on the consumer’s willingness to travel to
particular destinations. Once this calibrated
model is available to us, the analyst can
propose specific new site locations and gauge
the expected level of consumer patronage
at those sites. So called ‘turnover’ or retail
sales volume is a critical first step in the
analysis of any commercial property deal
as the sales levels helps to support the
go/no go decision on rental, lease, re-model,
or closing.

Location–allocation models generally
involve the simultaneous selection of
locations and the assignment of demand
to those locations in order to optimize
some specified objective or goal (usually
to maximize market share or profit; see,
for example, Craig, et al., 1984). These
models have several advantages. They can
determine the optimal (or near optimal)
location of several stores simultaneously by
systematically analyzing the system-wide
interactions among all stores in the market
area. They are capable of utilizing a wide
range of objectives that could be used
in siting stores. In addition, the models
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are flexible in that they can incorporate
the behavior of retailers, consumers and/or
the retailing environment. Finally, heuristics
are available for these models which provide
good (optimal or near optimal) solutions
and yet are easy to implement. The use
of location–allocation models typically
involves empirical research to determine the
important store attributes for the population
within the market area and a mathematical
model to determine the optimal locations
for retail outlets based on the pattern of
market demand, store chains and existing
competing outlets.8

Even though it is recognized that many
consumers engage in multi-purpose, multi-
stop shopping, models of multi-purpose
shopping behavior have not been thoroughly
integrated into facility location analysis,
though early efforts by O’Kelly (1981,
1983a, b) have been recently reconsidered
as the basis for new location models
(Leszczyc et al., 2004). So the assumption
of single-purpose trips is made in order to
devise practical (usable) store-location mod-
els. Nevertheless, the fact that our analysis
is primarily designed around shopping center
destinations ensures that the attraction of
a destination for a specific store is partly
determined by the attraction of the cluster of
stores as a whole.

There are several types of retail location
models in the literature. Some representative
examples include models which combine
location–allocation with spatial interaction
(for example, the MULTILOC model by
Achabal et al., 1982); models which can
deal with multiple objectives (for example,
Min, 1987); models that consider the uncer-
tainty inherent in the retailing environment
(such as the scenario planning model by
Ghosh and McLafferty, 1982); and models
which involve the decision maker in the
decision-making process (for example, the
STORELOC model by Durvasula et al.,
1992). No one model is capable of handling

all the important aspects of retail site
selection which must be addressed in order
to provide the decision maker with the best
set of locations for any particular market area
in which the stores will be located.

Some aspects of these models are
developed in more detail in the following
section.

22.4.2. Retail location models and
spatial interaction

MULTILOC (Achabal et al., 1982) was one
of the first location–allocation models to
simultaneously locate more than one store.
The model optimizes the location of stores
using the knowledge that consumers will
choose among the alternatives according
to a probabilistic interaction model (the
MCI model). Such models maximize total
profit for a retail chain (or a single store)
after subtracting the fixed costs of estab-
lishing a store at the determined location
(i.e., location-specific fixed costs). It has later
been given a more mathematical treatment in
O’Kelly (1987).

The major problem facing the manager
of site selection is the large number of
options from which to choose, although the
conceptual bases for this model are very
simple. A set of potential locations is defined
and from this set P facilities are to be chosen.
The so-called N choose P problem clearly
involves a large number of combinatorial
options. Not all of these choices need to be
examined, however, in order for the model
to make a reasonable estimate of the ideal
subset of P facilities. Two major strategies
are available. First, if the model can be
posed as an optimization task, computer
programs using mathematical techniques
such as mixed integer programming (MIP) or
Lagrangian relaxation to select optimal loca-
tions (O’Kelly, 1987). Second, and in many
ways more robustly, the modeler can set up
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the problem and employ heuristics in order
to make a quick and reliable estimate of the
core portion of the preferred site selections.

An example may help to make this
concept clear. Suppose a clothing retailer
is considering siting stores in some of the
many available shopping centers in a large
metropolitan region such as Atlanta. It is
unlikely that the retailer would want to place
a store in every available shopping center.
Budget constraints would limit this option
and simple common sense would indicate
that the market could not bear the saturation
coverage of ‘too many’ stores. The question
of the optimal number of stores will be
addressed presently, for now assume that
the retailer has a limited number of sites
that are under consideration. Therefore the
retailer seeks to prioritize a subset of all
the available centers that might be expected
to perform well given their products and
customer profile. This latter point is a key
one. In order for the retailer to prioritize the
store locations, the retailer needs to use an
accurate model of the underlying demand
for the service. Thus many geo-demographic
case studies use profiles of existing customers
to create a measure that reflects the attraction
of the store for particular populations. This
in essence is a computerized version of the
classic idea by Applebaum (1966) of using
analogs to project the trade area success of
a proposed new store location. If the chain
already has a set of stores in a wide variety
of different spatial contexts, cross-sectional
comparison of the performance of those
stores can be used to produce a regression
type model for store sales levels. Once these
models are estimated, the retailer can then
seek new locations where the mix of factors
leans heavily towards those variables that
have proven to be successful predictors in
other locations. The operational version of
this idea is to test each of the locational
scenarios by projecting the probable trade
area of each store, existing or proposed, in

the context of the surrounding demographics
and competition. These models have become
very sophisticated because of the availability
of detailed micro demographic profiles of
spatial areas that may be assigned to each
potential location.

As the model explores the number of
locations, the analyst can keep track of
the performance of those proposed sites.
For example a set of five stores distributed
throughout the metropolitan region might
very well succeed in capturing the selected
demographic submarkets that are sought and
desired by this retailer. In contrast, some
other combination of five stores could easily
be eliminated from consideration because the
sites do not deliver the expected mix and den-
sity of demand to make this package feasible.
A great deal depends on a reasonable and
accurate projection of the impact of each new
store and its performance both against exist-
ing competitors and any stores that the chain
might already have located in the district.

22.4.3. Combinatoric issues

A key to the efficient implementation of
interaction based location models is a data
structure that enables the computerized eval-
uation of sites to be made relatively quickly.
The following notes provide a guide to the
collection and organization of data in such a
way as to make such computations feasible
for quite a large study program. Assume that
there are M origin zones. The N locations
from which the model will select sites are
organized as the columns of the interaction
table with an extra column that will be used
to store any user demand that is under-served
by the solution program. This modification
is essential when dealing with site selection
models. To see this, imagine that a retailer
is planning to site three new outlets in a
very large metropolitan area. If the maximum
distance a customer would be willing to
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travel to the store is set at say 10 miles
(equivalent to the concept of the range in
CPT) then in a large city, it is quite clear
that some consumers will be too far from
any of the chosen sites to be able to use
this retailer’s service. It is important that
the model provide a means to calculate such
unserved customers and we propose to do
this by placing those ‘unserved’ consumers
in a separate ‘dummy’ destination category
as a holding bin for the under-provided origin
zones. In the absence of competition, the goal
would be to minimize unserved demand. In
the presence of competitive alternatives, the
goal would be to capture as much unserved
demand as possible for the client’s chain.

With the exception of the concept of an
additional destination, the basic calculation
process is identical to that of a production
constrained spatial interaction model. The
device used to operationalize a particular
choice of actively considered facilities is to
simply keep a list of certain columns from the
interaction matrix to which consumers might
be allocated during that particular iteration.
As the model proceeds from one locational
pattern to another the set of active columns
is simply switched on and off to provide an
indication of the currently available desti-
nation choices. To make these calculations
efficiently the computer is provided with
lists pointing to various types of columns
in the matrix. For example any sites which
are required to be provided in all cases
may be indicated by placing their column
numbers in a vector of open facilities. Such
a vector might be the noted by the letter
R for required centers. A second set of
pointers might be used to indicate that in
a particular analysis some potential facility
locations are to be ignored completely. These,
for example might be sites which we wish
to lock out of the current set of optionally
available sites. Yet another list could maintain
a set of pointers to the available remaining
unexplored options that are freely available to

the model to be chosen or not as the analysis
progresses. Once again having an example
may help to fix these ideas. Suppose that a
city currently has a total of 35 supermarkets
from a number of major chain stores. One
of these chains is considering a variety of
expansion programs in this city. Among
the locational options available to it are
the acquisition of new sites, the acquisition
of existing sites from competitors, and the
expansion of some or all of the current stores
in its portfolio. In this case it is reasonable
to think that the existing stores in the market
are in a sense locked in and will occur in
all of the comparison scenarios: 35 columns
of the interaction matrix are therefore locked
in for the purposes of this initial run. Any
additional locations are simply tacked on as
say the 36th, 37th or 38th columns of this
interaction matrix. Depending on how many
candidates sites are available from which to
pick these three additional locations one can
imagine that the model is exploring a finite
list of potential new store packages. Common
sense dictates that the store chain is unlikely
to want all of its new site picks in the same
area, as it would make a great deal more
sense to spread the chosen sites across a
variety of sectors of the city. If it so happened
that a pool of presently underserved demand
could be found, the model would place a
facility in that area. More likely, the model
would be making a complex set of trade-offs,
trying to eke out a market share from among
and between the existing set of competitive
centers, and indeed avoiding cannibalizing
the existing store already owned by the
chain. In this regard the strategy is essentially
similar to the well known ‘gap in the
map’ rubric for locating new services. The
bulk of the program then would spend
time computing the benefits of specific
chosen alternatives in, for example, the
north, east, and south suburbs. For those
with the obvious question of ‘how is this
done,’ it would be realistic to state that the
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current practice involves a combination of
GIS software to manage the spatial data,
customized optimization algorithms coded
as executable computer programs, and a
report writer to digest the output from the
optimization run. While these capabilities
may be combined in various customized
software environments by consultants, there
is probably no prepackaged comprehensive
optimization environment for the applied
tasks enumerated here, though this situation
will undoubtedly change.

22.4.4. Heuristics and other
shortcuts9

The position of the store relative to the pool
of demand and to other complementary and
competitive stores is critical in measuring
market area and size. If the objective is
related to maximizing aggregate market share
for our entire chain, and if there is an accurate
representation of maximum distance (reser-
vation distance) we can expect that the model
will ‘naturally’ space out our stores giving
them somewhat non-overlapping exclusive
market areas. Nevertheless, when two stores
are close enough to contest a middle ground
then the gravity model will do better than the
usual deterministic all-or-nothing location
models. The gravity model will in fact
partition the demand between the centers in
proportion to their attraction and weight.

If such a model is to be run in site selection
mode, realize that the attraction/repulsion
score will have to be computed for prospec-
tive as well existing sites – in other words
it has to be some calculated feature of sites
that are ‘prospects’: it cannot be simply some
observable feature of existing sites.

Required site
These are locations of our own chain that we
wish to keep. We can also, in some cases,

represent the locations of competitor stores
that we know are remaining in operation.
These would be treated as fixed sites.

Prohibited site
Areas or store locations that are prohibited
from entering the model are equally impor-
tant to a realistic implementation. If we are
sure that the chain does not wish to enter
certain malls, or if the location in proximity to
some existing stores is strongly discouraged,
then candidate locations in the ‘no go zone’
should be flagged to (a) save computer time;
and (b) and to enhance the chance that the
model will focus attention in areas that are
worth investigating.

Flexible sites
The set of locations from which the model
will pick are predefined by the user. These
could be the result of selection set operations,
query based lists, or geographically delimited
regions on the screen. What is important is
for an underlying comprehensive data base
to be kept up to date in order for the analysts
to have meaningful choices from which to
derive the set of active alternatives.

22.4.5. Computable Location
Models10

Location models must be flexible to allow
analysis of different scenarios. The model
takes as input the required and flexible sites.
The existing literature contains several mod-
els dealing with joint location and allocation
under spatial interaction: these however, need
to be modified to handle realistic selection
sets of required and prohibited sites.

The best practice at this time is to
use a robust vertex substitution method
appropriately modified to handle lists of
required and prohibited sites, as well as
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efficiently managing the introduction of new
candidate locations.

The vertex substitution method also needs
to include the capability of a maximum
service radius for the facilities, and for this
radius to be flexible/variable between centers:
this is essential if some notion of center
hierarchy is to be accommodated. It should be
clarified that the vertex substitution method
is a local optimally solution in the sense that
there may be a better solution that was not
reached during the course of the exploration;
this possibility can be reduced by trying
the method with various starting values.
Research experience has shown, however,
that the good locations ‘stand out’ very well
and the possibility that the vertex substitution
method completely misses the best package
of locations is remote. One idea that is
suggested to prevent mistakes due to local
optimality is to produce a list not only of
the best locations but other close contenders
discovered in the course of the algorithm’s
progress.

Research by Church has shown that the
introduction of maximum service radii into
a median type of problem (which is what
we have) disrupts one ‘normal’ property of
the model, making it potentially possible that
the ‘optimal’ locations occur at points other
than the nodes of the network. However, the
actual problem that we are concerned with
realistically limits the feasible locations to
the nodes of the network, as this is where
the shopping centers are. In other words
we ignore the theoretical possibility that the
true optimal solution is at an intermediate
location along street segments, as in practice
this kind of locational solution would not be
permissible.

What does experience tell us about the
solution of location allocation models? The
basic model is conceptually very simple
and easy to understand. The idea is to
systematically explore alternative locational

scenarios. The method takes as input the fixed
locations, the candidates, and the prohibited
sites (if any). As output the model produces
the requested number of additional facility
sites, and reports on the area characteristics
of both the current and the new sites. The
candidates are either a comprehensive list
of all feasible shopping centers, stores are
generated from a list of ‘picks’ and potential
sites. The user may select the candidates as
those sites which meet some criteria, and the
detail and realism of these selection criteria
are really only constrained by the imagination
of the user. All kinds of filters can be used,
including center size, or selections can be
based on attributes of the centers. Having
selected the candidates, the user would have
to select the objective function: normally this
is driven on the basis of aggregate market
share, or demand, or minimizing competitors
share. This is potentially extended to include
acquisition, lease, closing and opening finan-
cial decisions.

Vertex substitution has the great advantage
that as a general purpose optimization
strategy (i.e., heuristic) it is robust to
changes of objective function, in a way,
for example, that would not be true of
a specialized exact optimization code. In
other words, the weakness of an ‘exact’
method is that it typically has to exploit
some aspect of the problem structure and
any change in that structure would likely
undermine the mathematical formulation.
Heuristics (and there are many of these
available for combinatorial problems) can
frequently be set up to explore a solution
space effectively and this can be chosen
to evaluate the users choice of objective
(and indeed multiple objectives) to achieve
the desired goals. Indeed the final great
advantage of an exploratory heuristic is that
by careful book-keeping many ‘runner up’ or
close alternative solutions can be kept and
compared.
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22.5. STRATEGIC PLANNING
EXAMPLES

22.5.1. Shopping centers

Store location siting is often made from
among a predefined set of existing shopping
centers, so in a sense the set from which the
strategic location is to be chosen is already
fixed. Thus, 1747 block groups in Atlanta
represent the pools of available demand,
which for the purposes of this simple example
are weighted by the population or disposable
income as a proxy for the demand. Assume
a chain has 12 existing stores distributed
throughout the Atlanta region in specific
shopping centers. There are approximately
230 potential sites in shopping centers.
Assume that the reach or ‘draw’ of the center
candidates is a function of the size of the
center – in other words the decision to open
a new branch in a thriving center with a
super-regional draw might be appropriately

measured by using the size of the center
as a proxy for its suitability. Suppose then
that the location allocation model algorithm,
such as the Interchange Heuristic, picks four
locations as the close-to-optimal added sites.
(We are careful not to call them optimal in
view of the many simplifications and the use
of a heuristic which after all depends on some
short cuts to avoid complete enumeration of
the many thousands of combinations that are
available.)

The impact of each new center on
the 12 existing sites is then operationally
measured using a formula such as the one
discussed above.

22.5.2. Chain combinations

Sales of branches in two existing sets of chain
stores can give a good clue as to the best ones
to keep in the combined operation, but that
still leaves a difficult problem to determine

Where did the impact on store come from?

NEW1 NEW2 NEW3 NEW4 Taken from

store number

0 0 0 0.04 1 0.04

0 0 0 0.47 2 0.47

0 1.02 0 0.01 3 1.03

0 0.65 0 0.41 4 1.06

0 0 0 0 5 0

0 0 0 0 6 0

0.04 0 0 0 7 0.04

0 0 0 0 8 0

0 0 1.11 0 9 1.11

0.22 0 0 0 10 0.22

0 0 0.51 0 11 0.5

0.02 0 0 0 12 0.02

0.28 1.67 1.62 0.93 From existing

0.82 2.35 2.64 2.78 Total

0.54 0.68 1.02 1.85 Net added

Before Total share 0.9434

After Total share 0.9842

4.08
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which ones to close. Predicting retention of
customers from old stores to re-aligned new
branches is also difficult though the managers
of such operations may have good insight into
the likely levels of customer loyalty.

An interesting question is to determine the
diversion of sales or the result of a store/chain
closure. Such questions frequently are
presented in practice to retailers as they
have the option to purchase competitors
sites. Which of these sites would make good
acquisitions (if the option to cherry pick the
best of the available store)? Which would be
blended well and open under the new label if
the acquiring chain gets the whole suite?

If two chains merge, and there are
regulatory concerns that the two chains have
to divest some of their branches, or wish
to streamline their combined operations, one
would have to analyze the closure of branches
one by one to determine the package that
makes the most sense from the point of view
of the combined operations.

22.6. SUMMARY AND
CONCLUSIONS

The great strength of the gravity model is
its simplicity and its allocation of demand
to centers in proportion to their attraction
and inversely proportional to distance. It can
incorporate center specific attraction and
center specific maximum trade area radii.

The strength of the SI based location model
is that it provides assistance with all of the
following tasks: measuring saturation, impact
of changes on current trade areas, assessment
of the advantages of certain locations for
particular formats, and an estimation of the
forecast of sales. In addition the allocation
models allow a profile of the demographics
of a trade area.

What would take a large amount of extra
research effort, but which in my opinion

would be well worth while, would be the
inclusion of the interaction based model in
a multiobjective and multiattribute decision
framework. The difficulty would be to elicit
from the decision maker a set of trade off
parameters that define the relative scales for
the attributes of the alternative locational
packages.

The mechanism reviewed in this chapter
will operate to allocate the sales from the
origin zones to the destinations is called the
allocation model. It is driven by a gravity
based spatial interaction model, and given
careful data and careful assessment of the
foundation assumptions this is a robust model
for trade area delimitation.
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23
Spatial Analysis on a Network

A t s u y u k i O k a b e a n d T o s h i a k i S a t o h

23.1. INTRODUCTION

In the real world, various types of phenomena
occur on or alongside a network; these are
termed network spatial phenomena. A typical
example is illustrated in Figure 23.1, where
dots show traffic accidents in Chiba, Japan.
As with this example, many types of network
spatial phenomena are reported in the related
literature: traffic accidents on a road network
(e.g., Jones et al., 1996; Levine et al.,
1995; McGuigan, 1981; Nicholson, 1989;
Yamada and Thill, 2004), road kills on a
road network (e.g., Bashore et al., 1985;
Clevenger et al., 2003; Mallick et al.,
1998; Saeki and MacDonald, 2004), street
crimes on a street network (e.g., Anselin
et al., 2000; Bowers and Hirschfield, 1999;
Ratcliffe, 2002; Ratcliffe and McCullagh,
1999; Painter, 1994), the distribution of
seabirds along a coastline (e.g., O’Driscoll,
1998), and the distribution of trees along a
road network (e.g., Spooner et al., 2004).

These are examples of network spatial
phenomena that occur directly on a network.

As well as the above network spatial
phenomena, another broad class of
phenomena occurs alongside rather than
directly on a network. A typical example is
illustrated in Figure 23.2, where dots indicate
parking lots in Kyoto, Japan. There are many
facilities in addition to parking lots that are
located alongside street networks within
densely inhabited areas. In fact, the entrances
to almost all facilities in a city are adjacent
to a street and users access such facilities
through these entrances. Consequently, the
location phenomena of almost all facilities
within urbanized areas can be regarded as a
second class of network spatial phenomena.

Network spatial phenomena are usually
analyzed by methods that assume a contin-
uous plane and Euclidean distance (expect
for transportation studies). For referential
purposes, these types of spatial methods
are referred to as planar spatial methods,
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Figure 23.1 Sites of traffic accidents in Chiba, Japan (the width of each line segment
represents traffic volume).

Figure 23.2 The distribution of parking lots in Kyoto, Japan.
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and analyses via planar spatial methods are
termed planar spatial analyses. Planar spatial
methods are generally used for the analysis of
network spatial phenomena because: (1) it is
much easier to compute Euclidean distance
on a plane than by the shortest-path distance
on a network, and (2) it is believed that
the shortest-path distance is approximated by
Euclidean distance. The first reason remains
true, although the difficulty is reduced
these days because the use of Geographical
Information Systems (GIS) makes it easy
to calculate the shortest-path distance. The
second reason might be true over a large
region, but its validity is questionable across
a small area or within a city. For example,
Maki and Okabe (2005) demonstrated that,
in Kokuryo, a Tokyo suburb, the dif-
ference between the shortest-path distance
and Euclidean distance is significant if the
Euclidean distance is less than 500 m (see
Figure 23.3). Therefore, to analyze spatial
phenomena in small areas such as the market
areas of convenience stores in a city, planar
spatial methods are inappropriate; instead,
spatial methods that assume a network
space using the shortest-path distance, termed
network spatial methods, should be used.

The danger in applying planar spatial
methods to network spatial phenomena

is clearly demonstrated in Figure 23.4.
Having assessed the distribution of points
in Figure 23.4(a), nobody would consider
that the points are randomly distributed. This
view is true when points are distributed on
a plane; however, this view is false when
the points are distributed on the network
indicated by the lines in Figure 23.4(b). In
fact, the points in the figure are randomly
generated on the network.

Figure 23.4 provides the following warn-
ing: analyzing network spatial phenomena
using a planar spatial method is likely to lead
to false conclusions. To avoid such errors,
this chapter considers a class of network spa-
tial methods. The chapter consists of seven
sections including this introductory section.
Section 23.2 describes a method, termed the
uniform network transformation, that deals
with a nonuniform distribution function on
a network. Section 23.3 considers a class of
network Voronoi diagrams, and section 23.4
discusses a class of network local and global
K function methods. Section 23.5 describes
a class of network kernel methods, and
Section 23.6 outlines a GIS-based toolbox
termed SANET, which is used for network
spatial analysis. The chapter ends with
Section 23.7, which considers network spatial
methods that we have not discussed earlier.
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Figure 23.3 Ratio of the shortest-path distance to its corresponding Euclidean distance for
the street network in Kokuryo, Tokyo (from Maki and Okabe, 2005).
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(a) (b)

Figure 23.4 Non-randomly distributed points on a plane (a), and randomly distributed
points on a network (b). (Note that the two distributions of points are the same.)

23.2. UNIFORM NETWORK
TRANSFORMATION

Many spatial methods for analyzing spatial
point patterns are designed to test the
null hypothesis that points are randomly
distributed on a space. In the case of a
network space, this null hypothesis means
that the probability of a point (say, a traffic
accident site) being generated on a unit line
segment on a network is the same regardless
of the location of the unit line segment; stated
differently, the density of points is uniform
over the network. Networks that possess
this probabilistic property are referred to
as uniform networks. In the real world,
however, uniform networks are unlikely to
exist. Rather, the probability of a point being
generated on a unit line segment on a network
varies according to the location of the unit
line segment. Such networks are referred to
as nonuniform networks. For example, a road
network in which traffic accidents occur in
proportion to traffic volume is a nonuniform
network. Figure 23.1 shows the actual distri-
bution of traffic accidents (as dots) in relation
to traffic volume along each line segment

(the width represents traffic volume). It is
likely that traffic accidents are related to
traffic volume, and this relation will be
examined in Section 23.4. Applying network
spatial methods that assume a uniform
network (termed uniform network spatial

methods) to a nonuniform network is likely
to result in false conclusions. Such errors can
be avoided by the use of ‘uniform network
transformation’ (Okabe and Satoh, 2006),
which is briefly introduced in this section.

First, consider a network L (e.g., a road
network) that consists of n line segments
(street segments), i.e., L = {l1, . . ., ln}, and
let ci/l be the probability that a point is
located within a unit line segment /l on li,
i = 1, . . ., n. Note that this assumption means
that the density ci of points is uniform over
li, but may vary (as in Figure 23.5(a)) or not
vary (as in Figure 23.5(b)) between different
line segments. If the density does not vary,
i.e., ci = cj for all i, j = 1, . . ., n, then the
network is a uniform network; if it does vary,
i.e., ci %= cj for at least one pair i, j, then the
network is a nonuniform network.

Second, consider a new network L∗ =
{l∗1, . . ., l∗n} whose graph is isomorphic to that
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Figure 23.5 A nonuniform network (a) and the equivalent uniform network transformed by
the uniform network transformation (b).

of the original network L (Figure 23.5(b)).
The location of a point at distance t

from one end point ei of li along li is
mapped on the point at distance s from the
end point e∗

i of l∗i along l∗i by s = αcit,
where α satisfies αci > 1 for all i = 1, . . ., n

(Figure 23.5(a, b)).
Third, consider the transformation that

satisfies the condition that the probability
c∗

i /l∗ of a point being placed in a unit
line segment / l∗ on l∗i is the same as the
probability ci /l of a point being placed
in a unit line segment /l on li, i.e.,
c∗

i /l∗ = ci /l.
Okabe and Satoh (2006) proved that the

above transformation transforms a nonuni-
form network into a uniform network,
and is thus termed the uniform network

transformation. Note that this transformation
is an extension of the probability integral
transformation that transforms a univariate
nonuniform distribution function to a uniform
distribution function. The probability integral
transformation is commonly used in statistics
to generate nonuniform random variables
(Freund, 1998).

The uniform network transformation
provides a powerful tool for analyzing
nonuniform networks that are commonly
found in the real world. Obviously, uniform
network spatial methods cannot be used for

analyzing a nonuniform network because
they are designed for the analysis of a
uniform network. However, they can be
used if the following simple preprocessing is
performed. First, transform a given nonuni-
form network to a uniform network by the
uniform network transformation described
above. Second, apply a uniform network
spatial method to the transformed network
(which is a uniform network). No special
development is necessary for dealing with a
nonuniform network. Many existing uniform
network spatial methods can be utilized for
analyzing a nonuniform network without
modification through the uniform network
transformation. This transformation has the
advantage of network spatial analysis, which
is not enjoyed by planar spatial analysis.

23.3. NETWORK VORONOI
DIAGRAMS

23.3.1. Ordinary network Voronoi
diagram

As reviewed by Okabe et al. (2000),
the ordinary Voronoi diagram, i.e., the
Voronoi diagram defined on a plane with
Euclidean distance (the ordinary planar
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Voronoi diagram), is used in many ways in
spatial analysis (Figure 23.6). In particular,
the ordinary planar Voronoi diagram is com-
monly used in retail marketing and facilities
management as a first approximation of the
service areas of stores or facilities.

This approximation, however, is problem-
atic when service areas are small. Table 23.1
shows the average radii of circular market
areas in Shinjuku Ward, Tokyo, with respect
to store type. In all cases, the distance to the
nearest store is less than five hundred meters.
Recalling the difference between Euclidean
distance and the shortest-path distance shown
in Figure 23.3, the data in Table 23.1 suggest
that the ordinary planar Voronoi diagram is
not appropriate as a first approximation of
the service areas.

Instead, a Voronoi diagram defined on a
network with shortest-path distance, termed
the network Voronoi diagram, should be used.
To show this clearly, let d(p, pi) be the
shortest-path distance between a point p and
a point pi on a network L, where m generator
points (e.g., stores) are located at p1, . . ., pm.
Let Vi be a set of points on L (a subnetwork)
that satisfies

Vi =
{
p|d(p, pi) ≤ d(p, pj), p ε L,

j %= i, j = 1, . . ., m
}
. (23.1)

Table 23.1 Average radii of circular market
areas in Shinjuku ward, Tokyo (m)

Store types Average radius

Bakery 320

Shoe store 255

Fruit shop 213

Book store 177

Chinese noodle shop 153

Convenience store 150

Beauty parlor 114

Clinic 113

The set of the resulting subnetworks, V =
{V1, . . ., Vm}, is termed the (ordinary) net-

work Voronoi diagram (Okabe et al., 2000);
an example is provided in Figure 23.7.
It is instructive to compare this network
Voronoi diagram with its corresponding pla-
nar Voronoi diagram shown in Figure 23.6.

23.3.2. Directed network
Voronoi diagrams

In a downtown area, streets are commonly
one-way. Pizza delivery stores should
consider this fact when dispatching delivery
bikes. To take one-way regulations into
account, consider a directed network L→ and
let d→(pi, p) be the directed shortest-path
distance from pi (e.g., a pizza delivery store)
to p (e.g., a house). Let Vi→ be a set of
points on L→ (a subnetwork) that satisfies
equation (23.1), where d(p, pi) is replaced
with d→(pi, p). The set of the resulting
subnetworks, V•→ = {V1→, . . ., Vm→}, is
termed a directed network Voronoi diagram

(Okabe et al., 2008); an example is shown
in Figure 23.8, where one-way streets are
indicated by arrows.

Note that the directed shortest-path
distance is not symmetric, i.e., d→(pi, p) =
d→(p, pi) does not always hold. Suppose that
p1, . . ., pm are parking lots, and a driver at p

wants to use the nearest parking lot among
p1, . . ., pm. The service area of the parking
lot at pi is then defined by the set V→i of
points on L→ (a subnetwork) that satisfies
equation (23.1), where d(p, pi) is replaced
with d→(p, pi). The set of the resulting
subnetworks, V→•= {V→1, . . ., V→m}, is
also a directed network Voronoi diagram.
To distinguish V•→= {V1→, . . ., Vm→}
and V→•= {V→1, . . ., V→m}, the former is
termed the outward directed network Voronoi

diagram and the latter the inward directed

Voronoi diagram (Okabe et al., 2008).
Both are directed Voronoi diagrams that
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Figure 23.6 The ordinary planar Voronoi diagram generated from parking lots in
Kyoto, Japan.

Figure 23.7 The ordinary network Voronoi diagram generated from parking lots in
Kyoto, Japan.
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Figure 23.8 The outward directed Voronoi diagram generated from parking lots in
Kyoto, Japan.

should be distinguished from the ordinary
network Voronoi diagram V = {V1, . . ., Vm}
(alternatively, the ordinary network Voronoi
diagram is termed a nondirected network
Voronoi diagram). An example of an inward
directed Voronoi diagram is shown in
Figure 23.9.

23.3.3. Weighted network Voronoi
diagrams

Consider, for instance, that consumers choose
a store by considering prices ηi at alternative
stores and the transportation cost βd(p, pi)
between their house p and the store pi,
where β is the unit transportation cost. In
this case, the market area of a store is
defined by the set VAWi of points on L

(a subnetwork) that satisfies equation (23.1),
where d(p, pi) is replaced with dAW (p, pi) =
βd(p, pi)+ηi, termed the additively weighted

network distance. The set of the resulting

subnetworks, VAW = {VAW1, . . . , VAWm}, is
termed the additively weighted network

Voronoi diagram (Okano and Okabe, 2004);
an example is shown in Figure 23.10, where
the dots indicate convenience stores in Kyoto,
Japan, and the radius of each circle indicates
its weight ηi.

Suppose that the delivery speed βi of
goods is different from store to store. In this
case, the multiplicatively weighted distance,
dMW (p, pi) = βid(p, pi), is appropriate for
estimating market areas. To be explicit, let
VMWi be the set of points on L (a subnetwork)
that satisfies equation (23.1), where d(p, pi)
is replaced with dMW (p, pi) = βi d(p, pi).
The set of the resulting subnetworks, VMW =
{VMW1, . . ., VMWm}, is termed the multiplica-

tively weighted network Voronoi diagram

(Okano and Okabe, 2004). An example is
shown in Figure 23.11, where the dots
indicate convenience stores in Kyoto, Japan,
and the radius of each circle indicates its
weight βi.
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Figure 23.9 The inward directed Voronoi diagram generated from parking lots in
Kyoto, Japan.
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Figure 23.10 The additively weighted network Voronoi diagram generated from
convenience stores in Kyoto, Japan (each circle indicates its weight ηi ).
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23.3.4. Other network Voronoi
diagrams

In addition to the above network Voronoi
diagrams, the kth nearest network Voronoi
diagram, the network Voronoi diagram for
line segments, and the network Voronoi
diagram for polygons have also been
proposed in the literature. The reader should
consult Furuata et al. (2005) and Okabe et al.,
(2008) for information on these diagrams.

23.4. LOCAL AND GLOBAL
NETWORK K FUNCTION
METHODS

23.4.1. Global network auto K
function

One of the most commonly used tech-
niques in statistical spatial analysis is
the K function method. Originally, the K

function method was developed for points
on a plane, and was termed the planar K

function method (Ripley, 1976, 1977). Okabe
and Yamada (2001) extended the planar K

function method to the K function method for
points on a network to develop the network

K function method. To state this method
explicitly, consider a network L on which
points p1, . . ., pm are placed, and let Di(t)
be a subnetwork of L in which the shortest-
path distance between any point on Di(t)
and pi is less than or equal to t (the heavy
lines in Figure 23.12; in the planar case,
Di(t) corresponds to the disk centered at pi

with radius t truncated by a bounded global
space). Let Ki(t) be the number of points of
p1, . . ., pm that are included in Di(t). In this
term, a network K function is defined by

K(t) =
m∑

i=1

Ki(t). (23.2)
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Figure 23.11 The multiplicatively weighted network Voronoi diagram generated from
convenience stores in Kyoto, Japan (each circle indicates its weight βi ).
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Note that, in contrast to the ‘cross’ K

function, which is defined below, the above
function is referred to as the network auto

K function (as with spatial auto correlation);
also note that constants (the density and
number of points) are omitted here for
simplicity.

To show an actual example, the
distribution of street burglaries in Kyoto
is depicted in Figure 23.12, where the
triangle marks indicate sits of incidence.
For this distribution, the network auto
K function is calculated, and the result
is shown in Figure 23.13. The black
line indicates the expected value and the
gray line indicates the observed value
obtained under the null hypothesis that

burglaries occur uniformly and randomly
distributed on the street network. Because
the observed curve is always above the
expected curve in Figure 23.13, it is
concluded that burglaries tend to cluster
themselves.

The difference between the network
K function and the planar K function is
distinct. Actually, Yamada and Thill (2004)
applied both the planar K function method
and the network K function method to
the same traffic accident data and found
that the planar K function method overesti-
mates clustering tendency. The authors con-
cluded that the network K function method
should be used for the analysis of traffic
accidents.

Figure 23.12 Street burglaries (the triangle marks), railway stations (the circles), and the
Voronoi sub-network (the heavy lines) of the station (the large circle) in Kyoto, Japan.
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Figure 23.13 The global network auto K function for street burglaries on the street
network in Kyoto, Japan (Figure 23.12).

23.4.2. Global network cross
K function

Another type of network K function
method is the network cross K function
method (Okabe and Yamada, 2001). Consider
two sets of points, P = {p1, . . ., pm} and
Q = {q1, . . ., qk}, on a network L. Points of P

are stochastically distributed on L, but points
of Q are fixed (note that the configuration of
the points is arbitrary). For instance, points
of P may be crime spots and points of
Q may be railway stations. The network
cross K function is used for testing whether
points p1, . . ., pm (crime spots) tend to cluster
around (or apart from) q1, . . ., qk (railway
stations) as a whole.

To state the network cross K function
explicitly, let Dqi (t) be a subnetwork of L in
which the shortest-path distance between any
point in Dqi (t) and qi is less than or equal to t,
and let Kqi (t) be the number of points of P

that are included in Dqi (t). Then, the network
cross K function, KQP(t), is defined by:

KQP(t) =
k∑

i=1

Kqi (t). (23.3)

(Note that a constant is omitted from the
above equation for simplicity.) Because this
function considers all points of P across the
entire network space L (the global space),
the function can be regarded as a global

network cross K function. An actual example
of the global network cross K function
is shown in Figure 23.14, where points
of P are street burglaries and points of
Q are railway stations in Kyoto, Japan as
shown in Figure 23.12. Because the observed
curve is always above the expected curve
in Figure 23.14, it is concluded that street
burglaries tend to occur around railway
stations.

23.4.3. Local network cross K
function

The global network cross K function method
deals with the average tendency of a point
pattern around all fixed points Q; therefore, it
cannot detect local tendencies. For example,
the global network cross K function cannot
detect the specific railway stations around
which crime spots tend to cluster. To detect
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Figure 23.14 The global network cross K function for street burglaries in relation to
railway stations in Kyoto, Japan (Figure 23.12).

local tendencies, a ‘local’ network cross
K function should be developed.

A simple way of defining a local cross
K function is to decompose the global cross
K function given by equation (23.3) into
each term; that is, a local cross K function

defined by Kqi (t), i = 1, . . ., k. This local
cross K function, however, is not always
‘natural’, because the local space Dqi (t) of
Kqi (t) becomes large as t increases, and
eventually the local space includes the global
space (the entire space L).

23.4.4. Local network Voronoi
cross K function

In the context of crime spots and railway
stations referred to above, it is natural
to examine whether crime spots cluster
in the neighborhood of specific railway
stations. If commuters use their near-
est railway stations, the neighborhoods of
railway stations are given by the ordi-
nary network Voronoi diagram generated
from railway stations. To be explicit, let
V = {V1, . . ., Vk} be the ordinary network

Voronoi diagram generated by Q. Then, a
local space of point qi (the neighborhood
of the ith railway station) is given by
the Voronoi subnetwork Vi (a Voronoi
subnetwork is indicated by the heavy lines
in Figure 23.12).

In terms of this natural local space, an
alternative network cross K function KVqi (t)
can be defined as the number of points of
P (e.g., crime spots) that are included in
Vi ∩ Dqi (t), i.e., the number of crime spots
in a local space Vi ∩ Dqi (t) whose shortest-
path distance to the railway station qi is
less than or equal to t. Because Vi ∩ Dqi (t)
is bounded by a local space Vi, the local
space of KVqi (t) remains a local space of
the global space even for a large t (this
contrasts with the network cross K function
Kqi (t) in Section 23.4.3). The function KVqi (t)
is termed the local network Voronoi cross

K function, and should be distinguished from
the function Kqi (t) in Section 23.4.3, which
is referred to as the local network ordinary

cross K function. Figure 23.15 shows an
actual example of the local network Voronoi
cross K function for street burglaries in the
local space indicated by the heavy lines in
Figure 23.12.
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23.4.5. Global network Voronoi
cross K function

In sections 23.3.2 and 23.3.3, a local K

function is obtained from a global K function.
Conversely, a global function can also be
obtained from a local function. For instance,
let KVQP(t) be a function defined in terms of
the local network Voronoi K functions as

KVQP(t) =
k∑

i=1

KVqi (t). (23.4)

This function deals with all points P in
the entire network L (the global space).
Therefore, this function can be regarded as
a global network cross K function, which
is referred to as the global network Voronoi

cross K function. An example is illustrated
in Figure 23.16. Comparison between the
local network Voronoi cross K function in
Figure 23.15 and the global network Voronoi
cross K function in Figure 23.16 reveals local
variety.
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Figure 23.15 The local network Voronoi cross K function for street burglaries in the local
space (the heavy lines in Figure 23.12) in Kyoto, Japan.
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Figure 23.16 The global network Voronoi cross K function for street burglaries in relation
to railway stations in Kyoto, Japan (Figure 23.12).
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Having obtained two global network
K functions, namely the global network
ordinary cross K function in Section 23.4.3
and the global network Voronoi cross
K function in Section 23.4.4, one might
question the difference between them.
Figure 23.17 provides an illustration of this
difference. Figure 23.17(a) shows Dq1(2)
(heavy gray lines) and Dq2(2) (heavy black
lines). Points p1, p2, p3, p4, p5, p6, p7

are included in Kq1 (2), whereas p3, p4,

p6, p7, p8 are included in Kq2 (2); con-
sequently, the global network ordinary

cross K function KQP(2) = Kq1 (2) + Kq2 (2)
counts points p1, p2, p8 once and points
p3, p4, p6, p7 twice. In contrast, as shown
in Figure 23.17(b) where Dq1(2) ∩ V1 (heavy
gray lines) and Dq2(2) ∩ V2 (heavy black
lines) are depicted (broken lines indicate the
boundary points of the Voronoi subnetworks
V1 and V2), the global network Voronoi

cross K function KVQP(2) = KVq1 (2) +
KVq2 (2) counts every point of P only once.
These two global network cross K functions
focus on different aspects of a point pattern.
Actually, Figures 23.14 and 23.16 show this
difference.

23.5. NETWORK KERNEL METHOD

The kernel method is a nonparametric method
for estimating a density function from a given
set of observed values (Silverman, 1986).
Kernel functions are usually defined for
univariate or bivariate density functions. In
the context of spatial analysis, the kernel
method is applied to the density of points on
a plane and is commonly employed to detect
‘hot spots’ (or ‘cold spots’), e.g., highly
concentrated areas of crime occurrences
within a city. If the crime of interest is street
burglaries, the density of street burglaries
on streets is to be estimated. This section
demonstrates a kernel method for estimating
a density function on a network (Okabe et al.,
2009).

A simple way of estimating a density
function from given observed points is to
use kernel functions defined on a plane,
referred to as planar kernel functions.
Suppose that the coordinates (represented by
vectors) of observed points on a network
L embedded on a plane are x1, . . ., xm,
and let k(x) be a two-dimensional kernel
function defined on a plane. Then, the
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Figure 23.17 Comparison between the global network ordinary cross K function (a) and the
global network Voronoi cross K function (b).
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estimated density function, f (x), on a plane is
given by:

f (x) =
m∑

i=1

k(xi). (23.5)

An example is presented in Figure 23.18,
where one million points are uniformly and
randomly generated and the kernel function is
given by the bi-weight function (Silverman,
1986).

One might estimate the density function,
fL(x), of points on L from the intersection
of f (x) with L, i.e., fL(x) = f (x), x ∈ L.
This method would be fine if the estimated
density function could produce a uniform
distribution function for the points that are
uniformly and randomly distributed on the
network. However, Figure 23.18 shows that
fL(x) does not show a uniform distribution

for such points (one million). Therefore, this
method is inappropriate.

An alternative method is to use a net-

work kernel function, kL(t) = kL (x), x ∈ L,
defined on L. An example is shown in
Figure 23.19, where one million points are
uniformly and randomly generated and the
density function is estimated from those
points using the one dimensional bi-weight
function.

This appears to be a natural extension of
the planar kernel method, but Figure 23.19
proves that this method is inappropriate. As
the points in Figure 23.19 are uniformly
and randomly generated on L, the estimated
density should be uniform; however, the
density in Figure 23.19 is not uniform
on L, which suggests that this method is
inappropriate. One reason that the natural
extension of the planar kernel method does

Figure 23.18 The density function for uniformly random points (one million) on the street
network in Kyoto estimated by the two-dimensional bi-weight kernel function.
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Figure 23.19 The density function for uniformly random points (one million) on the street
network in Kyoto estimated by the one-dimensional bi-weight kernel function.

not work is that a plane is isotropic whereas
a network is not isotropic in the sense that
directions are restricted and is bounded.
Okabe et al., (2009) provide two kernal
functions Ki(t) that produces a uniform
density function for uniformly and randomly
distributed points.

Once a density function has been esti-
mated, it is easy to find ‘hot spots’. Let
L(u) be a subnetwork of L that satisfies
fL(t) ≥ u, and let Lα be the subnetwork L(u)
that satisfies:

∫

t∈L(u)

fL(t) dt
/∫

t∈L

fL(t) dt = 100α. (23.6)

The subnetwork Lα is the area of hot spots;
the probability of points occurring on the
subnetworks Lα is high at the significance
level α.

Figure 23.21 shows hot spots of traffic
accidents in Chiba, Japan, determined by
using the above method and assuming that
the given network is a uniform network, i.e.,
the probability of an accident occurring in a
unit line segment is constant regardless of the
location of the unit line segment. As noted in
section 23.2, however, it is more likely that
traffic accidents tend to occur in proportion
to traffic volume, as shown in Figure 23.1
(a nonuniform network). To examine this
tendency of accident hot spots, the uniform
network transformation in section 23.2 is
applied to this nonuniform network, and
the network kernel method is applied to
the resulting uniform network. Figure 23.22
shows hot spots of traffic accidents for
the transformed network. These hot spots
indicate the places where traffic accidents
tend to occur more frequently than would
be expected from the measured traffic
volumes.
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Figure 23.20 The density function for uniformly random points (one million) on the street
network in Kyoto estimated by a one-dimensional modified bi-weight kernel function.

Figure 23.21 Hot spots of traffic accidents on the uniform road network in Chiba, Japan.
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Figure 23.22 Hot spots of traffic accidents on the nonuniform road network in Chiba, Japan
that takes account of traffic volume.

23.6. GIS-BASED TOOLS FOR
NETWORK SPATIAL
ANALYSIS, SANET

To analyze network spatial phenomena in
theory, network spatial methods are more
appropriate than planar spatial methods. In
practice, however, developing computer pro-
grams for network spatial methods is more
difficult than that for planar spatial methods.
Fortunately, this difficulty is overcome by
a free software package termed SANET
(Spatial Analysis on a NETwork), which can
be downloaded from http://okabe.t.u-tokyo.
ac.jp/okabelab/atsu/sanet/sanet-index.html.

The functions are outlined in Okabe et al.
(2006a, b), and the manual is available from
the above site (Okabe et al., 2004). Note that
Version 3 is the current release but functions
are updated from time to time.

23.7. CONCLUSIONS

In the real world, there are many network
spatial phenomena. Planar spatial methods
are inappropriate for analyzing these phe-
nomena because they commonly lead to false
conclusions. To avoid such false conclusions,
network spatial methods should be used.
This chapter considered three classes of
network spatial methods: (1) a class of
network Voronoi diagrams that includes the
nondirected Voronoi diagram, the inward
directed Voronoi diagram, the outward
directed Voronoi diagram, the additively
weighted Voronoi diagram, and the multi-
plicatively weighted Voronoi diagram; (2) a
class of network K functions that includes
the global auto K function, the global
ordinary cross K function, the local ordinary
cross K function, the local Voronoi cross
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K function, and the global Voronoi cross K

function; and (3) a class of network kernel
methods that includes a method for detecting
hot spots.

In addition to the above network spatial
methods, Okabe et al. (1995) formulated
the network of the (conditional) nearest
neighbor distance method; Miller (1994,
1999), Okabe and Kitamura (1996), Okabe
and Okunuki (2001), and Morita et al. (2001)
formulated the network Huff model; Shiode
and Okabe (2004a) formulated the network
clumping method; Shiode and Okabe (2004b)
formulated the network cell count method;
and Okabe et al. (2006b) proposed the
network spatial interpolation method. There
are many other planar spatial methods that
have not yet been extended to network
spatial methods. Hopefully, the readers of
this chapter will extend these methods
and enrich the field of network spatial
analysis.
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24
Challenges in Spatial Analysis

M i c h a e l F . G o o d c h i l d 1

24.1. INTRODUCTION

This is a time of unprecedented opportunity
for spatial analysis. More people than
ever have access to the Global Position-
ing System for direct measurement of
location on the Earth’s surface; to the
products of high-resolution remote-sensing
satellites; and to the manipulative power of
geographic information systems (GIS). Some
of these technologies are encountered in
everyday life, through sites such as Google
Earth (earth.google.com), Google Maps
(maps.google.com), and Microsoft Windows
Live Local (live.local.com), and through
the widespread use of in-vehicle navigation
systems. Several academic disciplines are
recording a spatial turn, a new and in some
cases renewed interest in space and location
as a framework for analysis, understanding,
and presentation of results. A recent pub-
lication (National Research Council, 2006)
has defined and explored spatial thinking

as a paradigm for primary and secondary
education, and projects have been funded
around the world to advance spatial literacy

(e.g., www.spatial-literacy.org).
At the same time the field faces substantial

challenges, as it attempts to take advantage
of these new opportunities. This chapter
addresses four: the challenge raised by the
continuing rapid advance in computing and
networking technology; the challenge of
addressing the temporal dimension through
the analysis of dynamic phenomena; the
challenge posed by the immense popularity
of Web sites that offer rudimentary forms of
spatial analysis to a user community that has
little or no formal educational background in
this area; and the challenge of formulating
a new philosophy of science that reflects the
actual conditions under which spatial analysis
is used in today’s research and problem-
solving environments.

The four topics by no means exhaust
the full set of issues facing the field.
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Many readers will have their own ideas, and
the chapter on the future of spatial analysis
that follows include discussions of additional
issues. Meanwhile, the four considered in
this chapter are very much a personal list,
and reflect the author’s own interests and
concerns at this point in the long history of
spatial analytic methods.

24.2. COMPUTING AND
NETWORKING TECHNOLOGY

In the early 1990s a substantial literature
accumulated on the opportunities offered by
GIS. In 1988 the U.S. National Science
Foundation had established the National
Center for Geographic Information and Anal-
ysis (NCGIA) at three sites: the University
of California, Santa Barbara; the State
University of New York at Buffalo; and
the University of Maine. One of NCGIA’s
objectives was to advance the use of GIS
across the sciences, as a platform for spatial
analysis, so it was considered important to
assess progress to date, and to identify and
remove impediments to the greater use of
spatial analysis. NCGIA organized a spe-
cialist meeting on the topic that eventually
led to a book (Fotheringham and Rogerson,
1994), and several additional papers appeared
(Anselin and Getis, 1992; Burrough, 1990;
Ding and Fotheringham, 1992; Goodchild,
1987; Goodchild et al., 1992; Openshaw,
1990; and for a later perspective see
Goodchild and Longley, 1999).

Underlying this spate of funding and
writing was the simple premise that GIS
provided an ideal means of implementing
the known techniques of spatial analysis,
as well as techniques that might be devel-
oped in the future. A single package, if
sufficiently sophisticated, could offer easy
and largely painless access to an abundance
of robust, scientifically sound techniques

for analyzing and visualizing spatial data.
The results of each stage of analysis could
be fed into further stages, and data could
be managed within a single environment
that recognized a range of data formats.
Comparisons were frequently drawn with
the statistical packages (e.g., Goodchild,
1987), which similarly offered easy access
to a multitude of statistical techniques,
along with the necessary housekeeping
functions.

At the time, each GIS software product was
organized into a single, monolithic package.
In the 1980s such packages were typically
installed on minicomputers such as the VAX
or Prime, but in the late 1980s the transition
to personal Unix workstations and later to the
PC and Mac had opened the possibility of
an entirely individualized toolbox installed
on the researcher’s desk. GIS was likened
to a butler – an intelligent assistant working
with the user to solve problems, knowing
the foibles and preferences of the user, and
taking on those tasks that the user found too
complex, tedious, time-consuming, or inac-
curate if performed by hand. Abler (1987)
hailed GIS as geography’s equivalent of the
microscope or the telescope, a powerful tool
that allowed researchers to gain insights that
were simply impossible with the normal
senses and intuition.

From this perspective, the power of GIS
would be judged simply by the proportion
of known techniques of spatial analysis that
it supported, by the accuracy with which
it implemented each method, and by the
extent to which it prevented misuse and
misinterpretation of results. There were many
complaints about this time regarding the
success of GIS against these objectives.
Commercial software developers were seen
as insufficiently interested in supporting
advanced spatial analysis, being content
instead to direct their efforts at satisfying
the needs of their more wealthy corpo-
rate and agency customers, whose interests
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tended to be more in data management and
inventory. GIS designers failed to ground
their products in sound theory, preferring
intuitive terms and explanations over formal
and mathematical ones. Because of this
lack of formal grounding, each vendor
tended to adopt its own terms, formats, and
structures, leading to endless proliferation
and an apparently insurmountable lack of
interoperability.

It was in this context that the Web appeared
on the scene, and the Internet emerged
as the dominant and indeed quickly the
only network for computer communication.
Since 1993 and the release of Mosaic
the impact of communications technology
has been so profound as to change the
entire landscape of GIS and spatial analysis.
Sui and Goodchild (2001) have argued
that the metaphor of the butler is no
longer appropriate – instead, GIS technology
now constitutes a medium through which
people communicate what they know about
the Earth’s surface that is comparable to
traditional media such as print, radio, and
television. As such, its issues are dramatically
different from those of earlier decades.
Bandwidth, interoperability, and metadata
have largely replaced computing speed,
storage capacity, and the sophistication of
desktop software as major concerns of GIS
users. Even the most sophisticated of users
no longer program, relying instead on the
incredibly abundant resources of the Web,
easy mechanisms for sharing code, and
new forms of software architecture. The
following three sections explore some of
these issues, and their implications for spatial
analysis.

24.2.1. Server GIS

In the client–server computing paradigm
that underlies the Web, the user or client’s
hardware and software are comparatively

simple or thin, and most actual computation
occurs remotely on a more powerful server.
In the extreme, the user needs only a Web
browser such as Microsoft Explorer or
Netscape. Instead of installing a thick piece
of software, such as a GIS package, the user
obtains many if not all of its services from
a remote server. For example, the task of
finding the optimum route from an origin
to a destination through a street network,
the task performed by many Web sites
such as mapquest.com, no longer requires
the user to obtain a powerful GIS and
the necessary database representing roads
and streets, and to mount both on his
or her desktop machine, since the same
service can be obtained free from the server.
The user need only specify the origin and
destination to the server using a Web browser;
the results are then sent back from the
server and displayed locally using the same
Web browser.

In principle all GIS functions and all types
of spatial analysis could be organized in this
way. Instead of installing and operating their
own software, researchers could send data
to sites where sophisticated forms of spatial
analysis were performed. Researchers devel-
oping new forms of spatial analysis would
find it far easier to offer their techniques as
Web services than to engage in the time-
consuming distribution of software, and users
would benefit by not having to spend time
obtaining, installing, and maintaining their
own copies.

Server GIS is now common among public
agencies interested in providing public access
to their spatial data, along with simple
capabilities for query and visual display.
Many local governments provide access to
their land-ownership and property taxation
databases in this way, allowing users to query
details of their own and other properties,
using a map interface.

In practice, however, server GIS has had
a limited impact to date, particularly for
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more sophisticated analysis, for a number of
reasons:

• There is no consensus on the appropriate business

model for server GIS. Desktop GIS software

generates income for its developers through

sales and licensing, providing a healthy income

stream, and developers of new methods of

spatial analysis have sometimes used this same

approach. Users of server GIS typically expect

services to be provided free, leaving the providers

of such services to generate income through

advertising and the licensing of services to third

parties. Routing services, for example, can be

found embedded in the Web sites of on-line travel

agencies and real-estate companies, presumably

at some cost to them. Moreover, the software

for server GIS tends to be more expensive per

copy than conventional desktop GIS software

(although open-source packages are available,

e.g., mapserver.gis.umn.edu).

• Server GIS is most effective when the volume

of data that needs to be input by the user is

limited, and when the data needed are common

to a large number of users and applications.

A routing service, for example, requires only

an origin and destination, and uses a generic

database of streets and roads stored at the server.

Moreover, such databases change frequently, and

there are enormous economies of scale if all users

can rely on a single version. Geocoding or address

matching, the task of converting street addresses

to coordinates, has become a popular function for

server GIS for the same reason.

• Lack of interoperability continues to be an issue

for server GIS. There are no standards for

the description of services, though several geo-

portals now provide limited directories (Maguire

and Longley, 2005; Goodchild, et al., in press).

Extensive reformatting may be needed to make

data readable by remote services, and the results

returned may similarly need to be reformatted to

be useful locally.

The choice between local and server-based
computing is a complex one, and developers

and implementers of spatial-analytic routines
will need to consider the options carefully.
However, it is clear that the nature of
computing is changing, as many services
move to a central, server-based model.

24.2.2. Process scripts

Research tends to proceed in stages, as
problems are formulated, data are collected
and checked, analysis is performed, and
results are scrutinized. Each stage feeds
forward to the next, and also back to the
previous stages, as projects are rethought and
as hypotheses are tested and modified. By
the time the project is finally completed, the
investigator may well have lost track of some
of the stages, and may find it difficult to
provide the necessary details in publications
and reports. Somewhat paradoxically, the
research community has invested heavily in
the infrastructure to create and share data,
and in the software to process them, but
has not made similar investments in the
techniques for management of the research
process. The problem grows more severe as
research becomes more collaborative, with
many participants who may or may not
communicate in person, and as the tools of
research become more complex.

Against this background it is not surprising
that many vendors of GIS and spatial-
analytic packages have created macro- or
scripting languages that allow researchers
to express complex analyses as sequences
of operations, and to store, manage, and
execute such sequences as simple commands.
A script in digital form is immediately more
easily shared, managed, and documented than
its equivalent in the jotted and invariably
incomplete hand-notes of the researcher.
Modern scripting languages allow complex
hierarchical structures, since a single line in a
script can invoke other scripts and programs,
and allow sequences of operations to be
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repeated many times in such applications as
Monte Carlo simulation.

However, the design of an appropriate
scripting language is a very sophisticated
task, requiring a high level of knowledge
of the needs of the research community,
across many disciplines and domains. Simple
scripting languages merely allow the user to
invoke any of the commands of the package,
but more sophisticated languages imply
a recognition of the fundamental elements
from which complex spatial analyses are
built. If the granularity of the scripting
language is too coarse, researchers will find
it too difficult to express the full range of
applications – and if it is too detailed, the
script will be unnecessarily long.

The work of Tomlin (1990) provided the
first successful effort at a generic scripting
language for GIS, albeit only for congruent
layers of raster data. The language was
adopted by several packages, and several
extensions were made. Van Deursen (1995)
analyzed the operations required to support
dynamic modeling in a raster environment,
including the implementation of finite-
difference models, in what became the
scripting language for PCRaster (pcraster.
geo.uu.nl), a raster-based package heavily
oriented towards environmental modeling.
Takeyama and Couclelis (1997) described
a sophisticated language for the manipulation
of pairs of raster cells, providing support
for the analysis of spatial interactions. More
broadly, all of these approaches are strongly
related to the languages developed in image
processing, or image algebras.

To date, however, there have been no com-
parably ambitious efforts to devise languages
for vector data, or for the broader framework
that spans both discrete objects and continu-
ous fields. Dynamic GIS that addresses both
space and time also lacks comprehensive
scripting languages. The effectiveness of
future spatial analysis clearly depends on
the community’s ability to devise simple yet

comprehensive languages that can be used to
describe and share computational methods. In
the past, mathematics provided an adequate
language, and models were effectively shared
using algebraic representation, through the
pages of learned journals and books. But
today’s computational environments present
a somewhat different problem, since the
language of mathematics lies too far from
actual implementation, and cannot readily be
used to express the entire algorithmic basis
of spatial analysis.

24.2.3. Interchangeable software
components

Early computer software was comprised
of programs, integrated pieces of software
that performed well-defined functions. Early
GIS developed in this context, and by
the early 1990s a fully featured GIS such
as ESRI’s ARC/INFO included millions of
lines of code, all designed to be compiled
and executed together to provide a single,
integrated computing environment.

This approach to software was both
redundant, in the sense that large amounts
of code might never be executed by a given
user, whose interests might focus only on
a small number of functions; and costly, in
the sense that it was difficult for programmers
to pull pieces of code out of one package to
be reused in another. Even today, the average
user of a package such as Microsoft Word
will likely never have invoked many of the
functions in this very large and complex
package.

Several attempts to break out of this mold
were made in the 1980s and 1990s. One
of the more successful was the concept
of a subroutine library, a collection of
standard routines that could be called by
programs, avoiding the need for repetitive
reprogramming. Subroutine libraries became
common in areas such as statistics, since they
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allowed comparatively sophisticated users
to develop new programs quickly, relying
on standard subroutines for many of the
program’s functions. The idea was diffi-
cult to implement for less sophisticated
users, however, since it required each
to possess a substantial knowledge of
programming.

Contemporary approaches to software
emphasize a rather different approach,
in which sections of reusable code, or
components, can be freely combined during
the execution of a program. Standards have
been developed by vendors such as Microsoft
that allow compliant components to be freely
linked and executed. Ungerer and Goodchild
(2002) describe one such application, in
which ESRI’s ArcGIS and Microsoft’s Excel
have been combined to solve a standard
problem in areal interpolation (Goodchild,
et al., 1993). Functions that are native
to the GIS, such as polygon overlay, are
obtained from ArcGIS, while operations on
tables, such as matrix multiplication, are
obtained from Excel. The entire analysis
is invoked through commands written in
Visual Basic, a form of scripting language,
though other general scripting languages
such as Python might also be used. Both
packages are compliant with the Microsoft
COM standard, allowing the components that
form the building blocks of each to be freely
combined and executed.

Approaches such as these are breaking
down the barriers that previously existed
between different types of software – in this
case, ArcGIS and Excel – and allowing much
more flexible forms of analysis. They invite
an entirely new approach to software design,
in which fundamental components with
widespread application are combined to meet
the needs of specific applications. They also
call for answers to a fundamental question:
what are the basic building blocks of spatial
analytic software, and to what extent are the
operations invoked by each form of analysis

common to more than one form? Perhaps
they will lead eventually to a new approach
to teaching in spatial analysis, in which these
fundamental building blocks are the elements
of a course, rather than the analytic methods
themselves.

24.3. TIME AND DYNAMICS

Many authors have commented on the gener-
ally static nature of GIS, and the difficulty of
representing time and dynamic phenomena.
Most attribute this to the legacy of the
paper map, which inevitably emphasizes
those aspects of the Earth’s surface that
remain relatively static, over such dynamic
phenomena as events, transactions, and
flows. Several comprehensive reviews have
appeared, and much progress has been made
in building spatial databases that include time
(Langran, 1993; Peuquet, 1999, 2001, 2002).

This same emphasis on the static is evident
in the toolkit of spatial analysis, with its
focus on cross-sectional data. In part this
is due to the difficulty of creating and
acquiring longitudinal data; to the administra-
tive difficulties that statistical agencies face
in funding and maintaining data-collection
programs through time; to the changing
nature of the Earth’s surface, and the impact
that this has on data-collection procedures
and the definitions of reporting zones; and
to the changing nature of human society, and
its notoriously short attention span. Efforts
such as the National Historic GIS project
(www.nhgis.org) have attempted to overcome
these difficulties, building systems that allow
users to construct longitudinal series from
the census for example, but they remain
comparatively few and far between.

While much progress has been made,
the analysis of spatio-temporal data remains
a comparatively underexplored area, and
a source of substantial challenges for the
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community. The next two subsections address
two of these in greater detail.

24.3.1. Fundamental laws

Much of the nature of GIS and many of
the architectural choices that have been
made over the past several decades are
ultimately attributable to the nature of the
data themselves – the ways in which spatial
data are special. Anselin (1989) has identified
two general characteristics, and Goodchild
(2003) has discussed several more.

Spatial dependence describes the widely
observed tendency for the variance of spatial
data to increase with distance. To paraphrase
Tobler (1970), nearby things are more
similar than distant things, a principle that
has become known as the First Law of
Geography (Sui, 2004). All of the methods
used to represent geographic phenomena in
GIS are to some extent reliant on the validity
of this principle. For example, there would
be no value in representing topography with
isolines if elevation did not vary smoothly,
and there would be no value in aggregating
areas into contiguous regions if the latter
could not be designed with relatively low
within-region variance.

Anselin’s second principle is spatial het-
erogeneity, the tendency for the Earth’s
surface to exhibit spatial non-stationarity.
All of the various techniques developed
over the past two decades for local spatial
analysis are based on this principle, since
they attempt to summarize what is true
locally, rather than what is true globally.
The Geographically Weighted Regression of
Fotheringham, et al. (2002) falls into this
category, as do the LISA technique of Anselin
(1995) and the local statistics of Getis and
Ord (1992).

If such principles are generally true of
spatial data, and are useful in guiding
the development of computational systems,

then one might reasonably ask whether
similar principles exist for spatio-temporal
data, and whether such principles might
usefully inform the development of a more
dynamic approach to GIS and spatial analy-
sis. What is the spatio-temporal equivalent of
Tobler’s First Law, for example? Does spatial
heterogeneity apply also in time? What
relationships exist between the parameters of
spatio-temporal and spatial dependence and
heterogeneity? Are other general principles
of spatio-temporal phenomena waiting to be
discovered?

24.3.2. Dynamic form

Spatial dependence and spatial heterogeneity
are both properties of how the Earth’s surface
looks, capturing aspects of its form. Studies
of form have a long history in science, but
have given way in the long term to a desire
to understand process – to understand how
systems work, and the effects of human
intervention. In geomorphology, for example,
many scientists of the 19th and early 20th
centuries were content to describe landforms,
devising elaborate systems of morphological
classification, and only later did interest
develop in understanding how landforms
came to be, and the processes that left
such characteristic footprints on the surface.
Today, of course, such studies of form are
largely discredited, as they are in many other
disciplines.

Because of its essentially static legacy,
much GIS analysis has focused on form,
and has been criticized for doing so. It is
comparatively difficult to tease insights into
process from cross-sectional form, though it
is perhaps sometimes possible to eliminate
false hypotheses about process. GIS has been
accused of being the last manifestation of
the quantitative revolution that occurred in
geography in the 1960s, when Bunge (1966)
and others attempted to draw insights from



472 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

the similarity of forms found on the human
and physical landscapes (see, for example,
the critique of Taylor, 1990).

Very little is known, however, about the
characteristic forms that may exist in spatio-
temporal phenomena. Hagerstrand (1970)
and others have examined the movements
of individuals in space and time using
three-dimensional displays, in which the two
spatial dimensions form the horizontal plane
and time forms the vertical axis. Much of this
work focuses on similarities that may exist in
the forms of such tracks, and the implications
they may have for process. We know from
the work of many researchers (e.g., Janelle
and Goodchild, 1983) that different social
conditions lead to dramatically distinct track
forms, as for example in the differences
between the daily tracks of single mothers,
with their orientations to both workplace
and daycare, and the tracks of workers
in families in which only one of two
adults works.

The development of greater support for
time in GIS may lead to many other
recognizable patterns in spatio-temporal data,
and to a rebirth of interest in the study of
spatio-temporal form. A new generation of
analytic techniques is needed that extracts
meaningful pattern from the mass of tracks
displayed in the visualizations of Kwan and
Lee (2004) and others, and links such patterns
to hypotheses about process.

24.4. SPATIAL LITERACY

In the past few years a remarkable series
of Web sites have brought the sophisti-
cated functions of GIS and spatial analysis
much closer to the general public. While
effective use of GIS requires extensive
training, and in many cases advanced work
at the undergraduate level, technologies
such as Google Earth have given every

citizen with a computer and a high-speed
Internet connection access to many of
the data sets and computational functions
of GIS, and in some cases have even
exposed the more sophisticated functions
of spatial analysis. For example, anyone
requesting driving directions from one of
these sites receives answers that result from
the execution of a complex algorithm that
was previously the reserve of operations
researchers and specialists in spatial opti-
mization.

The methods of cartography and related
disciplines are complex, and it is no surprise
therefore that sophisticated tools in naïve
hands can produce mistakes. A suitable
example concerns the Greenwich meridian,
and its position when displayed in Google
Earth. Many users of this site have noted that
the zero of longitude misses the Greenwich
Observatory by approximately 100 m, and
have posted comments, some of which
conclude that a serious mistake has been
made by Google, and by extension that
the georegistration of imagery on the site
is poor. In reality, the WGS84 (World
Geodetic System of 1984) datum, now widely
adopted around the world, does not place
the Greenwich Observatory at exactly zero
longitude, despite the international treaty that
established it there in 1884 – and the position
shown in Google Earth appears to be correct
to within a few meters.

Although their support for spatial anal-
ysis is extremely limited, these sites have
clearly provided the general public with
access to a rich resource, and thousands of
people have been empowered to create their
own applications. The recent publication
Mapping Hacks (Erle, et al., 2005) describes
many fascinating examples, but contains
not a single reference to the cartographic
literature. At the same time students who
have endured many hours of lectures and lab
exercises to become competent in GIS may
be frustrated to realize that a child of ten
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can create a computationally complex fly-by
using Google Earth in a few minutes.

It seems clear that in part as a result
of these developments the demand for
basic knowledge of the principles of spatial
analysis, GIS, geography, cartography, and
related fields – for basic spatial literacy –
is perhaps two or more orders of magnitude
out of alignment with the supply. Education
in these topics cannot be confined to a few
advanced undergraduates, and to campuses
lucky enough to have faculty interest, if it
is to be accessible to the numbers of people
now exposed to and enthusiastically adopting
these tools. In this respect, spatial analysis
faces an unprecedented challenge, to make
itself known to a much larger community
than previously.

There are several ways in which such
a challenge might be met, by concerted
effort on the part of the spatial-analysis
community. One is to bring spatial literacy
into the general-education or core curriculum
of institutions of higher education, making
its material accessible and eligible for credit
for the vast majority of undergraduates.
Courses in other kinds of literacy are already
available in this form; the argument needs
to be made that familiarity with spatial
analysis and GIS represents another, and
arguably a more powerful form of literacy
that should be part of the education of every
citizen. Another strategy would be to develop
a larger and more visible set of courses
in the informal education sector, making
spatial literacy part of on-line and certificate
programs, and exposing its contents through
libraries, museums, and other institutions.
A third is to work to introduce spatial
literacy earlier in the educational hierarchy,
in high school and even elementary school.
Valiant efforts have been made in this
direction in the past, but they remain
minimal in comparison with the size of
the primary and secondary sectors, and
there is much confusion about where such

material might fit in the already stove-piped
curriculum.

24.5. BEYOND TRADITIONAL
PRACTICE IN SCIENCE

When Harvey wrote his well-known and
highly influential Explanation in Geography

(Harvey, 1969) the dominant form of
scientific practice centered on the individual
investigator, whose methods followed a set of
well-defined principles. For example, every
experiment was to be reported in sufficient
detail to allow its replication by another
independent investigator. Every numerical
result was to be reported with a level of
precision that matched its accuracy. Every
search of the literature was to be complete
and comprehensive, so that the investigator
could demonstrate knowledge of all previous
and relevant work and prove the new
work’s originality. The principle of Occam’s
Razor – a willingness to adopt the simplest
of several competing explanations – was
universally accepted, as was the notion
that all conclusions could be subject to
empirical test and possible rejection. The
goal of science was complete explanation,
or in statistical terms an R2 of 1. When
sample data were analyzed, all numerical
results were to be subject to tests of
statistical significance, to prove that they
were not likely to be simply artifacts of the
particular sample chosen, but properties of
the population from which the sample was
presumed to be drawn. All terms were to be
rigorously defined, and vague terms were to
be replaced by ones that met the standard of
objectivity – rigorous and shared definition,
such that two investigators would always
agree on the outcome when the definition
was applied.

These standards are of course collectively
unattainable in all circumstances. They may
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be more attainable in some disciplines than
others, and certainly it is possible to imagine
a physicist having no difficulty adhering
to them, and being fiercely critical of any
study that appeared to relax them. But
researchers in the general domain of this
book clearly encounter situations in which
one or more of them is distinctly problematic.
This is not to say that one should therefore
reject them outright, and follow the lead of
those who have looked for alternatives to
scientific principles – rather, they constitute
goals to which research should attempt
always to aspire, while admitting that it may
sometimes fall short. This section explores
three of these issues in some detail, and
then argues for a renewed approach to
scientific methodology that better reflects the
real conditions under which spatial analysts
currently work.

24.5.1. Collaboration, replicability,
and the black box

Before the widespread adoption of com-
puting, it was customary for instructors in
statistics courses to insist that each student
be able to carry out a test by hand, before
using any computational aids. Only then,
it was argued, would the student fully
understand the process involved, and be able
to replicate it later. In this simple world it
was possible to assume that every researcher
knew every detail of every analysis, and
that the published version of the research
would include sufficient detail to allow others
to repeat the experiment and replicate the
results.

This principle has come under fire in
recent decades, for a number of reasons.
Computational aids have advanced to the
point where it is not possible for any
one individual to comprehend fully all of
the algorithms involved. The author recalls
passing a threshold, some time around 1990,

when it was no longer possible to believe
that every aspect of a computational analysis
could be replicated by hand, given enough
time. Operating systems were perhaps the
first such area of computing – by 1990 they
had advanced to the point where it was no
longer possible to believe they were the work
of one person, or that any one individual fully
understood every aspect of their operation.
Today these failures are commonplace. The
documentation of our more sophisticated
software, including GIS, is often not suffi-
cient to detail every aspect of an analysis, and
it may be impossible to discover exactly how
a given system computes a standard property,
such as ‘slope’, from a given input (Burrough
and McDonnell (1998) detail some of the
options, but many more can be hidden in
the details of a given implementation). In
effect the developers of software, many
of them operating in for-profit commercial
environments, have become authorities that
must be trusted, and it is difficult to submit
their products to rigorous and exhaustive test.

Moreover, researchers now find it
increasingly effective to work in teams,
each team member providing some specific
expertise. Funding agencies often express
a willingness to fund research that brings
together teams from many disciplines, in the
interests of greater collaboration and cross-
fertilization of ideas. But such arrangements
inevitably lead to situations in which no
one individual knows everything about an
analysis, and members of the team have
little alternative but to trust each other, just
as researchers often have little alternative
but to trust software.

24.5.2. Keeping the stakeholders
happy

Tools such as GIS invite researchers to
become involved in the processes of policy
formulation and decision making. The very
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architecture of GIS, with its database of
local details and its procedures representing
general principles, invites engagement with
the ultimate users of research, since it allows
decision makers to investigate the effects
of manipulating outcomes in local contexts,
and gives them many useful tools for
implementing the results of analysis. A new
subdiscipline, public-participation GIS, has
grown up to study these issues, and to
improve the use of GIS and spatial analysis
in public decision making.

Many of the arguments for the use of
technology in support of decision mak-
ing – for spatial decision support sys-
tems (Densham, 1991) – center on the
benefits of these tools in settings that
involve the potentially conflicting views
of multiple stakeholders. Much has been
written about spatial-analytic techniques that
support multiple views, and address multiple
criteria (Voogd, 1983; Eastman, 1999; Thill,
1999; Malczewski, 1999). GIS may allow
stakeholders to express their own views as
sets of weights to be given to relevant
factors. Saaty’s Analytic Hierarchy Process
(Saaty, 1980) is a widely used technique
for eliciting such weights from stakeholders,
and for deriving consensus weights and
measures of agreement. Stakeholders benefit
from the visualization capabilities of these
systems, which allow them to see the effects
of decisions in readily understood ways.
They gain the impression that decisions are
made scientifically, with abundant use of
mathematics and computation, and are led
to believe that these approaches represent
a more objective, more desirable approach to
debate and conflict resolution.

It is all too easy in such circumstances
to see stakeholder satisfaction as the pri-
mary goal of the exercise. If stakeholders
leave the room believing that a rigorous,
scientific process has been conducted then
everyone can feel that a useful exercise has
come to an acceptable conclusion. None of

this guarantees, however, that the results
presented to the stakeholders are in fact based
on good science. It is easy, with a little
thought, to manipulate the outcomes of such
processes to achieve hidden objectives. For
example, when stakeholders are presented
with five alternatives and asked to choose
one, it is easy to see how the outcome
might be manipulated by presenting a set
that includes the desired outcome, plus
four obviously unacceptable ‘red herrings.’
Experience suggests that stakeholders will
find no difficulty in assigning relative mea-
sures of ‘importance’ to factors, irrespective
of whether the factors are or are not
commensurate, and whether or not any
definition of ‘importance’ has been advanced
and agreed.

24.5.3. Accuracy, uncertainty,
and cost

All measurements are subject to error,
and science has developed sophisticated
techniques for measuring instrument accu-
racy, and for determining how accuracy
impacts the results of analysis. The basic
principles of error analysis have been adapted
to the specific needs of geographic data by
Heuvelink (1998) and others, and statistical
models have been developed for most of the
standard geographic data types.

Uncertainty is often defined as the degree
to which data leaves the user uncertain about
the true nature of the real world. As such it
presents a greater problem, because it derives
not from errors in measurement, but from
vagueness in definitions, lack of detail, and
numerous other sources. When definitions are
vague, there can be no objective definition of
truth, but only the less satisfactory concept
of consensus. A scientist steeped in tradi-
tional methodology would react by rejecting
vague terms entirely, replacing them with
terms that have rigorous definition, and are
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therefore capable of supporting replicability.
Subjective terms such as ‘warm,’ ‘cold,’
‘near,’ and ‘far’ would be replaced by well-
defined scales of temperature measurement
and distance.

Nevertheless, GIS and to a lesser extent
spatial analysis clearly exist at the interface
between the rigorous, scientific world of
well-defined terms and replicable experi-
ments, and the vague, intuitive world of
human discourse. Many users of GIS appear
happy to work with vaguely defined classes
of vegetation or land use, and there has been
much interest in building user interfaces to
GIS that come closer to emulating human
ways of reasoning and discovering. Naïve

geography has been defined as a field that
studies the simplifications humans often
impose on the world around them, and
writers have speculated about the potential
for systems that also simplify – that ‘think
more like humans do.’

In the past decade or so there has been
much interest in the application of fuzzy
sets, rough sets, and related ideas in spatial
analysis. There seems to be some degree
of intuitive appeal in the idea of assigning
degrees of membership to a class, even
when the class is not itself well defined.
Methods have been devised for eliciting
fuzzy membership values from professionals,
from remotely sensed data, and from other
sources, and for displaying these values in
the form of maps. All of these methods
stretch the norms of science, by arguing that
it is possible to observe and measure useful
properties despite a lack of agreement on the
definitions of those properties. As such, they
demand a re-examination of the basic tenets
of scientific method.

Finally, spatial analysts find themselves
today in a world overflowing with data.
Satellite images, digital topographic maps,
and a host of other sources provide an
unprecedented opportunity for new and
interesting research. Massive investments

have been made over the past decade
in data warehouses, spatial data centers,
and geo-portals, with a view to facilitating
the discovery and sharing of spatial data.
Metadata standards have been devised that
support search, by allowing researchers to
hunt through catalogs looking for data that
might meet their needs.

Yet almost certainly data discovered in
this way will fail to meet the exact needs
of the researcher. The data set will be too
generalized, not sufficiently current, too inac-
curate, or inadequate in another of a myriad
of possible ways. In these circumstances
it is inevitable that research objectives
become modified to fit the properties of
the available data, if the alternative is an
exercise in field data collection that may
be impossibly expensive. But the prevailing
methodology of science says nothing about
such compromises, maintaining instead that
data must be exactly fit for purpose, and
providing no basis on which users can
find compromises between cost on the one
hand, and accuracy or fitness for use on
the other.

24.5.4. Summary

The previous three sections have presented
examples of the ways in which spatial
analysts increasingly find the traditional prin-
ciples of scientific methodology inadequate
as a guide to practice. While much of
science is concerned with the nomothetic
goal of discovering general principles that
apply everywhere in space and time, spatial
analysis is increasingly concerned also with
the variations that exist in such principles
from place to place, and in the ways
in which such principles are placed in
local context to solve problems and make
decisions. As Laudan (1996) has argued,
there is no longer an effective method-
ological distinction between science and
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problem-solving, since the same principles
apply to both. In summary, spatial analysts
face an important challenge, to develop a
new methodological understanding that is
consistent both with the traditional tenets of
the scientific method, and with the realities
of current practice.

24.6. CONCLUSIONS

The four major sections of this chapter
have argued that spatial analysis faces many
challenges at this time, but it also faces
unprecedented opportunity. More people than
ever are aware of its potential, and the tools
to implement it are more sophisticated and
powerful than ever.

Discussions of the importance of spatial
analysis often focus on one or two partic-
ularly compelling application domains, and
it may well be that by making the case for
spatial analysis in support of improved public
health, for example, or better response to
emergencies, it will be possible at the same
time to promote the entire field. On the other
hand, one might argue that identifying spatial
analysis too clearly with one application
domain tends to render the case for other
applications more difficult. Essentially, it
can be very difficult to promote a set of
techniques that are applicable to almost
everything – the case for spatial analysis is
everywhere, and yet at the same time it is
nowhere.

The argument for spatial literacy made
in section 24.4 seems especially relevant in
this context. Many skill areas are important
across a vast array of human activities,
including skill in language, in mathematics,
and in logic. Spatial analysis should not
be a highly specialized area of technique
that is only accessible to experts, but
should be part of every citizen’s basic
set of skills, and used every day in such

basic activities as wayfinding and activity
planning.

How the field responds to these challenges
remains to be seen, of course. Undoubtedly
new and better techniques will be discovered
and published in the next few years, new
code will be written, and new application
areas will be described. But the challenges
described in this chapter seem to go beyond
such business-as-usual, and to require dis-
cussion across the entire community. Such
community-wide debate has occurred very
rarely in the past, yet is more feasible
than ever with today’s communications
technologies.
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25
The Future

for Spatial Analysis

R e g i n a l d G . G o l l e d g e

25.1. SPATIAL ANALYSIS PAST
AND PRESENT

The future of geography is inextricably bound
to the future of spatial analysis. Why? Simply
because spatial analysis captures the essence
of a support system for the science and
technology involved in geospatial thinking
and reasoning. The latter are the distinct
and unique contributions of geography to
the universe of academe, government, and
business.

For about 50 years, geographers have
been slowly but surely building a structure
of theories, models, methods, technologies,
and vocabulary that anchor the discipline’s
claim to being a science. This effort has
occurred both in the physical and human
components of the discipline. A common
theme in both efforts has been the search

for valid and reliable conclusions from
active and innovative research. A variety
of exploratory and confirmatory, qualita-
tive and quantitative procedures have been
developed or explored for relevance, and
relevant procedures and methodologies have
been globally termed ‘spatial analysis.’
While some parts of the discipline are
content to imitate the theories, methods, and
technologies of other physical or human
sciences, or to copy the research designs
and practices of the various humanities,
parts of geography have vigorously explored
the development of unique means of think-
ing, reasoning, analyzing, and represent-
ing geospatial information. Spatial analy-
sis has been perhaps the most vigorous
of these throughout the years. Lately, it
has been complemented by the enthusiasm
for technology – particularly Geographic
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Information Systems (GIS). However, most
academic practitioners realized quickly that
GIS needed a wider base: a base of analysis as
well as its forte in representation. To provide
this base, Geographic Information Science
(GISc) developed. Spatial analysis proved
to be a primary support system for GISc,
and the two themes have converged to give
geographic researchers and teachers powerful
new ways to explore the massive data banks
of the new digital world.

Many geographers would not agree with
my opening statement. I would challenge
them to disprove it or to make valid
claims for other dimensions of the discipline.
One could not support a contrary argument
based on geography’s traditional role of
collecting facts about the earth’s physical
or human environment. While other aspects
of the discipline continue to have much
to offer in terms of understanding the
relations between people and places, it is
not always possible to differentiate the
geographic/geospatial component from the
more general humanities’, political sciences’,
or social sciences’ thinking and reasoning that
drives much of this work. Thus, it has the
potential to contribute to the accumulation
of general social and cultural knowledge
more than to geospatial knowledge. This
can be viewed as a positive result if one
accepts that integrated disciplinary thinking
is likely to be of future importance, but
does little to support or enhance the image
and practice of geography in the real
world.

So, why does Spatial analysis hold the key
(in my opinion) to the future of geography?
To reflect on this, I offer the following
thoughts (see also Goodchild, 2001):

• Spatial analysis is a unique and special

contribution by geographers to the ongoing

trend of integrated science. Here, ‘science’ is

interpreted in both a qualitative and quantitative

manner, and covers both physical science

(‘natural’ science) and human science (the science

involved in comprehending human–human and

human–environment relations). It provides a

menu for ensuring valid and reliable reasoning

in the forum of knowledge accumulation.

• Spatially referenced data – either in relative

(qualitative) or absolute (quantitative) form –

has become the currency of today’s information

processing society. Spatial analysis is exclusively

developed for analyzing place-based digital

information. It includes the use of topologies,

geometry, fuzzy logic, and multidimensional

reasoning capabilities, all directed towards the

spatial domain. Thus, it is useful at all scales from

the nano and micro levels to the gigantic scale of

universe-wide exploration, and is being diffused

through areas as different as neurological exper-

imentation, archeological reconstructions of past

civilizations, and the search for extraterrestrial

understanding.

• It is generally agreed that geographers have a

unique way of examining problems (Beck, 1967;

Uttal, 2000), and that diagrammatic (including

map-based) reasoning provides insight into many

problems that is unattainable using conventional

reasoning such as verbal, text-based, and mathe-

matical procedures. This uniqueness begins with

the accepted significance of the spatial domain

(something that has been rather neglected by

other disciplines and by many parts of the

human side of geography), and then expresses

itself via its emphasis on visualization and

spatialization processes. Data is collected with

some form of spatial coding (Klatzky, et al.,

1990; Fujita, et al., 1993), and is represented

by the spatializations such as flat (2D) paper

maps, 3D models, and on-screen image-based

representation (graphs and graphics), all of which

require a particular form of interpretation. Faithful

representation is one of the prerequisites for

spatial analysis.

• During the second half of the 20th century,

geography matured by borrowing (sometimes

wholesale, sometimes modified) theories from

other disciplines. As the profession gained more
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confidence in its ability to offer innovative,

exploratory and confirmatory investigations of

spatial and geospatial concerns, there finally

emerged a series of spatially explicit theories

of the relations that were being uncovered

by research in the spatial (and specifically

geographical) domains. These theories tended

to be investigated and validated using spatial

analysis. They included time–space associations,

spatial decision making, spatial choice, location

theory, location–allocation processes, population

density gradients, the form and structure of

built environments, geospatial learning, move-

ment behavior at different scales, and other

areas that are explicitly spatial (see earlier

chapters). And, as the profession learned to

think and reason spatially (rather than socially,

politically, or economically), the processes

involved in spatial analysis continued to grow in

importance.

• The majority of geographers (not just those

engaging in spatial analysis) use place-based

reasoning. In many cases, this provides the only

link to the spatial domain in that it spatializes

non-spatial phenomena such as social class,

political ideology, and financial perspectives.

Often, the tie to place is loose and general but

still provides the wherewithal to discuss place-

to-place differences. But the latter is frequently

incidental to the reasoning process and is

used largely for illustrative or representational

purposes. But one of the strengths of spatial

analysis is its explicit focus on place-to-place

variation across all scales of investigation; i.e.,

a principal purpose of spatial analysis is to

record and to help explain the existence of

such differences and why they occur. In this

way, spatial analysis provides a support system

that makes spatial thinking paramount, and not

incidental.

• Spatial analysis procedures have become part

and parcel of GISc software. Part of GISc

has been tied to understanding what spatial

analysis can do to clarify and validate spatial

thinking across all scales of investigation. The

interdependence of GISc and spatial analysis

has been forged. As the use of GIS has

expanded through academe, government, and

business, many disciplines have laid claim to

being the principal originator and purveyor of GIS

technology. But none have been able to dispute

geography’s claims to the special confluence

of GISc’s search for relevant spatial theory,

its representational capability, and the many

procedures of spatial analysis that add meaning

and usefulness, validity and reliability to GISc’s

problem solving activities. The integration of

GIS and spatial analysis has been influential

in moving GISc-related research beyond mere

technology to scientific status. Via this link,

spatial analysis has been forming the basis

for new theories that incorporate human–

environment relations, e.g., spatial knowledge

acquisition (Golledge, 1978; Montello, 1998) and

new theories of data and data manipulation

(Goodchild, 2004; Couclelis, 2003).

25.2. THE ROLE OF SPATIAL
ANALYSIS

In the process of re-establishing itself as
a viable academic discipline (i.e., after its
role in examining ‘what’ was ‘where’ on
the earth’s surface, and pursuing the descrip-
tion of the results of human–environment
interactions, was made somewhat redundant
by remotely sensed image processing pro-
cedures), geographers have had to justify
their continual existence or go out of
business. Some leading departments such
as Chicago and Michigan have, in effect,
‘gone out of business,’ while many others
have been merged with geology, geological
science, environmental science, sociology,
urban planning/architecture/design, or other
groups. Despite these dire warnings, much
of the discipline has gone its pedestrian way,
virtually ignoring the global change from a
partly known and image-based world to a
group of information societies and a digital
world.
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But these later trends have provided a
rationale and need for specific spatially-based
means of examining, processing, and repre-
senting the data that is becoming increasingly
available in digital form. The need for such
procedures is not confined to geography.
Other social, behavioral, political, economic,
and health sciences, for example, have
discovered that their data banks are being
spatialized by geocoding of occurrences and
attributes, and that traditional measures of
statistical analysis do not account for the
effects of spatial coincidence or variation.
Hence, the demand for spatial analysis
is growing in these disciplinary areas.
I predict it will continue to grow. It is
the goal of every spatial theorist to see
various methods for spatial analysis of data
incorporated into every standard statistical
package, thus imprinting this contribution
by geographers on the domain of every
spatially oriented discipline. One recent
example of this recognition is the inclusion
of a chapter on GIS in a recent Handbook

of Environmental Psychology (Bechtel and
Churchman, 2002) and a decision by the
American Psychological Association (APA)
to support an advanced institute on GIS and
spatial analysis (probably in 2007).

25.3. NEW DIRECTIONS FOR
SPATIAL ANALYSIS

The interweaving of GISc and spatial analysis
has given to geography a justifiable scientific
base that, for most of geography’s history, has
been lacking. This new basis has:

• increased the public and academic image of

geography as a serious scientific discipline;

• improved the standing and reputation of geog-

raphy as a useful contributor to the examination

and solution of problems such as comprehending

global climate change or understanding human

spatial abilities;

• made geographic training and expertise a

valuable commodity in the job market;

• brought the realization that, as globalization

of societies and their essential activities occur,

geographers have a unique contribution to

make in the form of geo-education, spatial

concept recognition, and spatial thinking and

reasoning;

• encouraged exploring the possibility of enhancing

geography in the K-12 system of education.

I anticipate that each of these contributions
will become more important in both the near
and distant futures.

To speculate about the ‘what’ and ‘where’
of spatial analysis’ contribution to the future
of geography, consider the following:

• Recognition that spatial analysis applies and can

be used at all scales – from the nano scale to

the universal. We already have evidence that

researchers in microbiology, neurology, DNA, and

stem cell research (as well as other research

areas not traditionally identified with geography)

are facing questions concerning representation

and analysis of their spatially-based findings.

Both GISc and spatial analysis potentially have

an important contribution to make in these

areas (e.g., via spatialization, representation, and

analysis).

• One of the most important frontiers for future

research is to investigate how the mind works.

Great advances already have been made in

discovering how the brain works. Indeed, one

of the most intriguing investigations – from a

geographer’s viewpoint – is the extent to which

‘place cells’ exist (O’Keefe and Nadel, 1978) and

form a basis for internal data manipulations that

constitutes the mind’s contribution to solving

spatial problems. The question arises then, if

place cells do exist, what light is shed on

how data is sensed and coded and stored in
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the brain? What happens when we start to

think spatially? Is there a particular pattern of

neural excitation when we think spatially? Can

spatial analysis help both to investigate this

and add a newly emerging area for geospatial

investigation?

• The world is digitizing. We already have more

data from satellites than can conceivably be

analyzed in the present or the near future. The

question arises as to whether the existing form

of spatial analysis can contribute to performing

data mining and, as necessary, add new and

valuable components to existing search engines.

A question for the future may be: are there

yet other levels of spatial analysis we have

not yet thought about but which could be

an essential part of recovering the spatial

relations contained in these massive archival

structures?

As disciplines such as psychology and
cognitive science experiment more in the real
world (in addition to ongoing research in
laboratories and virtual systems), and as the
importance of scale effects and the significant
role of place-to-place variation in forming
attitudes and behavior is realized, so too has
the demand for spatial analysis started to
emerge. There is much room for geographers
to both teach about and disseminate spatial
analysis procedures within and beyond the
profession of geography. For decades, we
have been borrowing from measurement
theory from math’s symbolic thinking strate-
gies, from mathematical models developed
in economics, and analytic procedures from
psychology and mathematical statistics; it is
time to return this favor by encouraging the
use of spatial analytic techniques for pro-
cessing relevant geospatial data and drawing
attention to the very specific contributions
of space in the construction of knowledge.
At the very least, psychologists and cognitive
scientists should become aware of both the
advantages and disadvantages of spatializ-
ing data for graphic, map, image-based,

or symbolic representation. For example,
a glance at the psychology literature on
spatial perception and cognition reveals
little comprehension of the role space plays
in information gathering and information
processing in the large uncontrolled spaces
of the real, inhabited world, and various
graphic and image-based representations of
this world.

There also appears to be a growing
demand for applied geography, particularly
in government and business domains. We
have already seen such a demand within
the business community – as with the use
of location–allocation models and use of
location-based services. Spatial analysis is a
key to expanding this demand. The result
should be a more widespread acceptance of
the contributions that geography can make to
everyday life and practice throughout local
and global societies.

In my opinion, therefore, spatial analysis,
perhaps in conjunction with the use of GIS
technology and a GISc search for reliable
and valid bases for knowledge accumulation,
will provide an avenue for maintaining and
expanding the image and acceptance of
geography as an integrated science that has a
positive capacity to assist the search for new
knowledge, and improve our general quality
of life.

As a final statement, allow me to raise
a question that is critical to the future
of geography itself. Are we producing
graduates who can compete for jobs
in academic, government, or business
marketplaces? Sadly, the answer for most of
the profession is NO! But spatial analysts
and GIS programs are doing this, very
successfully. To return to my opening
statement: the future of geography as a
viable discipline is inextricably tied to
the continued development and use of
spatial analysis. We’ve already seen the first
indicators of this in terms of which students
are getting jobs today outside of academe.
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As a discipline, we must become more aware
of this need and do our best to ensure that
those areas contributing most to this pattern
are well supported in the near and more
distant future.
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