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Preface

Spatial point processes are mathematical models that describe the arrangement of
objects that are irregularly or randomly distributed in the plane or in space. The
patterns formed by the objects are analysed in many scientific disciplines; hence
a great variety of objects may be considered such as atoms, molecules, biological
cells, animals, plants, trees, particles, pores, or stars and galaxies. At a basic level
the data simply consist of point coordinates describing the locations of the objects,
but additional characteristics of the objects can also be included in the analysis.
These additional characteristics may, for instance, describe the size or type of an
object and are usually referred to as ‘marks’. Point process analysis is in many ways
distinct from the classical statistical methodologies presented in undergraduate text-
books. However, some of the more fundamental classical statistical issues remain
influential; for example, sampling, exploratory data analysis, parameter estimation,
model fitting, testing of hypotheses and separating signal from noise may all form
part of a point process analysis.

Point process statistics is perhaps the most developed and beautiful branch of
the modern field of spatial statistics; this is perhaps because points are the most
elementary of geometrical objects and lead to data structures that are particularly
clear and useful. Sometimes, however, point data have to be analysed in combination
with other data from variables that vary continuously in space. This requires an
application of spatial statistical methods that fall outside the realm of spatial point
processes.

Recent decades have seen a strong increase in the development of point process
methodology, based on a profound theoretical development and driven by appli-
cations from many different fields of science. In addition to the classical fields of
application such as archaeology, astronomy, particle physics and forestry, today
other fields such as ecology, biology, medicine and materials science extensively
apply point process methods. This development is facilitated by the advent of
new and improved technologies that may be used to collect point pattern data.
Whereas the first point patterns were small and collected manually, modern data
sets tend to be much larger and are collected using automated methods. Ecologists
have found fascinating relations in plant communities by considering plants as
points marked by characteristics such as size, species or genotype. For instance,
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they have shown that spatial structure determines ecological processes in the
short term and ecological processes modify spatial structure in the long term.
Physicists, on the other hand, have used point process methods to study phys-
ical structures, for example, packings of hard spheres or other objects, where
phase transitions appear. Astronomers have analysed the spatial distribution of
galaxies in the universe with particularly powerful statistical methods based on point
processes.

The aim of this book is to present statistical methods that are relevant in practice
to readers from all these areas. Indeed, there is no point process methodology
specific to ecology or physics; the methods are universal, and ideas developed
in one field of application may be of value in another. Consequently, not every
example in this book is of an ecological or physical nature. Ecologists and physicists
are encouraged to translate the examples into their own language. In a few cases
this may be difficult. For ecologists it may be impossible to apply the idea of
packings of hard spheres and for physicists cluster processes rarely are suitable
models for physical phenomena. Knowledge of such structures in one discipline
may eventually turn out to be equally useful in the other; for example, solutions
applied to the physical problem of packings of hard spheres have the potential to
be informative in spatial studies on the swarming behaviour of birds and fish or, in
the planar case, on the distribution of communities of plants.

Readers are encouraged to study all the examples even if these are from outside
their specific field of interest, taking into account that it is really the geometrical
structure that is being analysed. A pattern originating from an entirely different
area of science may well be geometrically similar to patterns formed by more
familiar objects. Consider, for instance, the pattern of gold particles, which is
frequently discussed in this book. A pattern with similar geometrical properties
might, on a different spatial scale and with its own interpretation, also appear in quite
different contexts. The results of the statistical analysis should then be translated
into the terminology relevant to the reader – this might even generate surprising
new ideas.

Readers from fields of applications where only planar patterns are analysed are
asked for their forbearance when spheres and even the d-dimensional case are
discussed, as this is sometimes necessary for the sake of brevity and elegance.

This book, which may be regarded as a successor to Stoyan and Stoyan (1994),
is intended for an audience of readers with widely varying knowledge of mathe-
matics, statistics and computer science. The authors hope that this book will prove
useful to students on a variety of courses, as well as to scientists both within and
outside the field of mathematical statistics, who may be interested in the under-
lying principles and theoretical ideas. Some readers will write their own programs
for the statistical procedures, many will work with open source libraries such as
spatstat (http://spatstat.org) in R (R Development Core Team, 2007;
Baddeley and Turner, 2005, 2006) or with commercial software, whereas others
may simply want to understand the capabilities of point process statistics or the
output generated by point process software.
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The authors hope that readers will enjoy the large number of examples. They
are encouraged to use the data files provided in http://www.wiley.com/
go/penttinen and to analyse these in more detail using their own software.
Some of the methods are presented without examples, mainly due to lack of space,
or when further explanation seems unnecessary, as for example with the numerous
indices. For some methods that have been developed recently, convincing examples
could not be found. These methods are nevertheless presented here in the expectation
of potential future applications.

The book mainly presents mathematical-statistical facts. Proofs of these are only
provided when they are considered helpful in understanding the ideas underlying
the statistical methods. The mathematically inclined reader may use this book as an
introductory text, as a source of examples and ideas and as a motivation for further,
more detailed study of these topics in other literature such as Stoyan et al. (1995),
van Lieshout (2000) and Møller and Waagepetersen (2004).

The authors have tried to present many different methods developed in different
fields of point process statistics that merit communication to a broader audience.
This leads to an extensive presentation of non-parametric statistical methods. But it
turned out to be impossible to present all the existing knowledge of point process
statistics. In general, this book focuses on traditional and proven methods, which
are preferred over mathematically complex methods and, therefore, such developing
areas as spatio-temporal and Bayesian point pattern modelling are only briefly
discussed.

This book is not intended to be read from cover to cover. Of course the chapters
and sections have a logical order and the book can be read in this way. But the
reader is perhaps more likely to regard some of the material as less important at a
first reading. Hence, initially some sections may be ignored to provide a general
understanding of the methods. These are marked by *. The reader is encouraged to
jump from one chapter to another, and this is facilitated by a comprehensive index
and a notation index. In particular, Chapter 3 may be ignored at a first reading unless
a reader is specifically interested in finite point processes. Some basic knowledge of
the ideas in Chapter 4 is helpful for an understanding of Chapter 3. Before reading
Section 6.6 the reader should have read Section 3.6.

Chapter 1 presents fundamentals of the underlying theory, motivating examples,
sampling methods and historical remarks. Chapter 2 studies a particular fundamental
model, the Poisson process and, closely related to this, tests of the hypothesis of
complete spatial randomness. Chapter 3 considers finite point processes – processes
that exist only within a bounded window, which influences the distribution of the
points. The important particular case of finite Gibbs processes (or Markov point
processes) is discussed in much detail. The pivotal Chapter 4 presents the statistical
theory for stationary point processes. It is this theory that many scientists refer
to as ‘point process statistics’, as it comprises the K-function and second-order
methods in general. Towards the end of the chapter some methods for clearly
inhomogeneous patterns are also discussed. Chapter 5 discusses an analogous
theory for marked point processes and presents a wealth of statistical characteristics
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and methods. Chapter 6 introduces a suite of stationary point process models,
after initially discussing general principles of model building. It considers clas-
sical models such as Cox processes, cluster processes, hard-core processes and
stationary Gibbs processes. Additionally, spatial-temporal processes are considered,
an area that is still in its infancy and currently undergoing rapid development.
Furthermore, statistical methods are presented which enable the analysis of corre-
lations between point processes and random fields or fibre processes. Finally,
Chapter 7 presents important approaches to parameter estimation for point process
models, and explains various, typically simulation-based tests for point process
models.

All the methods are illustrated by many examples with data from various areas
of application. These examples aim to show the reader the wide range and potential
applications of the statistical methodology. They are listed for readers’ convenience
on pp. xvii–xix.

This book differs from others on point process statistics not only in its application-
oriented approach but also in some technical aspects. Densities play a central role,
in particular the pair correlation function, since these functions are easier to interpret
than cumulative functions such as Ripley’s K-function. Furthermore, many non-
parametric methods and many new characteristics for marked point processes are
presented. However, some of the more recent Markov chain Monte Carlo methods
are discussed in less detail.

It is a pleasure for the authors to thank all those friends and colleagues who
helped by providing data, suggesting references, allowing us to view unpub-
lished manuscripts, and reading and commenting on preliminary drafts of sections
or chapters. In alphabetical order these include: A. J. Baddeley, F. Ballani,
S. Barot, A. Bellmann, U. Berger, D. Burslem, R. Capobianco, O. Davies,
P. Diggle, D. J. Daley, A. Elsner, C. Geiss, U. Hahn, J. Heikkinen, L. Heinrich,
H. Hildenbrandt, A. Holroyd, V. Isham, U. Jansen, A. Järvinen, S. Kärkkäinen,
G. Last, M. N. M. van Lieshout, K. Lochmann, K. Mäkisara, V. J. Martinez,
T. Mattfeldt, J. Mecke, A. Mikhail, M. Myllymäki, M.-A. Moravie, M. Nummelin,
Y. Ogata, J. Ohser, J. Pfänder, A. Pommerening, T. Rajala, E. Renshaw,
B. D. Ripley, A. Särkkä, K. Schladitz, M. Sonntag, S. Soubeyrand, U. Tanaka,
E. Tomppo, S. Torquato, M. Vihola, A. Wade, K. Wälder, A. Weiss, R. van de
Weygaert and S. Wolf. We would also like to thank the students of the point process
seminar at the University of Jyväskylä for helpful discussions. T. Rajala undertook
the hard job of producing the many figures for this book.

In the summer of 2006 D. J. Daley showed a draft of Chapter 15 of Daley
and Vere-Jones (2008) to one of the authors along with Vere-Jones (2008), which
aided the writing of Section 6.10 on space–time processes. The book also benefited
from fruitful discussions with U. Hahn on the statistics of non-stationary point
processes. V. J. Martínez supported the authors in writing the text in Section 1.3.4.
A. J. Baddeley informed the authors about the calculation of set-geometrical quanti-
ties. And M. N. M. van Lieshout discussed with the authors questions of the theory
of finite point processes, leading to an improved presentation of Chapter 3.



Preface xv

This work was partially supported by the Academy of Finland (projects 111156
and 208284).

The authors are also grateful for the assistance of M. Robakowski, who did a
large part of the technical work. Finally, they wish to express their gratitude to
K. Sharples of John Wiley & Sons, Ltd for her continuous support, to Richard
Leigh for his careful work and constructive suggestions as copy editor.
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1

Introduction

The aim of this first chapter is to provide both an introduction to
point process statistics and a short overview of the theory of point
processes. Section 1.1 describes the aims of point process statistics
and Section 1.2 introduces five empirical point patterns from various
scientific disciplines that differ with regard to their statistical struc-
ture. These patterns are discussed in later chapters in a variety of
contexts. Section 1.3 consists of some historical notes which describe
early approaches to statistical methods for the analysis of point patterns.
Section 1.4 discusses some basic technical sampling methods and point
coordinate measurement.

Section 1.5 introduces basic notation and fundamental theoretical ideas
such as intensity and intensity function, moments and product densi-
ties. Section 1.6 then discusses the notions of stationarity and isotropy,
properties which are assumed by many of the most popular methods
of point process statistics. Section 1.7 discusses the general concept of
summary characteristics. As in classical statistics, these are numerical
values or functions that describe the distributional behaviour of point
patterns in a concise way. Section 1.8 aims to contribute to a system-
atic description of point patterns and discusses various approaches to
constructing secondary structures for point processes. The idea here
is to construct other geometrical objects based on an empirical point
pattern with the aim of finding interesting properties of the pattern
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reflected in the secondary structures, which include tessellations, graphs
and random fields.

Simulations are an important tool in point process statistics, and thus
Section 1.9 introduces the main ideas relevant to simulation approaches
as a preparation for more extensive discussions in later chapters.

1.1 Point process statistics
The aim of point process statistics is to analyse the geometrical structure of patterns
formed by objects that are distributed randomly in one-, two- or three-dimensional
space. Examples include locations of trees in a forest stand, blood particles on a
glass plate, galaxies in the universe, and particle centres in samples of materials.
These objects are represented in a natural and elegant way by points and marks.
The points describe the locations of the objects, and the marks provide additional
information, thus characterising the objects further, e.g. through their type, size or
shape. Being based on this data structure, point process statistics forms (perhaps
the most efficient and central) part of spatial statistics.

So how is the analysis of spatial pattern data usually approached? A simple
graphical representation of the pattern of objects as a point map is a very useful
preliminary step towards understanding its properties: visual inspection provides
a qualitative characterisation of the type of the pattern even if rather vague terms
are used in the initial description (clustered, aggregated, clumped, patchy, regular,
inhibited, uniform, even); see Figure 1.1.

It may also indicate correlations among marks or between the point density and
spatial covariates, i.e. other random structures which influence the point distribution
such as soil property or physical influences. However, for a precise quantification
and a more standardised description and finer distinction between types of spatial
behaviour, appropriate statistical methodology has to be applied. These methods

Figure 1.1 Three simulated point patterns: (left) random, (centre) regular, (right)
clustered.
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provide information on more subtle differences in spatial structures that are not
apparent to the naked eye.

Spatial point process statistics differs fundamentally from classical statistics,
which typically analyses independent observations and applies concepts such as
the mean x, the sample variance s2 and the distribution function F�x�. Much
statistical theory is based on the assumption of a Gaussian or normal distribution
or is a consequence of the central limit theorem. Based on this, statistical tests
and confidence intervals have been derived that are in common use in all areas
of statistics. Point process statistics, however, is confronted with various types of
correlation in the patterns. The relative inter-point distances are correlated as well
as the numbers of points in adjacent regions. In addition, the characteristics of the
objects represented by the points may be (spatially) correlated. Hence the statistical
analysis is very much concerned with detecting and describing these correlations.

Many different aspects of the nature of a specific spatial point pattern may be
described using the appropriate statistical methods. The simplest of these is the
point intensity, i.e. the average number of objects per unit area or volume, if point
density can be considered constant across space. Note that this resembles the use
of the sample mean x in classical statistics. If the point density is variable, intensity
maps may be constructed and these may be related to maps describing the values of
covariates across space, perhaps in the context of geographical information systems.
However, characteristics that are more typical of point process statistics describe
correlations among the points in the pattern relative to their distances, e.g. distances
to nearest neighbours or numbers of neighbours within given distances. Large parts
of this book discuss different ways of describing and characterising point patterns
in this way.

In other words, the main aim of point process statistics is to understand and
describe the short-range interaction among the points, which explains the mutual
positions of the points. Quite often this concerns the degree of clustering or repulsion
(inhibition) among points and the spatial scale at which these operate. The analysis
of a point pattern also provides information on underlying processes that have caused
the patterns, as well as on the geometrical properties of the structure represented by
the points. Point process statistics may help to model these structures and to find
suitable model parameters, which may be used for classification and to identify
structural changes in point patterns depending on time or physical parameters. On
the whole, point process statistics can do both – characterise an entire pattern by a
small number of interpretable numbers (e.g. indices) or curves (e.g. the K-function)
and characterise the individual points by natural or artificial marks.

The analysis of marked point patterns is more interesting and often provides
deeper insight into the processes that are causing the pattern than an analysis
of unmarked point patterns. Often the marks are ‘qualitative’, i.e. the pattern is
multivariate and consists of several types of points, e.g. different species, ages and
size classes. This kind of point pattern data may be regarded either as a superposition
or union of single-type point patterns, or alternatively as a single point pattern with
different types of labels where the labels indicate the type of points. In this situation
the aim is to explore correlations among the different types of points and the spatial
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scale and range of these correlations. A data set with different types of points has
a higher degree of complexity as opposed to non-labelled data. For example, some
data sets describing tree locations in tropical forests labelled according to species
can consist of several hundred species in a 50 ha plot!

Even more general information may be assigned to the individual points. The
marks can be continuous variates, vectors of variates or even stochastic processes.
Examples from forestry include the diameter at breast height (dbh) of a tree, last
year’s growth increment, and a time series of dbh over several consecutive years.
Other examples are particle diameter, size and shape. A common feature of these
measurements is that they describe the status or property of the object associated
with a point location. Data sets with ‘quantitative’ (or real-valued) marks are
highly complex as they reflect various correlations among the objects represented
by the points and contain an abundance of information on the system of objects.
Point process statistics may be used to detect these correlations and hence provide
information contained in these data sets.

In addition to correlations among (i) the point locations, (ii) marks and (iii) marks
and point locations, also (iv) correlations with covariates are of interest. Indeed,
the degree of inhomogeneity of the point locations within the observation window
often reflects the influence of covariates, which may be regionalised variables, e.g.
elevation, precipitation or soil property or discrete structures such as geological
fault lines or river courses. Including both mark and covariate information in the
analysis of a point pattern has become increasingly relevant. An increase in the
scientific interest in the association between point patterns and covariates, coupled
with an increase in the amount of detailed spatial data including covariates as a result
of modern technology, makes this type of analysis more and more important. In
particular, rapid development in areas such as geographical information systems and
image analysis has broadened the interest in the influence of covariates on spatial
patterns. These types of issues are usually addressed by initially constructing maps
of both the intensity and the marks and investigating whether they are dependent on
or independent of covariates. The resulting point pattern data can be very extensive
and complex. Extracting information from this type of data remains a challenge in
point process statistics.

Note that in some cases the observation window itself substantially influences
the results of the statistical analysis. For example, if the observation window is
too small, a spurious trend in the point density may be observed. Using a larger
window, however, can reveal that density fluctuations on a spatial scale similar to
the window size are normal and the point distribution is globally homogeneous. For
this reason, the issue of choosing an appropriate window is discussed repeatedly in
this book, in particular in Chapters 3 and 4.

In addition to the statistical description of point patterns and often in combination
with it, suitable point process models can be defined and fitted to data. This is
very similar to the approaches taken in classical statistics, where models play an
important role. They lead to specific distributions for data, such as the Gaussian
distribution, and simplify and systematise thinking and further work. Point process
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statistics uses its own types of models, which are of a different nature but often
not more complicated than the models in classical statistics. These models may be
used to formulate scientific hypotheses in terms of model parameters. Statistical
approaches may then be used to test whether properties of the pattern derived from
these hypotheses are reflected in the pattern, and hence whether the patterns support
or disprove the hypotheses. In particular, these models enable the simulation of
point patterns, which may be a helpful way to understand the underlying natural
processes that have formed the pattern.

This book treats point pattern analysis, i.e. it discusses methods that may be
used to extract information hidden in data using modern statistical methods, using
various summary characteristics. It also deals with synthesis, i.e. the construction
of point process models. The book aims to make point process methods accessible
to applied researchers such that these methods become an everyday tool within
applied statistics and that users are encouraged to use modern ideas and methods
of statistics in the analysis of point patterns.

The summary characteristics as well as the models discussed in this book may
be used to describe and analyse point patterns from any applied discipline. The
examples referred to throughout this book are from a wide range of scientific
fields. The methodology may be applied in any other area of research where similar
data structures occur to answer the reader’s original question in physics, biology,
ecology, etc.

1.2 Examples of point process data
1.2.1 A pattern of amacrine cells

In biology and medicine many data sets consist of spatial point patterns which
are most suitably analysed with point process methods. A classical example is the
pattern formed by the amacrine cells in the retina of a rabbit, which is perhaps
best described in Diggle et al. (2006). Figure 1.2 shows the pattern, which consists
of the locations of the ‘on’ and ‘off’ cells in planar projection within a 1060 by
662 �m rectangular section of the retina. The retina is a neural structure at the back
of the eye which converts light into electrical impulses. It is a three-dimensional
structure consisting of several types of cells arranged in different layers. The
10 �m cholinergic amacrine cells are among these cells. They are either ‘on’ or
‘off’ cells, depending on whether they are excited by an increase or a decrease in
illumination.

These data represent a bivariate point pattern as the points are marked with
two discrete marks (�) and (•). The combined pattern looks rather random and
homogeneous. It is only a small part of the retina, taken from an area where the
pattern continues in a similar way outside the observation window. The overall
distribution of cells varies with eccentricity, becoming less dense in the parafoveal
regions and periphery of the retina. The pattern is a good example of data that may
be analysed with statistical methods for stationary marked point processes. These
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Figure 1.2 The amacrine cell data as in Diggle et al. (2006), with 152 on (�) and
142 off (•) cells. The cell locations lie in different layers and are projected onto a
plane, and so cells of different types can partially overlap, while cells of the same
type can never overlap. Courtesy of P.J. Diggle. With kind permission of Springer
Science and Business Media.

are discussed in Chapter 5 and aim to study the short-range interaction among the
cells. Visual inspection indicates that both subpatterns show some tendency towards
regularity with repulsion within a distance that exceeds the size of the cells. On the
other hand, cells of different types appear close together and there appears to be
only weak repulsion.

This book analyses the data of the amacrine cells in various contexts revealing
some further properties of the patterns beyond the findings in Diggle et al. (2006),
where a suitable model was fitted to the data.

1.2.2 Gold particles

Point process statistics have been applied in many areas of the health sciences
and cell biology. As an example, Figure 1.3 shows an ultrathin section of a pellet
of purified tobacco rattle virus after immunogold labelling (IGL) by particles of
colloidal gold. IGL is a powerful method for the detection of antigens in samples of
embedded tissues depending on the exposure of antigen sites on the surface of the
thin section. The gold particles, which are visible through an electron microscope,
are coupled to the antigen sites yielding information on the spatial structure of
these. The locations of 218 gold particles in a window of 1064�7×676 nm (rescaled
as 630 × 400 lu, lu = length unit, 1 pixel in image analysis) are shown in the
figure. The cell centres form a point pattern in a rectangular sampling window. The
observation window was chosen independently of the point pattern. Hence the data
may be regarded as a sample from a larger ultrathin section and again methods for
stationary point processes may be applied (see Chapter 4). The data originate from
Roberts (1994) and have been analysed previously with point process methodology
in Glasbey and Roberts (1997). These data represent a point pattern marked with
quantitative marks, the gold particle diameters. They are used here both as an
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Figure 1.3 Ultrathin section of a pellet of purified tobacco rattle virus after
immunogold labelling with a goat antirabbit gold (size 15 nm) probe in a rectan-
gular window of size 1064�7 × 676 nm. The 218 gold particles are identifiable as
dark spots in the electron-microscopic image. The diameters of the small circles
are proportional to the gold particle diameters. Data courtesy of C. Glasbey.

example of the application of statistical methods for stationary point processes
as explained in Chapter 4 and of marked point processes in Chapter 5. Visual
inspection indicates slight regularity (repulsion), whereas the points are clustered
at larger distances.

1.2.3 A pattern of Western Australian plants

An important area of applied point process statistics is the analysis of planar point
patterns formed by plant communities. Throughout this book patterns of trees in
forests are studied in various contexts, but here a pattern of herbaceous plants is
introduced. Figure 1.4 shows the 207 locations of plants of the species Phlebocarya
filifolia in a 22 × 22 m square. The coordinates were measured on a 10 cm grid,
such that the minimum inter-plant distance is 10 cm. This discretisation causes some
difficulties in the statistical analysis, since some smoothing is necessary to obtain
reasonable results.

Phlebocarya is endemic to Western Australia and known from scattered loca-
tions from Eneabba to Perth, Western Australia, where it grows in shrublands and
eucalyptus woodlands in sandy, extremely nutrient-poor soil. It is a tufted herb
with short rhizomes, i.e. it propagates by horizontal underground stems that send
out roots and shoots from its nodes. The leaves are basal, 250 to 400 mm long and
up to 0.6 to 1.8 mm wide. The plant produces numerous flowers along multiple
branching leafless stems. The data originate from an extensive ecological study of
many plants in the same plot (Armstrong, 1991; Illian et al., 2008). The issue of
analysing a multi-type pattern is considered in Example 4.19. The species P. fili-
folia was selected as an example for this book because it provides a good example
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Figure 1.4 Positions of 207 Phlebocarya filifolia plants in a 22 × 22 m square at
Cooljarloo near Perth, West Australia. Data courtesy of P. Armstrong.

of a homogeneous clustered pattern; the clustering behaviour can be explained as
resulting from propagation mechanisms.

1.2.4 Waterstriders

The application of point process statistics in biology is not restricted to non-
motile organisms such as plants; the methods are also suitable for cross-sectional
data on positions of animals at a specific time point. Figure 1.5, which is based
on a photograph, shows the positions of Palaearctic waterstriders (Limnoporus
rufoscutellatus) on a water surface. Waterstriders are arthropods that live on the
water surface and move at high speed from time to time. Individuals communicate
by sending signals along the water surface by vibrating their front legs. The spatial
patterns formed by individuals contain information on the animals’ behaviour.
Various aspects of behaviour, such as habitat selection at different stages in the life
cycle (larval stages, juvenile, adult), territoriality and cannibalism, are of ecological
interest and have been studied in the literature, both in experiments and in the
natural environment. The figure shows the last larval stage (stage 5) in a sub-
rectangle of a water surface of irregular shape. The rectangle was chosen such that
methods for stationary point processes can be applied even though the pattern is
very small, i.e. the pattern is treated as if it were a small rectangular area in a very
large water surface with many waterstriders. Modern statisticians would probably
prefer to observe the entire finite pattern and apply the methods of Chapter 3 for
finite point processes. As part of the analysis, graphs are constructed the vertices
of which are the points of the pattern (see Section 1.8.5), and which reflect the
geometrical structure of the pattern.
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Figure 1.5 Positions of 43 Palaearctic waterstriders in a vessel. The window size
is 53�6 × 53�6 cm. The data arose from a series of ecological experiments. Data
courtesy of M. Nummelin.

Figure 1.6 (left) A sample of concrete (self-flowing refractory castables) of size
10 × 10 × 10 mm, obtained by computerised tomography. The white circles are cut
corundum grains, the black ones air pores. (right) Result of 3D image analysis: the
grains are approximated by spheres of variable radii. Courtesy of F. Ballani. With
kind permission of Springer Science and Business Media.
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1.2.5 A sample of concrete

Materials science is another important field of application for point process statistics.
In this context, the points are typically constructed, e.g. centres of pores, particles
or grains. Size and shape parameters of the objects are used as marks.

A well-known building material, which has both pores and grains, is concrete.
Figure 1.6 shows a three-dimensional sample of a special type of concrete, so-called
self-flowing refractory castables; see Ballani (2006) for details. It was produced for
research purposes with spherical refractory aggregates shown in white. The black
objects are air pores. Using techniques from image analysis, a system of spheres
was constructed which approximates the set of all (white) particles. In this way,
marked point process data were obtained, where the sphere centres are the ‘points’
and their radii the ‘marks’.

1.3 Historical notes
The following historical notes describe early statistical approaches to the analysis of
spatial point processes in the context of forestry, medicine, ecology and astronomy,
which are to this day important fields of application of point process statistics. Refer
to Daley and Vere-Jones (2003) for more details on the history of point processes,
but note that in that book the discussion focuses on the one-dimensional case, i.e.
processes over time, the origin of the term ‘point process’.

Note that this section assumes some prior knowledge on the basic concepts of
point process statistics as some terms are used which are discussed much later in
the book. Readers who are new to the field may prefer to initially skip this section
and return to it later, once they have gained some knowledge of Poisson processes,
intensities and pair correlation functions.

1.3.1 Determination of number of trees in a forest

In his book Die Forst-Mathematik (‘Forestry Mathematics’), written for foresters
and published as early as in 1835 in Gotha, Germany, Gottlob König considered
the issue of estimating the mean number of trees per unit area (stems per hectare)
in a forest, denoted by � and referred to as ‘intensity’ in this book. This remains
a difficult problem, because the necessary field work is often very laborious and
costly, even the simple counting of trees in larger stands. König’s idea was to
measure distances from n randomly chosen reference trees to their nearest neigh-
bours. It is obvious that he chose this measuring strategy for practical reasons, as
it can be done by simply using a measuring rod or tape rather than by determining
the location of every single tree. König suggested the estimator

�̂K = 1

d2
(1.3.1)



Introduction 11

Figure 1.7 Radar photograph showing the variability of tree positions in a stand.
Data courtesy of E. Tomppo and K. Mäkisara of the Finnish Forest Research
Institute.

where

d2 = 1
n

n∑
i=1

d2
i

is the empirical second moment of the distances d1, � � � , dn from n sample trees to
their nearest neighbours. Equation (1.3.1) is based on the assumption that the trees
form a regular square lattice. This may make sense if the forest was regenerated by
planting the saplings in this form and may otherwise be an acceptable approxima-
tion. Indeed, based on this assumption, the nearest-neighbour distance is a constant
(the lattice spacing �), and the area per point is �2, resulting in � = 1/�2. König’s
estimator is an empirical version of this relation.

This estimator and the idea of estimating the mean number of trees based on
tree-to-nearest-tree observations have turned out to be particularly sensitive to the
nature of the pattern of trees, which is in nature rather variable, see Figure 1.7.
For example, if the trees are ‘randomly’ located (Chapter 2 discusses the notion of
randomness in detail), the corresponding maximum likelihood estimator is

�̂P = 1

4�d�2
(1.3.2)

with

d = 1
n

n∑
i=1

di�

which usually yields different results than (1.3.1). This shows that results of inten-
sity estimation obtained with nearest-neighbour methods vary with the nature of
the point distribution, a problem that was first noted by German foresters in the
late nineteenth century. In modern terminology, König’s estimator is not a robust
estimator of the intensity as it varies with the spatial distribution of the points, and
it is therefore no longer in use today.
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Whereas the sensitivity to pattern formation of the tree-to-nearest-tree distance
methods introduced by König is a drawback for intensity estimation, it is useful in
the detection of different patterns formations. Today, the idea is widely used in the
study of patterns of points and is discussed in several contexts in this book.

König was not alone in his approach. The Swedish Royal Forester Israel af Ström
published in 1830 his Handbok för skogshushållare (‘Handbook for Foresters’), in
which he suggested a random-sampling-based method for the inventory of forest
resources. This idea is the basis of what came to be called ‘strip surveys’ or transect
sampling, where parallel strips of width 5 alns (approximately 3 m) were chosen and
trees were sampled within the strips and then measured. The corresponding prob-
abilistic background was worked out later by Matérn (1960), who also developed
specific stochastic models for point patterns.

The interest in developing point process methods for forestry has continued since
Matérn (1960) – see, for example, Warren (1972), Stoyan and Penttinen (2000) and
Pretzsch (2002) – with applications in forest inventory and forest ecology. Recent
developments in forestry research focus on models in which the individual trees
play an important role, which makes the point process approach even more relevant.

1.3.2 Number of blood particles in a sample

The German physicist and pioneer of modern scientific optical technology Ernst
Abbe described and discussed how to determine the number of blood particles per
unit volume in a blood sample (see Figure 1.8) in a paper of 1879 (see Seneta,
1983). The device was called a ‘counting chamber’ and manufactured by Carl Zeiss,
Jena, where Abbe served as director at the time.

The counting of blood particles was carried out as follows. A diluted blood
sample with known volume was spread on a thin plate of glass as a layer of 0.1 mm
and analysed under a microscope. Then the counting was carried out in a net of

Figure 1.8 A blood sample. The red blood particles are displayed in black. The
size of the rectangular window is about 225×182 �m. Data courtesy of T. Mattfeldt.
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adjacent squares of side length 0.05 mm on the bottom of the plate corresponding
to a volume of 0.005 ml. This method is obsolete today; flow cytometry is now
used, where the blood is sucked through a capillary and physically analysed.

In his paper, Abbe deals with the statistical error due to sampling rather than to
errors caused by sample preparation and the equipment, and deals with a statistical
model: he assumes that the probability of observing n particles in a sample is

p�n� = e−	 	n

n! for n = 0� 1� 2� 
 
 
 � (1.3.3)

known as the Poisson distribution. Here 	 is the expected number of blood parti-
cles in a sample of fixed volume. Further, if 	 is large, and this is the case in
practice, then Abbe suggested the use of the Gaussian distribution with mean and
variance 	. Today this is well known as the normal approximation of the Poisson
distribution.

An important issue concerns providing a definition of the statistical error that has
a useful interpretation in applications. Abbe’s choice was the concept of ‘probable
error’. This is an interval for which, in a large number of replications, half the
observations exceed or fall below it (related to the 50% confidence interval) when
the observations are from the model. Abbe noted that when using a volume of
0�001 mm3, or counts in four adjacent cells on the plate, typically with 	 ≈ 50, the
relative error is around 10 %. His conclusion was that the result derived from a
single sample of this size is measured with a large uncertainty.

1.3.3 Patterns of points in plant communities

In 1922 The Svedberg, a Swedish chemist (the ‘The’ originates from his first
name Theodor) and Nobel Laureate in 1926, studied how individual plants were
distributed in a plant community. As he mentions in this work, his observations
should be treated as preliminary and his only purpose was ‘to draw plant ecologists’
attention to a hitherto unnoticed form of statistical vegetation analysis’.

Svedberg’s reasoning is based on observations of counts in squares where a large
number of squares of fixed size were randomly located in the community. The
locations of the squares are chosen independently of the plant positions. Within each
square, the number of plants was counted. The side length of the squares varied
in the range 2–50 cm depending on the species, and the number of squares was
between 50 and 261, being typically around 100. Note that this type of observation
is still in common use.

Svedberg introduced a ‘reference’ model which, according to him, marks the
‘normal’ condition in a plant community where no ‘forces’ are acting between the
individuals. This reference model may be used to distinguish normal, clustered and
regular plant communities.

The reference model is based on counts of individuals in squares of area q and
the distribution of this number is derived from the ‘Poisson series’ (1.3.3). In other
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Table 1.1 Distribution of counts of Viola tricolor (Wild pansy) samples
in 105 squares of side length 0.5 m.

Number of plants Number of squares Probability (%)

observed expected

0 26 25 22
1 32 31 33
2 24 23 25
3 16 15 13
4 4 4 5
5 3 3 2

words, if the plot is virtually divided into a large number of squares of area q, then
100 · p�n� % of the squares will have n individuals. Note that the point process
model underlying this approach is the Poisson process. The Poisson process is still
used today as a reference model describing a ‘normal’ case, a situation without
interaction. Svedberg studied data for seven species and found ‘normal’ dispersion
as well as clustering and regularity. In his study, Svedberg applied the variance-
to-mean ratio of the counts. This is known as the dispersion index and was used
by Fisher et al. (1922) in the context of bacteria on a microscope plate. Since
then, this index has been discussed in the literature in many variations; see also
Section 4.2.4.

Consider the example data set from Svedberg (1922) in Table 1.1. The frequency
table describes the distribution of plant counts of Viola tricolor in squares of side
length 0.5 m. In this example, according to Svedberg, only weak deviation from
normal dispersion towards clustering was observed.

It is known today that the size of the sampling unit (square of size q) is crucial,
to the extent that using two different values of q for the same plant community
may yield inconsistent results. For example, consider a plant community where the
plants form small-scale clusters, which in turn are randomly located. The use of
a small square correctly reveals this clustering, whereas the application of larger
squares may indicate normal randomness and not detect clustering. The method
based on single-sized squares is not flexible enough to detect structures in a spatial
pattern on two or more different spatial scales. Svedberg seemed to be aware of the
size-sensitivity of his approach because he applied different square sizes depending
on the species.

Svedberg interpreted the case of ‘normal’ dispersion as the situation where no
interaction between the individuals exists in the community. This may be true for
physical systems and for many biological systems, but the latter are often much
more complex. In this sense, the conclusions derived by Svedberg are daring. Today
it is known in ecology that patterns which follow the Poisson distribution can also
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result from evolution processes such as self-thinning of originally clustered patterns
by a competition process.

1.3.4 Formulating the power law for the pair correlation
function for galaxies

Astrostatistics is an old and classical field of spatial statistics; see the books
by Peebles (1980), Babu and Feigelson (1996) and Martínez and Saar (2002).
Astronomers study both spatial random fields in space (the density field, the velocity
field and others) and spatial point patterns, in modern times preferably the positions
of galaxies (or rather galaxy centres) in three-dimensional space. (Note that our sun
is just one amongst hundreds of thousands of stars in our galaxy, the Milky Way.)
Figure 1.9 shows a sample from a galaxy redshift catalogue.

Although the cosmological principle assumed by Einstein in 1917 states that
the universe is isotropic and homogeneous on large scales, early observational

Figure 1.9 A sample of galaxies from the SDSS galaxy redshift catalogue. The
image shows a composition of two slices through the third data release of the
SDSS survey, offset by around 100 million light-years from the centre (located in
our galaxy). The slice is oriented such that an impression may be obtained of the
intricate pattern that has become known as the Cosmic Web: filaments and walls
draped around large near-empty void regions, with dense and compact clusters of
galaxies residing near the nodes of the network. The clusters are easily discernable
as conspicuous stretched objects. The stretching, known as ‘fingers of God’, is
a pure artefact: due to internal motions of galaxies within dense clusters (with
velocities in excess of 1000 km/s), their redshift is not only determined by the
distance of the cluster but also by the corresponding thermal velocity along the line
of sight. The image was prepared by Rien van de Weygaert using the interactive
COSMOS SDSS3 planetarium program. Data courtesy of R. van de Weygaert.
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studies had already found that matter in the universe is distributed in clusters
on smaller scales. For example, Hubble (1934)1 found that counts of galaxies in
telescope fields have a strongly skewed distribution, which is similar to a lognormal
distribution. Bok (1934) and Mowbray (1938)1 found that the variance of these
counts is considerably larger than the variance of a random distribution following
a Poisson process.

An early cluster point process model was introduced by Neyman, Scott and Shane
(Neyman and Scott 1952, 1958; Neyman et al. 1953), assuming that galaxy patterns
can be interpreted as samples from a statistically homogeneous and isotropic point
process. These authors used a specific Neyman–Scott process that is now called the
Thomas process and consists of randomly distributed isotropic clusters of points. In
the statistical analysis they applied the pair correlation function g�r� which will be
introduced in Section 4.3. This characterises the frequency of interpoint distances;
if g�r� is large for some r then the inter-point distance r occurs frequently in the
process. The function g�r� used for the model looks similar to that in Figure 6.2 on
p. 377, but it resembles the right-hand side of a Gaussian bell curve; in particular
g�0� takes a finite value.

Neyman, Scott and Shane had statistical difficulties as they obtained different
model parameters for different galaxy catalogues (files of coordinates of galaxies).
Therefore, they modelled the distribution of galaxy clusters as a random superpo-
sition of groups of galaxies of varying size, including superclusters.

The data analysed in Totsuji and Kihara (1969) were of better quality than those
analysed previously, as they used the 1967 catalogue by Shane and Wirtanen of the
Lick Observatory. According to Totsuji and Kihara (1969), Shane and Wirtanen
‘published the distribution of galaxies with 
 
 
 apparent magnitude brighter than
19m on the celestial sphere. Photographic plates 
 
 
 6� ×6� [in size] covering the sky
north of declination −23� were divided into 10′ ×10′, and images of galaxies in each
of these squares were counted. The results are tabulated as counts in solid angles
1� × 1�; the counts in the original solid angles 10′ × 10′ have not been published.’
The authors used a linear integral equation which makes it possible to use projected
two-dimensional data for the estimation of the three-dimensional pair correlation
function. Modern galaxy catalogues contain three-dimensional coordinates, which
result from the use of the redshift of each individual galaxy as a distance indicator
by means of the Hubble law and a given cosmological model. Nevertheless, since
peculiar velocities of galaxies contaminate the measured redshifts, astronomers
distinguish between real space and redshift space, the second being a distorted
version of the first.

The assumption of a power law simplified the calculations, and Totsuji and
Kihara (1969) estimate the parameters r0 and s in

1 + g�r� =
( r0

r

)s

1 See Peebles (1980) or Martínez and Saar (2002).



Introduction 17

as r0 = 15�3 · 106 light-years and s = 1�8. They found s graphically by inserting
empirical values into a band of curves corresponding to s = 1�7, 1.8, 1.9 and 2.

Today the power law of the pair correlation function is generally accepted; see
Martínez and Saar (2002). The interpretation is that there are no characteristic scales
or quantities; see Peebles (1980). Modern estimates of s (today the symbol � is
used) are around 1.7–1.8. Nevertheless, very recently Zehavi et al. (2004) found
deviations in the power-law behaviour of the real space correlation function that
are interpreted as different clustering regimes.

These days, statisticians seek to develop realistic and simple point process models
which have a pair correlation function g�r� with a pole at r = 0 of order �.
It is not difficult to provide examples of non-realistic models; see Buryak and
Doroshkevich (1996) and Snethlage et al. (2002). Incidentally, these examples
show that a power law for the pair correlation function alone is not necessarily an
indicator of any ‘fractal’ behaviour. The parameter � is now estimated based on
least-squares techniques, for which the simple models are training objects.

The books by Peebles (1980), Martínez and Saar (2002) and the paper by Jones
et al. (2004) are recommended as further reading.

1.4 Sampling and data collection
1.4.1 General remarks

In point pattern statistics it is important to identify a suitable strategy for converting
a specific real-world point pattern, e.g. a pattern formed by trees in a forest or
cells in a tissue sample, into statistical data. This issue has to be addressed prior to
any point pattern analysis, and the chosen strategy influences the choice of suitable
statistical methods and models.

Data collection methods are strongly dependent on the objects represented by
the points, the objectives of the study and the available resources, and all these
are different for different applications. Generally, the best choice is only the best
choice for a very specific example, due to the specific situation and study aims.
However, some general guidelines for data collection can be given. Central aspects
that need to be considered include the spatial scale, the relationship to the envi-
ronment, the morphology, size and density of the objects, and available methods.
From a statistical point of view, the aim of data collection methods is to optimise
unbiasedness and representativeness and to control sampling errors.

The two main aspects in a strategy for data collection are appropriate sampling
and appropriate measurement methods as these are both sources of uncertainty.
Sampling concerns the strategy of extracting information on point patterns in a real-
life situation, whereas measurement is the technical realisation of the data collection
approach. Sampling is a traditional area of statistics and many useful methods
have been developed in the literature. Recently, measurement technologies have
undergone rapid development such that more and more extensive and high-quality
point pattern data have become available.
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In general, two different approaches are used to sample point patterns, field
methods and mapping. Field methods have traditionally been used in forestry and
ecology as convenient data collection methods. These only measure small fractions
of the study area, usually as counts of numbers of points in randomly located
rectangles or spheres (‘area-based’ sampling), or as distance measurements from
sampled points (‘point-related’ sampling).

Area-based sampling is used mainly to determine the total number or mean
number of points per unit area and to detect deviations from complete randomness
(see Chapter 2).

Point-related sampling approaches use random locations in the study area or
randomly chosen points in the point pattern or both. They are useful for the
detection of interesting small-scale structural properties. In addition to two- or
three-dimensional sampling windows or sampling points, other types of sampling
units such as randomly or systematically located strips and lines (transects) are also
common.

Field methods often produce sparse data, exploiting the fact that the data were
observed at locations that are far enough apart to be considered almost independent.
This is particularly useful when the number of sampling units is small compared
to the study area, which is always a bounded set W with finite area or volume
	�W�. Sparseness is an advantage in the estimation of interesting parameters and
construction of statistical tests. Indeed, if sparse sampling is done properly, spatial
correlation, typical of spatial data, is often negligible and hence the distributional
theory and statistics are straightforward, close to classical statistics. However, this
book focuses on spatial statistics and thus does not cover sparse data any further.

Despite these advantages, field methods are tied to pre-fixed scales and allow
only limited statistical modelling. Extensive literature exists for this traditional area
of spatial statistics; see, for example, Ripley (1981), Krebs (1998), Diggle (2003)
and Upton and Fingleton (1985).

Today mapping is the most commonly used data collection method for point
patterns. Its popularity is at least partly due to advanced statistical methodology
and modelling, which can analyse the point pattern simultaneously at a number of
different spatial scales. In this data collection approach, all locations of the objects
within a specific subset of the space are recorded. This set is called the observation
window. In some cases, the window is predetermined by the application, e.g. in
experimental studies, where the data are a census of the objects. In these cases, it
is not necessary to choose a sampling strategy.

More common are situations where the researcher determines the size, shape and
positioning of the observation window. Mapping and the choice of the observation
window are discussed in more detail below.

As noted, in addition to the point locations, information on the objects represented
by the points or on the sampling window may be useful for an appropriate analysis
or may even be necessary. If the point pattern is not unlikely to be heterogeneous
within the sampling window, observations on other spatial variables that explain
the heterogeneity may be very important and improve modelling and interpretation.
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These variables are called (environmental) covariates. The spatial pattern may also
be affected by differences in the properties of the objects represented by the points
such as their size, shape, age and species. As mentioned above, these are generally
described by marks.

Mapped point pattern data may consist of the following elements:

1. Specification of the observation window W .

2. The point record of each point in the sampling window in the form
�x�m1�m2� 
 
 
 �mp, where x represents the d-dimensional coordinates of
the point location and m1, � � � , mp are marks collected for the point at x.

3. Covariate information as spatial measurements of type Z�yj�, yj ∈ W , for
j = 1, � � � , l, where the points yj form a lattice and do not coincide with
the points of the point pattern. The Z�yj� usually describe a continuous
regionalised variable, which is defined at every point in W , whereas the
marks are only given and defined for the points in the point pattern.

Not all of these elements are always available for a specific point pattern. An
appropriate analysis of the point pattern requires at least information on the window
W and the point locations �x.

A further type of data collection is repetitive mapping, commonly used in the
context of space–time analyses, where the same sampling window is measured at
two or more points in time. This type of data can be represented by a marked
point pattern (using the observation time instants as marks). In some cases it is
informative to study the movements of the points as well as their lifetimes (refer
to Chapter 6 for more details on space–time processes).

Field methods and mapping are rather different approaches. However, some of
the data summaries originally developed for field sampling, such as the distance of
a point to its nearest neighbour, may also be applied to mapped data. In modern
point process statistics, where often very large point patterns are analysed as a
result of improved data collections methods, field methods are still relevant in the
preliminary analysis.

1.4.2 Choosing an appropriate study area

An important aspect of point pattern sampling is the choice of the observation
window W or the study area. In some cases W is given a priori, in particular when a
local phenomenon (a finite point process as in Chapter 3) is studied, such as pores
of a metallic foam in a pipe, fungal spots on leaves, and cell centres in a small
biological organ. Then W is a window of existence.

In many other cases, the point pattern of interest is larger than any feasible
samples that may be used in a statistical analysis, e.g. in studies of forests, materials
or the universe (in galaxy statistics). In these cases, the choice of the window is
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closely related to the scientific question. If the local interaction among points (rela-
tionships among neighbours) is of interest, a window with (nearly) homogeneous
point distribution may be suitable, to avoid influences of larger-scale inhomo-
geneity. If the study focuses on global fluctuations of points, larger windows are
more suitable. Here, two rather different scenarios occur: the density fluctuations
may be regarded as a unique inhomogeneous phenomenon (e.g. the influence of
two mountains on the spatial pattern of a forest) or as a part of a large homogeneous
phenomenon.

As far as the shape of the window is concerned, convenient choices include
rectangles and circles for planar patterns; sometimes polygons are used. For three-
dimensional data parallelepipeds are often used, but sometimes the observation
conditions dictate more complicated windows, as in astronomy; see Martínez and
Saar (2002). The issue of choosing the size of the window is discussed in Section 4.8.

1.4.3 Data collection

Field methods

Once the window has been chosen, data can be collected. Clearly, the choice of
the data collection method has a pronounced impact on the choice of the statistical
analysis methods. The most informative type of point pattern data consists of the
Cartesian coordinates of all points. Often their measurement is too labourious,
or partial or condensed information might be sufficient for a particular study.
For example, measurements are sometimes taken in the field and are directly
summarised in indices that describe the spatial behaviour of the pattern.

An old field technique is quadrat counting, i.e. counting points in subwin-
dows that may or may not form a lattice. Here, the exact point coordinates are
not collected, which simplifies data acquisition but limits the statistical analysis.
Nevertheless, valuable results can be obtained; see Section 2.7.2 and the ecological
literature such as Krebs (1998), who also discusses the choice of shape and size of
the ‘quadrats’, which do not necessarily have to be quadratic.

Another old field technique is distance sampling, where distances from test
points (which form part of the pattern) or from test locations (which are not part
of the pattern, perhaps points on a measurement lattice) are measured and analysed
statistically, as discussed in Section 1.3.1 above. Statistical methods that are based
upon this approach are discussed at several points throughout this book. A special
case is line transect sampling; see Buckland et al. (2001) or Krebs (1998) for details.
Here a line is used as a reference to collect data on the point pattern of interest in
a strip of fixed or variable width (which often has to be estimated statistically). An
observer moving along the line determines the coordinates of the points xi = ��i��i�
within the strip by their sighting distances ri and sighting angles �i, where the
�-axis is parallel to the line and the �-axis is vertical (see Figure 1.10),

�i = ri cos �i� �i = ri sin �i� (1.4.1)
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Figure 1.10 Sighting distances and angles in line transect sampling.

Also, the direct measurement of specific inter-point distances yields many of the
indices discussed in Sections 4.2.4 and 5.2.4.

Mapping

The Cartesian coordinates of points are determined either for all points in the
whole window, resulting in mapped data, or only within specific (circular) sample
plots with centres on a systematic sampling grid; the latter approach is common in
forestry. A number of different methods, both simple and advanced, can be used to
determine these coordinates.

In forestry and ecological studies, the coordinates are often determined in situ.
This can be done very efficiently by using polar coordinates. The distances ri to
the points xi = ��i��i� from some central position (which may be one of the points
of the pattern or another suitable location) are measured and the azimuths �i, the
angles between the north (or another natural) direction and the rays towards the
points, are measured clockwise; equation (1.4.1) yields the Cartesian coordinates.
This procedure can be repeated for further central points to cover the whole pattern.
Moeur (1993) describes this method in detail. A similar approach is the measure-
ment of point networks or triangulation where, in triangles of points, angles are
measured and, for some of the pairs of points, the distances. Formulas of planar
trigonometry yield the ����� coordinates. For distance and angle measurements
classical (measuring tape, theodolite) or modern (laser-based takymeter) equipment
can be used. Total mapping of a forest area of 1 ha can take 1–3 days when all
trees with some minimum height (e.g. 1.3 m) are mapped. The time is even longer
if all plant species are mapped, e.g. for ecological studies.

Sometimes photographs are used to construct point pattern data by scanning the
image and clicking on points to identify and save the coordinates. An analogous
method on a larger scale is described in Stein and Georgiadis (2006). The aim
of the study was to measure the coordinates of centres of herds of herbivores in
Kenya based on data derived from aircraft flying over the savannah at heights
between 70 m and 130 m above ground level, following transects spaced 1 km apart.
Whenever a herd was spotted, the aircraft deviated from its flight-line to circle the
herd until the number of its members was counted. The geographical coordinates
of the centres of herds were recorded using a Trimble GPS receiver. Overlaps and
double counts at the boundaries of the blocks were identified and subtracted. Refer
to Krebs (1998) for further aerial sampling methods.
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Methods from photogrammetry, the geometrical measurement of objects in anal-
ogous digital images (Konecny, 2003), are very helpful. Problems resulting from
perspective and lens distortion in photographs are overcome by rectification, but
the point pattern can be determined much more accurately when photographs are
taken vertically rather than at an angle. Applications in forestry and ecology are
described in Bai et al. (2005) and Dean (2003).

Whenever possible, the original image should be directly transferred from the
camera into a computer. This technique is common in microscopy, and digital
photography facilitates this approach as well. Experience shows that the subsequent
coordinate determination by mouse click is affected by subjective factors. It is thus
advisable that the same person performs this analysis step on all images if more
than one image is to be analysed.

Image data can also be obtained by remote sensing (see Kerle et al., 2004), i.e. by
methods that may be used to derive information on the objects through devices that
are not in direct contact with the objects. For very large distances aerial cameras,
scanners or radar are used. The photographs or other images resulting from this are
scanned and converted into a digital format, usually a pixel image.

Another source of image data are techniques such as computerised tomography.
These methods yield three-dimensional pixel structures, which are the starting
point for computations that construct the point coordinates of centres of objects
numerically.

For the further processing of digital image data, methods from image analysis
are often used. In the simplest case the point coordinates are computed numerically,
e.g. as centres of gravity or of surrounding circles or rectangles if the objects in
the image are clearly defined. Sometimes the ‘objects’ are not given a priori but
must be determined computationally. A large number of approaches to this have
been considered within image analysis, such as the determination of connected
components, watershed algorithms (Vincent and Soille, 1991) or Bayesian image
analysis (see Van Lieshout, 1995; Winkler, 2003). The approaches regard the images
as noisy images of spatial particle systems, e.g. of spherical particles. The aim is
to calculate a sharp image, i.e. to find a particle system which best matches the
noisy data.

In this context, optimisation techniques such as simulated annealing are
commonly used. Figure 1.6 shows both the CT data and the system of spheres for
a sample of concrete; see also the discussion in Ballani (2006). Imaging of objects
is an important problem in optics research (Ovryn and Izen, 2000; Kvarnström
and Glasbey, 2007). The technique is simplified when the particles are spherical
and uniform in appearance. Then each particle appears as a bright circular set of
pixels and its centre is the geometric centre of the brightness-weighted centroid
(Kvarnström and Glasbey, 2007).

Sometimes noise generated by noisy points can be an issue; statistical approaches
to this problem are discussed in Lund and Rudemo (2000).

Note that reducing an image to a marked point pattern is often a very useful
and appropriate data reduction step, as it allows the application of the powerful
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methods of point process statistics to the image. However, it often also results in an
undesirable loss of information. In these cases, it may be better to stick with image
analysis methods, i.e. statistical methods for random fields and sets as described
in Cressie (1993), Stoyan et al. (1995), Ohser and Mücklich (2000) and Ohser and
Schladitz (2008).

The collection of spatial point pattern data is often an expensive and laborious
part of a study. The methodology has improved rapidly in recent years and, as
a consequence, automatised data collection methods can often produce extensive
data sets at minimal costs. However, the objects are often measured imperfectly
or indirectly. Transforming this type of data to point pattern data requires careful
pre-handling and the use of pattern recognition methodology.

1.5 Fundamentals of the theory of point processes
Point processes are stochastic models of irregular point patterns. Within mathemat-
ical theory, point processes can be defined and studied in abstract spaces, but this
book mainly considers planar and spatial (i.e. two- and three-dimensional) point
processes as these are the most relevant processes in applications. In accordance
with the literature, the perhaps confusing expression ‘point process’ is used here.
The term ‘process’ implies that some development over time is considered, but
in most cases time-independent phenomena are studied. Physicists and engineers
might prefer the term ‘point field’, which was also used in Stoyan and Stoyan
(1994).

A point pattern is a collection of points in some area or set and is typically
interpreted as a sample from (or realisation of) a point process. In the notation the
points are often numbered. This is done only for convenience and does not imply
any meaningful order of the points.

There is an extensive literature on point processes, ranging from rather theoretical
to more applied texts. Mathematical introductions to the fundamental theory include
Cox and Isham (1980), Daley and Vere-Jones (1988, 2003, 2008), Van Lieshout
(2000), Stoyan et al. (1995), and Møller and Waagepetersen (2004).

This section, along with Sections 4.1 and 5.1, provides those aspects of
the fundamental theory that are relevant for this book. In this way the book
is self-contained and makes the reader familiar with notation and terminology
and eventually the statistical methods. The exposition is frequently based on
heuristic explanations avoiding mathematical details and theory, which can be
found in the references. Nevertheless, formulas and difficult mathematical concepts
cannot be avoided, but the authors encourage the reader to follow the text since
its study is also indispensable for a thorough understanding of the statistical
methods.

A point process is denoted by N . Note that this symbol is used here for two
different mathematical descriptions of point processes.
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• N may denote a function operating on sets or, in more mathematical terms,
N is a random counting measure. For a subset B of �d� N�B� is the random
number of points in B, i.e. the set B is assigned the number N�B�.2 It is
assumed that N�B� < � for all bounded sets B, i.e. that N is ‘locally finite’.
Clearly, N�B� regarded as a function of B has the fundamental property of
additivity, i.e.

N�B1 ∪ B2� = N�B1� + N�B2�

for disjoint B1 and B2, and similarly for countably many sets.

• N may also denote a random set, i.e. the set of all points x1, x2� � � � in the
process. In other words,

N = �xi or N = �x1� x2� 
 
 
 �

x ∈ N means that the point x is in the set N . The set N can be finite or
infinite. If it is finite the total number of points may be deterministic or
random.

The set-theoretical notation can be used without any problems since throughout
this book all point processes are assumed to have a property referred to as simplicity,
i.e. all points are different, and do not coincide, i.e. xi �= xj if i �= j. Note that the
theory of point processes also considers models with multiple points.

Remarks

(1) Note that some mathematicians do not like to use the same symbol N for the
two different concepts as above. They base the definition on the counting
measure N and refer to the corresponding point set as the ‘support of N ’ and
use a different symbol for it.

(2) In this book, random points in N are always referred to as ‘points’. In the
literature, these are sometimes called ‘events’, ‘trees’ or ‘sites’. The points
in �d that may or may not coincide with points in N are called ‘locations’
or ‘positions’. Hence one may say ‘point xi is at location x’, meaning xi =x.
The xi are dummy variables used in order to emphasise the nature of N as
a point sequence. Thus, for example, x1 is not a special point with a special
property such as the point of N closest to the origin o of the space, but just
any point in the process.

2 Technically B is a Borel set.
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Point process sums

Often sums of the form

Sf = f�x1� + f�x2� + 
 
 
 =∑
�i�

f�xi� =∑
x∈N

f�x� (1.5.1)

have to be considered, where f is some real-valued function. (In mathematical
terms, f has to be a ‘measurable’ mapping.) The symbol

∑
�i� denotes ‘summation

over all points of N ’ and denotes both
∑�

i=1 for an infinite process and
∑n

i=1 for a
finite process.

Example 1.1. Point process sums

(1) Seed density. Assume that the points represent the locations of plants and
each plant produces seeds independently of the other plants. The seeds are
dispersed randomly around the parent plants, in the same way for all plants.
The density of seeds from a plant at position x at location y depends on the
distance r of y from x denoted as md�r�, for instance d�r�= exp�−cr�. Here
m is a parameter proportional to the mean number of seeds per tree, which is
assumed to be identical for all trees and c is some positive parameter. Given
all parent points x1, � � � , xn, the total seed density at the position y may be
determined by considering the superposition or the sum of the plant-related
densities. Denote this total density by Sf = Sf �y� with reference to (1.5.1)
with

f�xi� = md�	y − xi	�

(2) Counting of birds by distance sampling. Let the points be positions of birds
in a forest. A bird singing at position x is still audible at a point with distance
r from x with probability p�r�=1−ar for r ≤1/a. Given the bird locations,
what is the mean number of birds that can be heard by a bird-watcher at
position y? It is simply the sum of the different probabilities and can be
denoted by Sf as in (1.5.1) with

f�xi� = p�	y − xi	�

Note that in the mathematical literature sums as in (1.5.1) are also written as
integrals,

∑
x∈N

f�x� =
∫

f�x�N�dx� (1.5.2)
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In the context of sums of functions the indicator function 1B�x� often appears as
it may be used to calculate sums of functions for points in a subset B of �d. The
indicator function is defined as

1B�x� =
{

1 for x ∈ B�
0 otherwise�

where B is some subset of the space �d. Then

∑
x∈N∩B

f�x� =∑
x∈N

1B�x�f�x� (1.5.3)

is the sum of the f�xi� restricted to the xi in B. Furthermore, we have

N�B� =∑
x∈N

1B�x��

In order to avoid clumsy notation in the context of statistical estimators, point sums
referring to the observation window W are described by the following simplified
notation:

∑
x∈N

1W �x�f�x� = ∑
x∈W

f�x� (1.5.4)

and

∑
x�y∈N

1W �x�1W �y�f�x� y� = ∑
x�y∈W

f�x� y�� (1.5.5)

Number distributions of a point process

Classical statistics usually uses a single distribution to describe a specific
phenomenon. This distribution may be discrete if a random integer-valued variable
is analysed, or continuous if a continuous random variable is analysed. A point
process, however, can be described by infinitely many random variables. These are
discussed in detail in the following.

The most fundamental of these functions are the number distributions given by

P�N�B� = n� for n = 0� 1� 
 
 
 �

and

P�N�B1� = n1� 
 
 
 �N�Bk� = nk� for n1 = 0� 1� 
 
 
 � nk = 0� 1� 
 
 
 �

The first term describes the probability that there are exactly n points in the set B
and the second that there are exactly n1� � � � � nk points in k sets B1� � � � �Bk. The first
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probability is described by a univariate distribution, the second by a multivariate
distribution. There are infinitely many sets B and the probabilities can differ among
these sets. Hence, there are infinitely many number distributions that describe a
point process.

A specific type of these probabilities are the emptiness or void probabilities
describing the probability that there are no points in a specific subset B, i.e.

P�N�B� = 0��

For example, if B = b�x� r� is the sphere (or disc) of radius r centred at x, then
P�N�b�x� r�� = 0� is the probability that this disc does not contain any points. This
probability may also be interpreted as the probability that the distance between the
nearest point of N to the position x is larger than r. Using this interpretation and
fixing x, this probability can be regarded as a function of r, leading to the spherical
contact distribution function or location-to-nearest-point distance d.f.

Hs�x�r� = 1 − P�N�b�x� r�� = 0� for r ≥ 0� (1.5.6)

It is discussed in detail in Section 4.2.5.

Point process distribution

At some points in this book even more general probabilities for point processes are
considered that have the form

P�N ∈���

This describes the probability that the point process N is in the set �, where � is
a set of point patterns with a specific property. If, for example, � is the set of all
point patterns with no points in the set B, then

P�N ∈�� = P�N�B� = 0��

Mean numbers for point processes

In classical statistics, mean values are a fundamental concept. This is similar in
the context of point processes, where mean numbers in fixed sets are particularly
important. The value N�B� for a set B is a random variable and, if B is bounded, it
makes sense to consider the mean E�N�B��, where E is the symbol for expectation;
see Appendix A. Thus

E�N�B�� = mean number of points of N in B�
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Clearly, this mean depends on the set B, and it is therefore a (deterministic) function
operating on sets (more precisely, a measure). Therefore the notation

��B� = E�N�B�� (1.5.7)

is used and � is called the intensity measure.
Under some continuity conditions, which are usually satisfied in practical appli-

cations of point process statistics, a density function ��x� exists that is called the
intensity function with

��B� =
∫
B

��x�dx� (1.5.8)

Remarks

(1) The continuity condition is violated if, for example, the points are arranged
on a lattice.

(2) The integral in (1.5.8) should be interpreted as a volume integral (in �d),
where dx is the volume element. Using more traditional notation, the integral
could be written as∫

B

f�x�dA�
∫
B

f�x�dV or even
∫
B

fdA�
∫
B

fdV�

Statistically estimated intensity functions will be discussed on pp. 116 and 289.
It is clear that ��x� is proportional to the point density around a location x. If dx

is the volume of an infinitesimal sphere centred at x, then ��x�dx is the probability
that there is a point in this sphere.

Proof. Let b�x� be this small sphere. It is so small that P�N�b�x�� ≥ 2� can be
ignored. Then

∫
b�x�

��x�dx ≈ ��x�dx = E�N�b�x��� = 0 · p0 + 1 · p1 = p1

with pi = P�N�b�x�� = i�.

Conditional intensity

Many important point process models are defined in terms of a refined version of
the intensity function ��x�, the so-called Papangelou conditional intensity ��x��,
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where x is a deterministic location and � a point pattern. The conditional intensity
is fundamental for example for Gibbs processes (see Sections 3.6 and 6.6), where
explicit formulas for ��x�� can be given. It is also an important tool in the context
of simulations of these processes (see Section 3.6).

Loosely speaking, ��x��dx is the conditional probability that there is a point of
N in an infinitesimal sphere b�x� of volume dx containing x, given the realisation
� of N outside of b�x�. The quantity ��xN� is a random variable with mean

E���xN�� = ��x� for x ∈�d�

Point density distribution function

Sometimes the intensity function ��x� is rather irregular such that it may be useful
to consider the point density distribution function G�t� (Ghorbani et al., 2006)
defined as

G�t� = 	�Wt�

	�W�
� (1.5.9)

where 	 is area (volume), W is the window of observation for the point process
and Wt the subset of W defined as

Wt = �x ∈ W � ��x� ≤ t�

i.e. the set of locations where the intensity is below the threshold t. In other words,
G�t� is simply the fraction of W where the intensity function is smaller than t.
Section 3.3.3 presents an example where the point density d.f. is applied.

The Campbell theorem

The mean value of a sum Sf with non-negative f�x� as in (1.5.1) can be calculated
in a very elegant way using the Campbell theorem, which states that

ESf = E

(∑
x∈N

f�x�

)
=
∫

f�x���x�dx� (1.5.10)

In other words, it suffices to know f�x� and the intensity function ��x� for the
calculation of ESf .

Remarks. The formula is clearly true for all indicator functions f�x� = 1B�x�. For
these functions the integral in (1.5.10) is

∫
1B�x���x�dx = ��B��
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and ES1B
= ��B� by definition of the intensity measure � because of

S1B
=∑

x∈N

1B�x� = N�B��

Those readers familiar with measure theory will know that there are theorems that
may be used to show the same for general non-negative measurable function f .

In Chapters 4 and 5 the Campbell theorem is applied repeatedly in the simple
case of a constant ��x�.

For Example 1.1 the mean values are

(1) ESf = ∫ md�	x	���x�dx,

(2) ESf = ∫ p�	y − x	���x�dx,

for seed density and bird counting respectively.

Variances and higher-order moments

In classical statistics, variances are very important and fundamental distributional
parameters in addition to means. This is similar for point processes. Thus the
variance varN�B� of the random variable N�B� may be considered, given by

varN�B� = E �N�B� − EN�B��2

or

varN�B� = E �N�B� − ��B��2 � (1.5.11)

varN�B� = E �N�B��2 − ��B�2� (1.5.12)

Clearly, the numerical value of varN�B� depends on the set B, and thus a point
process is associated with infinitely many variances (for the infinitely many subsets
B of �d). However, this set function is not a measure as it is not additive.

Higher-order moments may also be considered, i.e. moments of the form

E�N�B��k for k = 2� 3� 
 
 
 �

Furthermore, the correlations of the numbers of points for different sets can be
studied. Consider two sets B1 and B2. For the two random variables N�B1� and
N�B2�, the covariance and correlation coefficient can be defined:

cov�N�B1��N�B2�� = E��N�B1� − ��B1���N�B2� − ��B2��� (1.5.13)
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and

corr�N�B1��N�B2�� = cov�N�B1��N�B2��√
varN�B1�varN�B2�

� (1.5.14)

These characteristics can be calculated if the so-called moment measures are known.
There are two families of moment measures, the (normal) moment measures ��k�

and the factorial moment measures ��k�.

Moment measures

The kth-order moment measure of a point process N is the measure ��k� defined by

∫
�nd

f�x1� 
 
 
 � xn��
�n��d�x1� 
 
 
 � xn�� = E

( ∑
x1� 
 
 
 �xn∈N

f�x1� 
 
 
 � xn�

)
� (1.5.15)

where f�x1� 
 
 
 xk� is any non-negative measurable function on �nd. In particular,

��k��B1 × · · · × Bk� = E �N�B1� · · ·N�Bk��

and, if B1 = · · · = Bk = B,

��k��Bk� = E
(
N�B�k

)
�

Thus ��k� yields the kth moment of the real-valued random variable N�B�, which
is the number of points in B. Special cases are

k = 1 � ��1��B� = E �N�B�� = ��B��

k = 2 � ��2��B1 × B2� = E �N�B1�N�B2�� �

var�N�B�� = ��2��B × B� − ���B��2�

The covariance of the random variables N�B1� and N�B2� can also be expressed in
terms of the moment measure:

cov�N�B1��N�B2�� = E �N�B1�N�B2�� − E �N�B1��E�N�B2��

= ��2��B1 × B2� − ��B1���B2� �

Factorial moment measures

The kth-order factorial moment measure ��k� of the point process N is defined by

∫
f�x1� 
 
 
 � xk��

�k��d�x1� 
 
 
 � xk�� = E

( ∑�=

x1� 
 
 
 �xk∈N

f�x1� 
 
 
 � xk�

)
� (1.5.16)
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Here f is any non-negative function on �kd, and the sum
∑�= is a sum of all

k-tuples of distinct points in N including all permutations of given points. This is
where ��k� and ��k� differ: in (1.5.16) the sum omits all k-tuples in which two or
more entries are the same. Hence if B1� � � � �Bk are pairwise disjoint sets then

��k��B1 × · · · × Bk� = ��k��B1 × · · · × Bk�� (1.5.17)

For k = 2,

��2��B1 × B2� = ��B1 ∩ B2� + ��2��B1 × B2� (1.5.18)

by the definitions of ��2�, � and ��2�, and using

∑
x1�x2∈N

1B1
�x1�1B2

�x2� = ∑
x1∈N

1B1∩B2
�x1� + ∑�=

x1�x2∈N

1B1
�x1�1B2

�x2��

Since

��k��Bk� = E�N�B��N�B� − 1� · · · �N�B� − n + 1���

the quantity ��k��Bk� is the so-called kth-order factorial moment of the random
variable N�B�; this is the reason for the name ‘factorial moment measure’.

Product densities

The product density ��k� describes the frequency of possible configurations of k
points. Suppose that b1� � � � � bk are pairwise disjoint spheres with centres x1� � � � � xk

and infinitesimal volumes dV1� � � � � dVk. Then ��k��x1� 
 
 
 � xk�dV1 · · ·dVk is the
probability that there is a point of N in each of the b1, � � � , bk. Technically, ��k�

is defined if some continuity properties are satisfied for ��k� that usually hold in
applications, local finiteness and absolute continuity with respect to the Lebesgue
measure 	kd. Then ��k� has a density ��k��x1� 
 
 
 � xk�, the kth product density:

��k��B1 × · · · × Bk� =
∫
B1

· · ·
∫
Bk

��k��x1� 
 
 
 � xk�dx1 · · ·dxk� (1.5.19)

Moreover, for any non-negative bounded function f�x1� 
 
 
 xk�,

E

( ∑ �=

x1� 
 
 
 xk∈N

f�x1� 
 
 
 � xk�

)

=
∫

· · ·
∫

f�x1� 
 
 
 � xk��
�k��x1� 
 
 
 � xk�dx1 · · ·dxn� (1.5.20)



Introduction 33

Historically, product densities were introduced earlier than moment measures, prob-
ably because of the intuitive interpretation above.

For k = 1 the product density coincides with the intensity function ��x�. In the
important case of k=2 the exponent ‘(2)’ is often omitted. In this case it is possible
that ��2��x1� x2� depends only on the distance r of x1 and x2, and then the simple
symbol ��r� is used.

For a general point process, it is difficult to work with moment measures. The
situation changes if the point process is stationary and isotropic. In this case the
second-order moments can be expressed by functions such as Ripley’s K-function
and the pair correlation function; see Section 4.3.

Further distributional characteristics

The theory of point processes discusses further distributional characteristics such as
the characteristic function, the Laplace functional and the Bartlett spectrum. None
of these is covered in this book: the first two have rarely been used in spatial
statistics, while a thorough discussion of the third would take up too much space.
The Bartlett spectrum is of value in particular when many large patterns have to be
analysed and when the data have been derived from image analysis. The Bartlett
spectrum contains the same information as the pair correlation function, but in a
different form. It is popular among physicists since it can be measured physically,
e.g. by X-ray small-angle scattering. A classical reference is Bartlett (1964) and
recent ones are Renshaw (1997, 2002), Mugglestone and Renshaw (1996a, 1996b,
2001) and Ohser and Schladitz (2008).

Marked point processes

Marked point processes are generalisations of point processes and are highly rele-
vant in practical applications. Each point xi is assigned a further quantity m�xi�,
which provides additional information on the object represented by the point, as
discussed in the examples in Section 1.2.1 (qualitative marks, cell types) and 1.2.2
(quantitative marks, particle diameters). In this book the m�xi� are usually integers
or real numbers, but much more general marks may also be considered. A marked
point process is denoted by M . In the same way as for N , there are two different
mathematical interpretations of M:

• M is a function operating on sets or a random counting measure. For a subset
B of �d and a subset C of �, M�B × C� denotes the random number of
marked points �x�m�x�� with x ∈ B and m�x� ∈ C. If C =� the measure M
counts all points and ignores the marks, i.e.

M�B ×�� = N�B��

where N is the point process of the points in M without the marks.
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• M denotes a set of marked points,

M = ��xi�m�xi�� or M = ��x1�m�x1��� �x2�m�x2��� 
 
 
 �

The notation �x�m�x�� ∈ M means that the marked point �x�m�x�� is in M .

For marked point processes sums similar to those in (1.5.1) may be considered:

Sf = f�x1�m�x1�� + f�x2�m�x2�� + · · ·
=∑

�i�

f�xi�m�xi�� = ∑
�x�m�x��∈M

f�x�m�x��� (1.5.21)

where f�x�m�x�� is a real number assigned to �x�m�x��. By including marks in the
analysis of a point pattern, many spatial phenomena can be studied and described
much more clearly and realistically. Consider the following examples in comparison
to Example 1.1 above and note how the description of the situations benefits from
the additional information contained in the marks.

Example 1.2. Marked point process sums

(1) Seed density. Assume that the points xi represent the locations of plants and
each plant produces seeds independently of the other plants. The seeds are
dispersed randomly around the parent plants, in the same way for all plants.
Seed dispersal depends on tree-dependent parameters, m�xi�, which can be
different for different plants. The density of seeds from a plant at position
x at a location y depends on the distance r of y from x and is denoted by
m�x�d�r� with, for example, d�r�= exp�−cr�. Clearly, the total seed density
at position y can be calculated as

Sf =∑
�i�

m�xi�d�	y − xi	��

Note that the constant m in Example 1.1 has now been replaced by the
variable m�xi�.

(2) Counting of birds by distance sampling. Let the points xi be locations of
birds in a forest and the marks m�xi� the volumes of their song. A bird
singing at position x at volume m�x� is still audible at a point y of distance
r from x with probability p�r� = 1 − ar/m�x� for r ≤ m�x�/a. The mean
number of birds heard by a bird-watcher at position y is given by

Sf =∑
�i�

�1 − a	y − xi	/m�xi���
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The mean behaviour of marked point processes can also be described by an intensity
function ��x�m�: the mean number of marked points of M located in the set B and
with marks in C is given by

E�M�B × C�� =
∫
B

∫
C

��x�m�dmdx� (1.5.22)

Second-order moments for marked point processes can be defined in a similar
way as for the non-marked processes. This is discussed in detail for stationary point
processes in Chapter 5.

1.6 Stationarity and isotropy
1.6.1 Model approach and design approach

In classical probability theory a random variable describes all possible outcomes of
an experiment; in mathematical terms, it is a mapping from some probability space
into some state space. In a rather abstract sense, a point process is also a random
variable.

A simple example of a random variable describes the outcome of a roll of a
die. Here the random variable takes on the values 1 to 6, and if the die is fair
the probability for each of the six values is 1

6 . Now assume that it is possible to
construct a die with infinitely many sides, with a two-dimensional point pattern
on each of the sides. Every time the die is rolled, a point pattern is generated
and the die represents the point process. Now assume somebody is observing the
rolling of the die. This person sees different point patterns in the plane and, in
particular, fluctuating values of the number of points in some fixed, deterministic
subset B of the plane. In other words, every roll of the ‘point pattern die’ produces
a different realisation of the random variable N�B�. This interpretation of a point
process is called the model approach: the observer’s position is deterministic, while
the point process is random, producing different patterns in different observations
or experiments.

The design approach takes a different perspective. Here the point pattern is
deterministic and fixed, while the observer’s location changes randomly. That is to
say, if the observer’s location is x and if the observation area is the disc b�x� r� of
radius r centred at x, ‘the number of points in a disc of radius r’ for a random x is
also a random variable N�b�x� r�� as in the model approach.

This book is mainly written from the point of view of the model approach.
However, experience of teaching non-mathematicians shows that the design
approach is more natural than the model approach to many of these. This might be
because they typically analyse one specific point pattern (a specific forest, some
part of the sky, the whole universe, � � � ) or a small number of patterns (as in mate-
rials science or medicine) and usually the system of Cartesian coordinates is chosen
arbitrarily.
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However, when stationarity and ergodicity are assumed (see below), both
approaches are equivalent and using the model approach is more than justified as
it lends itself very well to explaining the mathematical details. Prior to a detailed
discussion of these properties a few words on finite and infinite point processes
may be useful.

1.6.2 Finite and infinite point processes

In the real world, all point patterns are finite. Nevertheless, it makes sense to
interpret point patterns as parts of infinite patterns and to use models that assume
infinite point processes. Whether an infinite point process model is used or not
depends on the specific situation. Some point patterns have to be regarded as
samples from a finite point process, because they represent phenomena that are
strictly locally limited. Examples are:

• the bullet marks on a target;

• the location of seeds dispersed around a single plant;

• the centres of air pores in a piece of Swiss cheese.

In other cases, a point pattern may be regarded as a part of a much larger pattern
in which the points are distributed according to the same laws as in the observation
window. Examples include:

• the positions of trees in a forest;

• the grain or pore centres in homogeneous probes of materials such as metals
or ceramics;

• the location of seeds dispersed by a large community of plants.

In the example of the forest the observation window may be ‘biologically homo-
geneous’, i.e. within the window the growth conditions are the same for all trees.
The window might be surrounded by a larger forest area. In other words, the
edge of the observation window is to some extent arbitrary and has no biological
meaning. The trees close to the edge of the observation window do not behave
differently from those closer to the centre of the window. Also, given equal envi-
ronmental conditions, the pattern in the observation window might be continued
infinitely in all directions. This means that the trees interact in the same way every-
where and generate similar fluctuations of local tree density and tree parameters
(or marks).

In the seed example with a single plant that disperses seeds, the seed pattern
is closely related to the specific parent plant. However, if there are many parent
plants in a homogeneous pattern the combined seed pattern (i.e. the superposition
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of the patterns formed by the seeds from all trees) is also homogeneous. It may be
interpreted as continuing infinitely beyond the observation window.

It might come as a surprise to some readers that the reason for considering infinite
point processes is the fact that studying these processes is mathematically simpler
than studying most finite point processes, if stationarity (and isotropy) is assumed.
And, point process theory typically starts with infinite point processes, rather than
considering infinite processes as limits of finite process; physicists would call these
‘thermodynamic limits’.

1.6.3 Stationarity and isotropy

A point process N is called stationary if N and the translated point process Nx have
the same distribution for all translations x. This is written as

N
d= Nx� (1.6.1)

where Nx is the point process resulting from a shift of all points of N by the same
vector x; if N = �x1� x2� 
 
 
  then Nx = �x1 +x�x2 +x� 
 
 
 . The expression ‘have
the same distribution’ means

P�N�B1� = n1� 
 
 
 �N�Bk� = nk� = P�Nx�B1� = n1� 
 
 
 �Nx�Bk� = nk�

= P�N�B1 − x� = n1� 
 
 
 �N�Bk − x� = nk��

(1.6.2)

where the first equality in the second line holds because Nx�B�=N�B −x� for all B
and x, where B − x = �y − x � y ∈B is the set B shifted by vector −x. (The number
of points resulting from fixing the observation set B and counting the points of the
shifted process Nx is equal to the number of points obtained when fixing the point
process and shifting the observation set in the opposite direction.) Equation (1.6.1)
implies

N�B�
d= N�Bx� for all B and x� (1.6.3)

i.e. the numbers of points in B and in the shifted set Bx have the same distri-
bution. This has important consequences for the distributional characteristics of
the point process. In particular, the intensity measure simplifies substantially (see
Section 4.1):

��B� = �	�B�� (1.6.4)

i.e. the intensity measure is a multiple of the area or volume. The constant � is
called intensity or point density and may be interpreted as the mean number of
points per unit volume.
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Note that some readers may prefer the term ‘homogeneous’ to ‘stationary’. Use of
the term ‘stationary’ is linked to the use of the term ‘point process’ rather than ‘point
field’. The physicist Torquato (2002) uses the term ‘statistically homogeneous’,
since many physicists and engineers use the word ‘homogenous’ in a different way.
To them homogeneous means ‘uniform’ in a sense which is natural but difficult to
quantify. In this context, the point patterns in Figures 1.2 and 1.3 would perhaps be
interpreted as ‘homogeneous’, but those in Figures 1.4 and 6.3 would not. However,
the term ‘stationary’ is used in this book in a sense such that all four patterns are
likely to be regarded as samples from stationary point processes.

In terms of the design approach, stationarity means that the chance of observing
some point configuration at a specific location is independent of the location.

A point pattern may deviate from stationarity in several ways:

• The intensity function ��x� or point density may not be constant but vary
systematically. Consider, for example, the tree density in mountain forests,
which decreases with increasing altitude, or see Figure 4.49.

• The local point configurations may be location-dependent. For example, in a
cluster point process the cluster size may be location-dependent, or the points
may be aggregated within one subregion and random in another. The marks
may also be location-dependent. For example, in mountain forests some tree
species may not grow in higher altitudes.

Note that it is impossible to prove rigorously that a specific point pattern
is a sample from a stationary point process. Statistical tests can assess only
some aspects of stationarity but never all. In other words, accepting the station-
arity hypothesis for a given point pattern based on some test is only a neces-
sary condition. Some point patterns look deceptively non-stationary even though
they are samples from stationary processes, in particular for small observation
windows. Consider, for example, a cluster process with large clusters observed
in a small window such that it can contain at most one cluster. Similarly,
samples from a non-stationary process may exhibit a local behaviour that is
similar to the behaviour of a stationary process. For these reasons it is very
helpful to justify stationarity based on non-statistical scientific arguments. In
forestry, for example, an argument in favour of using methods for stationary
processes might be that soil and climatic conditions do not vary within a research
plot.

In many applications which are aimed at exploring the interaction among points
the observation window may be chosen prior to the analysis. In this case, one may
try to choose a homogeneous sample, in order to guarantee stationarity as an a
priori property.

Isotropy is a concept that is analogous to stationarity. Rather than translations
by vectors, rotations around the origin are considered here. In the planar case a
rotation is described by an angle � between 0� and 360�. If x = ����� is a point in
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�2 having the coordinates � and � then the rotated point R�x has coordinates

�� = � cos � + � sin � and �� = −� sin � + � cos � �

A point process N is called isotropic if

N = �x1� x2� 
 
 
  and R�N = �R�x1�R�x2� 
 
 
 

have the same distribution for all �.
A point process that is both stationary and isotropic is called motion-invariant.

The distribution of these processes is invariant also with respect to rotations around
arbitrary points.

Note that there are processes which are non-stationary but isotropic with respect
to a fixed location. A good example of this are the locations of fungi around a tree
(see Byth, 1981; see also ‘centred processes’ in Section 3.3 below). Sections 4.5 and
5.4 present methods for analysing anisotropies in point patterns entitled ‘orientation
analysis’.

Weaker stationarity properties are sometimes assumed, e.g. certain forms of
‘second-order stationarity’. This means that a process is not stationary but its
second-order characteristics behave similarly to those of a stationary process; see
Section 4.10.

1.6.4 Ergodicity

In addition to stationarity (or motion-invariance) ergodicity is also frequently
assumed in point process statistics. If a point process is ergodic, it suffices to
analyse one sample (i.e. one point pattern) of an appropriate size to obtain statis-
tically meaningful results. Physicists would express this as ‘the spatial average is
equal to the time average’. In other words, the average over one large sample yields
the same result as the average resulting from many (small) samples. For example,
for ergodic point processes

lim
W↑�d

N�W�

	�W�
= � with probability 1� (1.6.5)

Here � is the intensity of the point process N , the mean number of points in the
unit square or cube, which in this book is denoted by 1 . The expression W ↑�d

means that the window W converges in a reasonable sense towards the whole space;
for example, W contains a sphere of radius r and r converges to �. A precise
definition of ergodicity is beyond the scope of this book; see Stoyan et al. (1995).
Note however that the model approach and the design approach yield the same
results if a specific point process is ergodic.

An example of a non-ergodic point process is a process the samples of which
are samples of stationary processes of intensity �i with probability pi for i = 1, 2
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and p1 + p2 = 1 and different intensities �1 and �2. This process is stationary, but
(1.6.5) does not hold as the limit results in either �1 or �2. Lattice point processes
where the points are at the nodes of a regular lattice, which may as a whole be
randomly positioned in the space, are not ergodic either. A homogeneous Poisson
process (see Chapter 2) is ergodic.

A sufficient condition for ergodicity is the following mixing property. A stationary
point process N is mixing if, for all point process properties � and �,

P �‘N has the property � and Nx has the property �’�

→ P (‘N has the property �’) P (‘Nx has the property �’), as 	x	 → ��

Nx is the point process N translated by the vector x (see p. 37). For example, �
may mean that the sphere b�o� r� of radius r centred at o does not contain any point
and � may mean that the same sphere contains two points. Then, for a mixing N ,

P�N�b�o� r�� = 0�N�b�−x� r�� = 2� → P�N�b�o� r�� = 0� · P�N�b�o� r�� = 2��

In some sense, mixing means that distant parts of a point process are independent.

Gaussian distributions, central limit theorem

A famous theorem in probability theory says that the sums of many random variables
are asymptotically normally distributed. Similar theorems have also been proved
for the numbers of points in large windows (which can be regarded as numbers of
points in many subwindows); see Ivanoff (1982), Heinrich and Schmidt (1985) and
Heinrich (1986).

1.7 Summary characteristics for point processes
One of the most important objectives in all areas of statistics is to summarise
data sets, i.e. to describe samples by a small number of numerical and functional
characteristics. In classical univariate statistics, these characteristics include x, s2

and the empirical distribution function F̂n�x�. Summary characteristics have an
important role in exploratory data analysis, since they reveal valuable information
and describe important characteristics of the underlying distribution and may be
used to identify suitable stochastic models. Typically, they are empirical analogues
or estimators of theoretical characteristics such as the mean EX, the variance varX
and the distribution function F�x�. Not surprisingly, summary characteristics have
also been defined and frequently used in point process statistics.

The summary characteristics discussed in the context of spatial point processes
may be classified in two ways. One may consider numerical or functional but also
location-related or point-related summary characteristics. In this chapter only a few
examples of summary characteristics for stationary point processes are discussed
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in order to introduce general ideas. Throughout this book summary statistics are
discussed in more detail and for different types of processes.

1.7.1 Numerical summary characteristics

The most important numerical summary characteristic for a stationary point process
is the intensity �, the mean number of points per unit area or volume. Intensity may
be interpreted as a location-related characteristic: consider a test point or location
x and the mean number of points in the sphere b�x� r� with some radius r. This
is �	�b�o� r�� = �bdrd, where bd is the volume of unit sphere, i.e. this mean is
essentially given by �.

Many other numerical summary characteristics are point-related. If the points are
marked by real numbers, the mean mark is an important point-related characteristic.
Valuable characteristics may be defined based on constructed marks. For example,
the distances d�x� to the nearest neighbours of the points x may be used to calculate
the mean nearest-neighbour distance mD, a useful point-related numerical summary
characteristic. The corresponding location-related characteristic is the mean distance
from a test location to the nearest point process point.

A particularly important class of numerical summary characteristics are the
indices that have typically been developed in biological contexts, and are often
referred to as competition indices. They are usually point-related indices and are
based on constructed marks using the points in some zone of influence or local
neighbourhood of the reference point. This zone of influence can be determined
either based on the k nearest neighbours or on a disc whose radius r determines
the distance up to which the individual represented by the reference point interacts
with neighbouring individuals. The constructed mark c�xi� for the reference point
xi is defined as

c�xi� =
k∑

j=1

cij or c�xi� =
ni�r�∑
j=1

cij�

where

cij = f�	xi − xj	�m�xi��m�xj���

i.e. cij is calculated by means of a function f using the distance between the points
xi and xj and their marks; ni�r� is the number of points in the disc b�xi� r�. The
index is then the mean mark corresponding to c�xi�.

Consider, for example, the mingling index Mk based on

Mk�xi� = 1
k

k∑
j=1

1�m�xi� �= m�xj��
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for the case of discrete (integer-valued) marks (see Section 5.2.4 for more details).
Here Mk�xi� is simply the proportion of the k nearest neighbours of xi having a
mark different from that of xi.

1.7.2 Functional summary characteristics

Probably the most important location-dependent functional summary characteristic
is the spherical contact d.f. Hs�r�.3 The ‘location’ x is used as the centre of a disc
or sphere of radius r and the characteristic describes the probability that b�x� r� is
not empty, that it contains at least one point of N . When stationarity is assumed
it suffices to consider x = o. (Or, in design-approach terminology, the observation
point is used as the origin of the coordinate system.) Thus

F�r� = Hs�r� = 1 − P�N�b�o� r�� = 0� for r ≥ 0 �

Important point-dependent functional summary characteristics are the nearest-
neighbour distance d.f. D�r�4 and Ripley’s K-function K�r�. These describe the
distribution of the distance from the points to their nearest neighbours and the
mean number of points within distance r from points, respectively. A precise
definition of these is based on the theory of Palm distributions; see Section 4.1.
Mark distributions of constructed marks such as the c�xi� above may also be used
as functional summary characteristics.

1.8 Secondary structures of point processes
1.8.1 Introduction

In the analysis of a spatial point pattern it can be very useful to apply methods
that, strictly speaking, do not form part of point process statistics. To this end,
new geometrical structures (referred to as ‘secondary structures’ in the following)
are constructed based on the points in the pattern, and statistical methods suitable
for the specific type of geometric structure are applied. The following secondary
structures have been successfully used in this context:

• random sets,

• random fields (in particular, shot-noise fields),

• tessellations (in particular, the Voronoi tessellation),

• networks or graphs (in the graph-theoretic sense).

3 In the literature F�r� is often used for the spherical contact d.f., also called the empty-space function. The H in the
symbol used here refers to ‘hit’.
4 The nearest-neighbour distance d.f. was originally denoted G�r� by Diggle (1979), apparently simply because G

follows F in the alphabet. The alert reader will recall that G denotes the point density d.f. in this book. The D used
here refers to ‘distance’.
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The first two approaches assign a regionalised variable to a point process, i.e.
a variable that has a value at every location in space. Applications include the
analysis of correlations between point processes and covariates that are repre-
sented by regionalised variables, e.g. the correlation between the density of plant
positions and other spatial variables. Refer to Example 6.7 for an ecological appli-
cation. This section introduces each of the four secondary structures listed above
in detail.

1.8.2 Random sets

A random set X is a set in the sense of mathematical set theory which depends on
chance. Rigorous definitions of random (closed) sets can be found in Molchanov
(2005) and Stoyan et al. (1995). The following is an important example, which is
highly relevant in the context of point process statistics, is easy to understand and
does not require reference to mathematical theory. Let N be a point process in �2.
Take the points of N as centres of (closed) discs and consider the union of all these
discs. This results in a pattern that is similar to the example shown in Figure 1.11.

The random set Xr may be described mathematically as

Xr = ⋃
x∈N

b�x� r� = N ⊕ b�o� r�� (1.8.1)

where ⊕ denotes Minkowski addition; see Appendix B. In stochastic geometry this
set is called a germ–grain model, where the ‘germs’ are the points x of N and the
‘grains’ are the discs b�x� r�. In the special case of a Poisson process the random

Figure 1.11 A set assigned to a point pattern. All points in Figure 1.5 are assigned
discs of constant radius r, which can overlap, and the union is the set Xr shown in
grey. This set provides interesting further information on the original point pattern.
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set is called a Boolean model (with circular grains). Closed formulas are known for
this model. Clearly, the model can be easily generalised to the three-dimensional
and the general d-dimensional case.

But what additional information do these random sets provide to make them
worth considering? Moving from a point process to a random set is useful since the
random set describes aspects of the point distribution that other methods do not.

For example, returning to the random set shown in Figure 1.11, one may want
to consider the area of the set Xr or its boundary length. The first approach
results in a well-known functional summary characteristic, the spherical contact
distribution function Hs�r�. Both this function and the second approach are discussed
in Section 4.2.5. In addition, the topological properties of Xr may be analysed. For
example, the Euler number of Xr or the r-connectedness of the points of N may
be considered: two points of the point process are called r-connected if they are in
the same component of Xr , i.e. if the points can be connected by a curve that lies
entirely in the set Xr . It is particularly useful to consider statistical characteristics
related to these properties, which depend on the radius r, as described in Mecke
(2000).

1.8.3 Random fields

A random field �Z�x� is a family of random variables as explained in Appendix C
and in books on geostatistics. In contrast to marked point processes, where the
values m�xi� of the marks are given only for points xi of the process, a random field
has values Z�x� in all x ∈�d. Therefore random fields are also called regionalised
variables. For a random set X one may put Z�x� equal to 1 if x∈X and 0 otherwise.

In point process statistics, random fields are secondary structures that result from
regionalisation operations such as those described below. They are used to describe
natural or technical spatial relationships between the points or have service functions
in statistics such as the Bitterlich field in Section 5.2.2. An important application
is the analysis of long-range correlations and correlations with covariates. In this
context powerful geostatistical methods can be applied; see Chilès and Delfiner
(1999) and Mandallaz (2000).

In the simplest and most important approach random fields are constructed based
on point counts,

Z�x� = N�B + x�� (1.8.2)

or mark sums,

Z�x� = ∑
�xi�m�xi��∈M

1B�xi − x�m�xi�� (1.8.3)

In the first case the value of Z�x� is equal to the number of points of N in the set
B + x; if B = b�o� r� then Z�x� is the number of points in the sphere of radius r
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centred at location x. In the second case a marked point process with quantitative
marks m�x� is considered. The value of Z�x� is the sum of the marks of the points
of M in the set B +x; if B =b�o� r� then Z�x� is the sum of the marks in the sphere
of radius r centred at the location x.

More general and more interesting is what is called the shot-noise field �S�x�.
This random field describes a structure which results from the superposition of
(random) impulses, also called responses or effects, which are related to the points
of a (marked) point process N (M). These impulses are usually assumed to be
homogeneous, i.e. they only depend on the mark of the point and the difference
x − xi of the location x of interest and the point xi. Then s�x − xi�m�xi�� is the
contribution of point xi to S�x�. Formally, s�x�m� is the contribution of a point
at origin o with mark m. In many cases a suitable name for the impulse function
s�x�m� is attenuation function, as its value decreases with the distance of x from
o and really does describe an attenuation process. The s�x�m� corresponding to
(1.8.3) is 1B�−x�m.

Superposition of the impulses of all points yields a shot-noise field:

S�x� = ∑
�xi�m�xi��∈M

s�x − xi�m�xi�� for x ∈�d� (1.8.4)

An important special case is

s�x − xi�m�xi�� = m�xi�f�x − xi��

where f is a probability density function. In this approach the ‘point mass’ m�xi�
is continuously distributed around xi.

However, there are also situations where the superposition follows the max-rule,
i.e. the value at x is the maximum of the s�x − xi�m�xi��,

M�x� = max
�xi�m�xi��∈M

s�x − xi�m�xi�� for x ∈�d�

multiplicative superposition may also be considered, e.g. in the context of resource
interference; see Wu et al. (1985).

Usually, the main aim is to determine characteristics of �S�x�. Some formulas
are given in Section 6.9 for the stationary case and independent marks. However,
sometimes it is also interesting to know the value of S�x� at a typical point of the
point process N .

Example 1.3. Shot-noise fields

(1) Seed density. The points in N represent parent plants that disperse their seeds
according to s�x − xi�m�xi��. This results in a random seed density field
�S�x�, where S�x� is the seed density at the (deterministic) point x, e.g. the
number of seeds in some quadrat centred at x.
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(2) Competition load (Adler, 1996). The points in N again represent plants but
now each plant competes with its neighbours. Clearly, the strength of the
competition decreases with distance from the reference plant and a given
point is influenced by the competition load from all its neighbours. The
result is a random competition field �S�x�, where S�x� is the sum of the
competition contributions from all plants in the vicinity of location x. In
this context, the attenuation function s�x�m� is called a ‘local competition
function’. In this example the value of the random field at a location x is
probably less important than the total competition strength on the plants, i.e.
the values S�xi� for xi ∈ N .

(3) Signal power in wireless communication (Baccelli and Blaszczyszyn, 2001;
Baccelli et al., 1997). The points xi in N are fixed or mobile base-transceiver
stations and the ‘impulses’ correspond to the signals emitted by antennas. A
user of the communication network at location x is interested in the strength
of the signals coming from the different antennas. The strength of the signals
depends on the distances from the antennas and on noise. Of great interest
is the existence of an antenna xi with

s�x − xi�m�xi��

/∑
k �=i

s�x − xk�m�xk�� > �i �

where �i is the so-called pilot-to-noise ratio of xi.

The main benefit of referring to random fields is the fact that strong statistical
methods have been developed for random fields which, by this approach, may also
be exploited for point processes. See, for example, the remark on pair correlation
function estimation on p. 233. Shot-noise fields are also used to construct point
process models, the so-called shot-noise Cox processes; see Section 6.4.1.

1.8.4 Tessellations

A tessellation or mosaic divides the plane into non-overlapping polygons, or the
space into polyhedra. Figure 1.12 shows an example of such a structure. Tessel-
lations are often used as auxiliary structures, supporting the statistical analysis of
point processes. In addition, tessellations are also relevant in the context of efficient
computation algorithms and intensity estimation.

Perhaps the most important tessellation model is the Voronoi tessellation. Moti-
vated by issues in number theory, Dirichlet (1850) and Voronoi (1908) considered
regular tessellations of planes and higher-dimensional spaces. Dirichlet and Voronoi
tessellations appear to have been applied independently in meteorology (Thiessen
and Alter, 1911), metallurgy (Johnson and Mehl, 1939; Kolmogorov, 1937) and
ecology (Matérn, 1960, 1986; Pielou, 1977); see Okabe et al. (2000), the standard
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Figure 1.12 The Voronoi tessellation for the pattern of Phlebocarya (see
Figure 1.4). All cells are convex polygons, and their area is small in regions of high
point density.

‘handbook’ on the theory and application of tessellations,5 for a historical sketch
of the development of ideas.

The Voronoi tessellation is constructed with respect to a point process N in �d.
Almost all x in �d have a unique nearest point n�x� in N . The cell T�y� of a point
y of N is defined by

T�y� = {x ∈�d � n�x� = y
}

�

The points on the boundary of cells have two or more nearest points in N . The
cells T�y� are all convex polygons but some can be unbounded. If all the polygons
are bounded then the T�y� constitute a tessellation of �d, the Voronoi tessellation
relative to N . Some authors refer to the d = 2 case as the Dirichlet or Thiessen
tessellation; in this book the term Voronoi tessellation is always used.

If N is a stationary point process with finite positive intensity �, then almost
surely all the T�y� are bounded such that the corresponding Voronoi tessellation
is indeed a random tessellation. In this case the tessellation is also stationary. The
mean cell area or volume E�A� or E�V� is

E�A� = 1
�

or E�V� = 1
�

� (1.8.5)

5 Those references cited in this paragraph and not listed at the back of this book may be found in Okabe et al. (2000).
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Figure 1.13 The Delaunay tessellation with respect to the pattern of Phlebocarya
discussed in Section 1.2.3. Compare with Figure 1.12.

Voronoi tessellations are used in the data analysis of geometrical structures;
see Chiu (2003). These tessellations have been successfully applied to packings
of hard spheres. Finney (1979) uses the term ‘polyhedral statistics’; see also
Medvedev and Naberukhin (1987). Sibson (1980, 1981) describes the use of
Voronoi tessellations derived from point patterns as a basis for ‘natural neigh-
bour interpolation’ – interpolating a smooth function for data located at irregularly
distributed points; see also Okabe et al. (2000) and Bernardeau and Van de Weygaert
(1996). Thiessen and Alter had this in mind when they originally suggested this
tessellation.

In point process statistics, distributional properties of the cells and of the
tessellation as a whole are used. An important example is the cell area distri-
bution, which, of course, depends on the distribution of the underlying point
process and may characterise it. Unfortunately, this approach is rather prob-
lematic as almost all known formulas for Voronoi tessellations only apply if
N is a stationary Poisson process. Some of these formulas are presented in
Section 2.5.3.

Today, Voronoi tessellations can be straightforwardly constructed with soft-
ware based on efficient iterative algorithms that is freely available through the
internet.

If N is a point process where, as for the Poisson process, almost surely every node is
touched by exactly three cells (in the planar case) or by exactly four cells (in the spatial
case), another tessellation can be constructed, the Delaunay tessellation or triangula-
tion (see Figure 1.13). In the planar case it is constructed from the triangles formed by
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the points of the point process whose cells share the same node. In this book, the
Delaunay tessellation is regarded as a special type of point network and discussed
below together with other networks.

Note that there are also tessellations of a quite different nature in which every
point in a pattern is allocated a ‘cell’ of equal area or volume; see Hoffman et al.
(2006) and Figure 1.14.

1.8.5 Neighbour networks or graphs

A graph (in the sense of graph theory) is a system of points, called vertices,
which are connected by edges usually shown as straight-line segments. This book
considers geometrical graphs the vertices of which are the points of a given point
process N , with (undirected) edges that are either given a priori or constructed by
some specified rule based on the local point configuration; see Marchette (2004),
Penrose (2003, 2005) and Penrose and Yukich (2001). These graphs are called
neighbour networks. Examples where edges are given a priori include (1) forests
with trees with overlapping crowns, where the corresponding points are joined by
edges, (2) hard spheres in direct contact and (3) neighbours in Gibbs processes.

Figure 1.14 The ‘stable tessellation’ for a sample of a Poisson process with
periodic boundary conditions. Every cell has the same area, but not all cells are
connected. The figure shows the generating points with the allocated areas. Concen-
tric circles around the points are used to aid the identification of the cells. Data
courtesy of A. E. Holroyd.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 1.15 Various graphs for the point pattern of Figure 1.5 of waterstrider posi-
tions: (a) G�N� r�, (b) Gabriel graph, (c) sphere-of-influence graph, (d) 1-neighbour
graph, (e) 4-neighbour graph (f) 8-neighbour graph, (g) minimal spanning tree and
(h) radial spanning tree.

The latter is illustrated in Figure 3.21. Some of the graphs may be used to detect
short-range correlations in point processes or help to detect clusters or anomalies
in point patterns.

Figure 1.15 shows some graphs constructed for the point pattern of positions of
waterstriders in Figure 1.5. These graphs show interesting differences and provide
information on different properties of the pattern. For example, the 4-neighbour
graph (Figure 1.15(e)) and sphere-of-influence graph (Figure 1.15(c)) indicate holes
or gaps in the pattern. Graphs are also valuable tools in exploratory statistics of
finite point processes; see Marchette (2004).

In the following, eight different graphs for a point process N are briefly described.

1. Disc or sphere graph G�N� r�. This graph inserts an edge between two points
x and y in N whenever the distance between x and y is smaller than (or
equal to) r, 	x − y	 ≤ r.

2. Delaunay tessellation. The easiest way to understand this graph is to regard
it as the dual tessellation of the Voronoi tessellation as explained at the end
of Section 1.8.4.

3. �-hull. This graph inserts an edge between two points x and y in N whenever
there is a disc of radius � centred at a suitable location such that x and y lie
on the disc boundary, and there is no point of N in the interior of the disc.
(In three dimensions the disc is replaced by a sphere; see Edelsbrunner and
Mücke, 1994.)
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4. Gabriel graph. This graph inserts an edge between two points x and y in N
if the closed disc (sphere) centered at �x + y�/2 does not contain any other
point in N . (Note that �x + y�/2 is the midpoint of the line connecting x and
y.) The Gabriel graph is a subgraph of the Delaunay triangulation, i.e. every
edge of the Gabriel graph is also an edge of the Delaunay graph.

5. k-neighbour graph. This graph inserts an edge between two points x and y
in N whenever y is one of the k nearest neighbours of x (or x is one of the k
nearest neighbours of y), for k= 1, 2, � � � . If the kth nearest neighbour is not
well defined (i.e. there is more than one point with the same distance), then
some rule is used to define the neighbour, e.g. the lexicographic ordering of
the point coordinates. A similar graph is considered in Chiu and Molchanov
(2003). There each point in N is connected to its nearest neighbour, then
to its second nearest neighbour, and so on until the point is contained in
the interior of the convex hull of these nearest neighbours. The degree of
the typical point in N is a useful concept for separation of clustering and
repulsion behaviour of point processes.

6. Sphere-of-influence graph. The sphere of influence Sx of a point x of N is
the sphere b�x�d�x�� of radius d�x� centred at x, where d�x� is the distance
to the nearest neighbour of x. The sphere-of-influence graph inserts an edge
between x and y if and only if the spheres Sx and Sy overlap.

7. Radial spanning tree. This graph is a tree in the graph-theoretic sense (non-
directed, acyclic and connected), which is defined with respect to one partic-
ular location called the ‘origin’ o, which is not a point in N ; see Baccelli and
Bordenave (2007). N is assumed to be irregular, i.e. not to form a lattice.
In this graph every point is linked with its nearest neighbour among those
points which are nearer to o. The construction leading to the radial span-
ning tree is local and, unlike the graph in (8), does not minimise any global
functional.

8. Minimal spanning tree. Assume first that N is finite. Then the minimal
spanning tree is the connected graph with vertex set N of minimal total edge
length. In the general case the minimal spanning tree is a graph with vertex
set N and is defined as follows: an edge is inserted between the vertices x
and y if and only if x and y are in different components of G�N�	x − y	� ,
and at least one of these components is finite.

If N is stationary (and isotropic), then graphs 1–6 are also stationary (isotropic)
for suitable definitions of stationarity (and isotropy) for graphs. Graphs 1, 3 and 5
depend on parameters r, k and �. The behaviour of graph characteristics (e.g. the
number of edges or components) dependent on these parameters provides valuable
structural information about N .

Neighbour networks have been applied in image processing, for segmenta-
tion, classification and identification of clusters and isolated points as well as for
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the detection of clusters, isolated points and gaps in point patterns. The graphs
discussed above can be constructed using the spatgraphs library in R; see
http://cran.r-project.org/doc/packages/spatgraphs.pdf.

1.9 Simulation of point processes
Traditionally, simulation methods were only rarely used within classical statistics.
Today this situation has changed mainly due to the increasing popularity of Bayesian
methods and Markov chain Monte Carlo (MCMC) techniques. However, in point
process statistics (stochastic) simulations have a long tradition and even simple
questions require the use of simulations, i.e. the generation of random point patterns
by means of random numbers. For this reason, simulation methods and algorithms
are introduced here and discussed frequently throughout this book.

This section discusses general principles of simulation in the context of spatial
point processes and specific aims of the approach. Simulation methods – or Monte
Carlo (MC) methods – are used for a number of different aims:

• Calculation of summary characteristics for point process models. Many
point process models are so complicated that explicit analytical formulas for
even the most fundamental summary characteristics such as the intensity or
second-order characteristics have not been found. Based on simulated point
patterns derived from these models, summary statistics can be estimated
statistically. For the applied statistician this has the benefit that these numeri-
cal approaches and algorithms are often much easier to understand than a
complicated probabilistic proof. Unfortunately, it requires some program-
ming but these days more and more MC software is becoming available, for
example in R.

• Goodness-of-fit tests for point process models. Simulation tests replace the
classical tests of mathematical statistics, which are not applicable in point
process statistics, since the relevant test statistics do not have the classical
distributions.

• Investigation of the behaviour of statistical methods. Simulation methods
may be used to assess the performance of statistical methods. These are
applied to simulated samples for point processes and the results are compared
to known characteristics of the underlying model, in order to evaluate the
methods and explore the sampling variation.

• Visualisation of point process models. Simulated samples from point process
models can be displayed and so provide a better understanding of the spatial
structures that may be generated from a particular model.

• Reconstruction and extension. In some applications, point pattern data have
not been collected for the entire window and simulated data may be used to
fill the ‘gaps’. In other cases, one might want to simulate a continuation of a
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specific pattern outside the observation window, in particular in the context
of edge correction.

In the following, some of the ideas underlying simulation methods in point process
statistics are introduced, in particular the idea of statistical tests based on simulations.

In the classical approach, univariate or multivariate data are often analysed based
on the Gaussian distribution. Its parameters can be estimated using simple unbiased
estimators, and distributions such as the t-, F - and �2-distribution are used for
significance tests. However, this becomes much more complicated in point process
statistics. The following uses an analogy from classical statistics to explain the
simulation approach.

Assume for the moment that you know:

• the formula for the p.d.f. of the Gaussian distribution,

f�x� = 1√
2��

exp
(

− �x − ��2

2�2

)
� (1.9.1)

• some method to generate random numbers from the distribution in (1.9.1);

• the ideas of parameter tests and goodness-of-fit tests, in particular the
Kolmogorov–Smirnov test.

However, you do not know:

• the formulas for mean and variance of the normal distribution, i.e.

EX = �� (1.9.2)

varX = �2� (1.9.3)

• the critical values z� of the Gauss test;

• the critical values k� of the Kolmogorov–Smirnov test .

You can still carry out satisfactory statistics if you apply simulation methods, using
a computer. The following explains how to proceed in the classical Gaussian case –
and it will turn out that these basic ideas are essentially the same for point process
statistics.

Probabilistic calculations

The calculation of means, moments and probabilities is an important problem, which
can be solved analytically using well-known formulas. This is usually not possible
in point process statistics. To understand the situation, assume that you want to
determine EX for the Gaussian distribution (1.9.1) without knowing formula (1.9.2).
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A simple approach is to generate k random numbers x1� � � � � xk corresponding
to (1.9.1) with the values of � and �2 of interest. Then you determine the sample
mean x. Due to the law of large numbers you expect that x approximates EX. You
will observe

x ≈ �

and might want to ask a mathematician to prove that (1.9.2) is indeed true.
In point process statistics, simple formulas for moments or probabilities do not

exist in most cases and a friendly mathematician can provide help in particular
by designing clever simulation algorithms; see Møller and Waagepetersen (2004).
Here, simulation is often the only way to find numerical values for summary
characteristics such as the intensity, the K-function, nearest-neighbour distance d.f.
or estimation variances.

Testing hypotheses by Monte Carlo or simulation tests

Parametric hypotheses. Assume you want to test the hypothesis H0 � � = �0

against HA � � �= �0 with known �2. (Of course, you do know that the Gauss test
solves this problem, but recall that for the moment this is assumed to be unknown.)
Proceed as follows: calculate x from the data x1� � � � � xn and then determine the test
statistic

z = x − �0

�

√
n � (1.9.4)

based on the idea that the difference x − �0 may be of interest for the test and that
it may be useful to normalise by �/

√
n, the standard deviation of the sample mean.

Then you want to compare the empirical z in (1.9.4) with the corresponding values
for a Gauss distribution with � = �0 and �2.

To do this, n Gaussian random numbers are simulated k times with parameters
�0 and �2 and the corresponding sample means xi for i = 1� � � � � k, and the zi are
calculated based on (1.9.4) using xi instead of x. If H0 � � = �0 is true, you expect
the zi to be ‘similar’ to z. The similarity is assessed by putting z and z1� � � � � zk

in increasing order. H0 � � = �0 is not very likely to be true if z has an extreme
position among the zi. More specifically, H0 is rejected if z is one of the �

2 �k + 1�
smallest or largest values. Here � is the error probability of the test. If k = 999
and � = 0�05 then the critical positions are 25 and 976, i.e. H0 is rejected if z is in
position 1–25 or 976–1000.

Goodness-of-fit tests. Assume you want to test the hypothesis H0 � F = F0, i.e.
that a d.f. of interest equals some d.f. F0, such as a Gaussian distribution with
parameters � and �2. You may use the basic idea of the Kolmogorov–Smirnov
test to compare two distributions based on the maximum difference. Assume that
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you do not have a formula for F0�x� but only know how to generate corresponding
random numbers.

The first step is the estimation of F0�x�. Generate a very large sample y1� � � � � ym

of m random numbers from F0 by simulation and calculate the empirical d.f.

F̂0�m�x� = #�yi ≤ x/m �

Then calculate the empirical d.f. for the data x1� � � � � xn,

F̂n�x� = #�xi ≤ x/n �

and calculate the test statistic D that is the maximum distance between the two
d.f.s. More formally, this difference is defined as

D = max� max
i=1� 
 
 
 �n

F̂0�m�xi� − F̂n�xi�� max
i=1� 
 
 
 �n

F̂0�m�xi� − F̂n�xi − 0� �

If D is ‘small’, H0 � F = F0 is likely to be accepted.
The decision whether D may be regarded as small is again made based on

simulation methods. Generate k samples of n random numbers from F0�x� to obtain
empirical d.f.s F̂n�l�x� and calculate

Dl = max� max
i=1� 
 
 
 �n

F̂0�m�xi�l� − F̂n�l�xi�l�� max
i=1� 
 
 
 �n

F̂0�m�xi�l� − F̂n�l�xi�l − 0�

for l = 1� � � � � k. Then put D and D1� � � � �Dk in increasing order. If D is one of the
��k + 1� largest values, you will conclude that D is not small and reject H0. For
k = 999 and � = 0�05 the critical position in the ordered series is �1 − ���k + 1� =
950, i.e. H0 is rejected if the value of D for the data is at a position that is more
extreme than 950.

Even though the simulation approaches to classical statistical problems outlined
above appear rather laborious and cumbersome, in the absence of closed-form
expressions for many characteristics this is the standard approach in point process
statistics. In other words, samples from point process models are generated and point
process summary characteristics such as the L-function or the nearest-neighbour
distance d.f. are used, instead of the d.f. F0 above.

There are some issues that are specific to the simulation approach in the context
of spatial point process statistics, however, and these are briefly outlined here.
Usually, a point process is observed and simulated in some window W . If the point
process of interest is stationary, i.e. the sample in W is considered to be a small
part of a much larger pattern, then the simulation has to consider the impact of
points outside W on the points within W . A common solution to this is to simulate
the process in a large window Wsim which contains W and to use only the points in
W as a sample.

Finite point processes can either have a random or a fixed number of points
n in W . If random, n is often generated first and then, conditional on n, the
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corresponding point pattern is simulated. However, some models are simulated by
MCMC methods where n fluctuates during the simulation.

Conditional simulation

In the context of probabilistic calculations it is necessary to simulate the model
under the given distributional conditions, for example as a stationary process or
with the prescribed distribution of the number of points. However, conditional
simulations are often used for statistical tests, where the number of points n is
fixed at the value observed in the original sample. In this case it is, of course,
important that the right conditional model is simulated. This issue is discussed in
Section 3.6 in the context of canonical and grand canonical Gibbs processes and
for other processes in other parts of the book.

Conditional simulation is also used if some of the point locations are given
and have to remain fixed. For example, a forester may measure tree positions and
attributes in some circular sample plots in a stand and may then want to simulate a
forest within the whole stand. Naturally, the locations of trees and their attributes
within the circles have to be fixed and the forest is simulated only outside the circle.
However, the relationships among the trees within and outside the circles have to
follow the same general rules everywhere. For example, the minimum inter-point
distance must not be violated.

Some general comments

In most cases, simulation methods can only be applied if a specific model can be
assumed and if an algorithm is known that can be used to simulate this model.
This book discusses in detail how an appropriate model may be identified for
empirical data.

Simulation may seem to be a ‘less mathematical’ way of solving problems to
the more mathematical reader. Nevertheless, it should be seen as a serious way to
obtain results, as it is a specific type of numerical mathematics.

Results derived from simulation are often exact, as exact as the user wants
them to be, depending perhaps on computing time. In contrast, approaches in
classical statistics are often not as exact as they appear to be, since they are based
on distributional assumptions which frequently do not hold, or use large-sample
assumptions, but the meaning of ‘large’ is not always clear.

This book discusses simulations without any discussion of the algorithms used
for random number generation. Within statistics, however, this is a topic of ongoing
research and a number of reliable algorithms have been developed. The text assumes
that the reader uses reliable software for this purpose. Refer to the literature on MC
methods, and see Fishman (1996), Gentle (2003), Manly (2006) and Ripley (1987)
for a detailed discussion.
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The homogeneous Poisson
point process

The Poisson process has a central role in point process statistics. It is
fundamental to any successful analysis of point pattern data that the
user is familiar with the basic properties of this process.

There are many situations in which the Poisson process is a suit-
able model, i.e. when the points are ‘randomly’ distributed in space.
In addition, it serves as a basis for the construction of more compli-
cated models. Perhaps even more importantly, the Poisson process is
a null or benchmark model that may be used as a reference model
to distinguish between point patterns exhibiting aggregation and repul-
sion. Finally, it admits analytical calculations of summary character-
istics and thus provides some understanding of the theory of point
processes.

Therefore, this chapter presents the theory and application of the
Poisson process systematically and in detail. The exposition starts with
the binomial point process, which is a finite variant of the Poisson
process and provides an easy introduction into its theory. Then the
Poisson process is defined and thoroughly investigated. A detailed justi-
fication is given as to why the Poisson process is the ideal model for
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complete spatial randomness. The simulation of the Poisson process
is easy to understand, but the derivation of the summary characteris-
tics is a little technical in places. However, the resulting formulas are
valuable tools in applications as they allow a comparison of empir-
ical characteristics with theoretical ones and facilitate the general
understanding of the various summary characteristics used throughout
this book.

Finally, issues of statistical inference are discussed – in particular,
tests of the CSR hypothesis. Testing this hypothesis is a central problem
in point process statistics. Indeed, when analysing a spatial point pattern
one aims to detect and quantify spatial structure, with the final aim
of relating it to underlying processes that have caused the observed
pattern. Hence, it is necessary to verify that an observed aggregation or
repulsion of points is really significant. Rejection of the CSR hypothesis
for a given pattern can indicate this and may then be followed by the
more complicated but also more interesting part of the point process
analysis.

2.1 Introduction
This chapter introduces the simplest and most important infinite point process
model: the homogeneous Poisson point process. More complicated models are
much easier to understand once this null model has been discussed in detail. In
addition, the Poisson process plays a central role in the theory of point processes
as a reference or null model, leading to direct statistical applications.

A specific point pattern may well exhibit various types of interaction between its
constituent points. For instance, the points may occur in clusters (see Figures 1.4,
1.9, 6.3 and 6.4) or may exhibit regularity (see Figures 1.2, 1.6, 6.7 and 6.23). In
addition, there may be a hard-core distance, i.e. a disc or sphere of diameter r0

around each point where no other points are located. In other words, a positive
minimal inter-point distance may be determined for a given pattern. All of the
above features may occur in combination in the same pattern. If neither of the
above interactions is found in a point pattern, it may be regarded as completely
spatially random. This property of a pattern is termed complete spatial randomness
(CSR). A theoretical model for patterns with this property forms an important basis
for comparison, as a null model and as a reference for the construction of summary
characteristics.

Furthermore, calculations may be carried out of the extent and probability of
fluctuations from the theoretical characteristics in samples. It is thus possible to
determine objectively whether a specific fluctuation in an observed pattern is
small enough to be considered insignificant, as it is a feature that might well be
observed in a pattern that is a realisation from a completely random point process
model.
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By imposing axioms concerning stationarity and lack of interaction that are
intuitively appealing, completely random processes can be characterised as Poisson
point processes. As a result, it is possible to decide whether a given pattern exhibits
spatial clustering or regularity or whether it may be considered CSR.

In addition, the Poisson process has a further role as a basic building block
for other more complicated models; see Chapter 6. The definition of many cluster
processes is based on Poisson processes, some hard-core processes result from
Poisson processes by thinning and Gibbs processes are defined with direct refer-
ence to Poisson processes. Therefore, simulation procedures for point processes
frequently comprise the construction of a Poisson point process, which is then
modified to yield the required form.

For the interested reader, a history of the concept of the Poisson process may be
found in Daley and Vere-Jones (1988, 2003). They report that the first recorded
use of the Poisson process in spatial statistics appears to be that of Abbe (1879) as
discussed in Section 1.3.2.

2.2 The binomial point process
2.2.1 Introduction

The binomial point process is the classical starting point for a discussion of CSR and
hence of the Poisson process. However, while intuitively appealing, the binomial
process does not suffice as a model for CSR. Nevertheless it is interesting as the
most simple non-trivial example of a spatial point process model, and the Poisson
process may then be considered to be a generalisation of the binomial process.
Furthermore, it is a null model for finite point processes; see Chapter 3.

A binomial point process consists of n points, which are randomly scattered
in a set W . The term ‘randomly’ means here that the n points x1� � � � � xn are
uniformly and independently distributed in W . The set W is assumed to be bounded.
Its area is denoted by ��W�, where the neutral symbol ‘�’ may also denote
volume, if W is a subset of �3, i.e. in the context of a three-dimensional spatial
pattern.

Consider first a single point randomly distributed in space. Whereas this yields a
very simple example of a trivial one-point pattern of no direct practical relevance, the
union of several of these points yields the binomial point process. More specifically,
a single random point x is uniformly distributed in W if

P�x∈A�= ��A�

��W�
(2.2.1)

for all subsets A of W . This equation means that the probability that x takes its
position in the subset A of W is equal to the ratio of the areas of the sets A and W .
This is the classical definition in the sense of geometrical probability.



60 The Poisson Process

Consider now a more interesting point process which consists of n points and
apply formula (2.2.1) for each of these points. This yields the binomial point process
for which

P�x1 ∈A1� � � � � xn ∈An�= P�x1 ∈A1� · · · · · P�xn ∈An�

= ��A1� · · · · · ��An�

��W�n
� (2.2.2)

where A1� � � � �An are subsets of W . This implies that all points are randomly
scattered in W and are independent of each other’s locations.

Figure 2.2 (on p. 64 below) shows the result of a simulation of a binomial point
process in W = 1 with n= 50 points.

If the points x1� � � � � xn form a binomial point process in W then the random
pattern formed by these points is denoted NW�n� . The ordering of the points is
ignored and NW�n� can be regarded as a random set.

The binomial point process NW�n� is the first non-trivial example of a point process
in this book. It is close to but not in every sense the model for CSR, as will be
shown below: in spite of the independence assumption in the construction there are
some spatial correlations in the pattern, which result from the fact that the total
number of points in W is fixed, i.e. equal to n. Only by assuming a random number
of points and extending the approach to the whole space can the right definition of
CSR be given.

2.2.2 Basic properties

The binomial point process NW�n� owes its name to a distributional property. If A is
a subset of W then the random number of points in A, denoted by NW�n� �A�, follows
a binomial distribution, with parameters n=NW�n� �W� and p=p�A�= ��A�/��W�.
More specifically:

P�NW�n� �A�= k�=
(
n

k

)
pk�1 −p�n−k for k= 0� � � � � n� (2.2.3)

Since the mean (or expected value) of a binomial distribution is np, the mean
number of points in A is

np= n
��A�

��W�
=���A��

where � is the mean number of points per unit area or volume, termed the intensity
of the binomial point process,

�= n

��W�
�
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In general, void probabilities are very important characteristics for point
processes. They are concerned with the event that a given set K is empty, i.e. that
it does not contain any point, and are given for the binomial point process by

P�NW�n� �K�= 0�= ���W�− ��K��n

��W�n
� (2.2.4)

where P�NW�n� �K�=0� is the probability that there is no point in the subset K of W .
In addition, some of the finite-dimensional distributions of the binomial point

process are given by a simple formula: if A1, � � � , Ak are disjoint subsets of W
with A1 ∪ · · · ∪Ak =W and if n1 + · · · + nk = n, then

P �NW�n� �A1�= n1� � � � �NW�n� �Ak�= nk�

= n!
n1! · · · · · nk!

· ��A1�
n1 · · · · · ��Ak�

nk

��W�n
� (2.2.5)

This distribution is the well-known multinomial distribution with parameters n,
p1 = ��A1�

��W�
, � � � , pn = ��An�

��W�
, which is familiar from the analysis of count data using

log-linear models. For overlapping sets A1, � � � , Ak the formula is more complicated
and will not be considered here.

Note that numbers of points in different subsets of W are not independent even
if the subsets are disjoint. This is due to the fact that NW�n� �A�=m directly implies
NW�n� �W \A�= n−m. Thus the number of points in one subset has influence on
the number of points in another subset, and hence these are not independent. This
demonstrates that the binomial point process is not sufficiently appropriate as a
model of CSR since the number of points is fixed. Therefore, it is necessary to
consider a suitable probability distribution of the random number of points, such
that the number of points in one subset cannot be predicted from the number of
points in another subset.

This distribution may be derived as follows. As noted, NW�n� �A� follows a
binomial distribution with parameters n and p�A�. The well-known Poisson limit
theorem yields the following: if the total number of points n tends to infinity and
the second parameter p�A� tends to zero in such a way that the product remains
fixed as np�A�=� · ��A�, then NW�n� �A� is asymptotically Poisson distributed with
mean � · ��A�. This limit can be obtained if the region W is enlarged to fill the
whole of �d while n is allowed to tend to infinity. If the ratio n/��W�=� remains
fixed as n increases and W is enlarged, then the Poisson limit will hold for NW�n� �A�
for any fixed bounded subset A of W . If there is a limiting point process N then it
should have the property:

N�A� is Poisson of mean � · ��A� for each bounded set A�
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As an implication of (2.2.5) such a limiting process should be the right model
for CSR:

N�A1�� � � � �N�Ak� are independent if A1� � � � � Ak are disjoint sets�

Hence the idea of assuming that the number of points in N is random and
follows a Poisson distribution leads to the CSR model. The following describes a
construction of this model that does not refer to limits; the limiting procedure above
is used only to aid understanding.

2.2.3 The periodic binomial process

Assume that W is the rectangle with left lower vertex at the origin o and sides of
lengths a and b parallel to x- and y-axis. Then the distributional properties do not
change much if W is transformed to the unit square 1 and the points xi = �	i�1� 	i�2�
become xi = �	i�1� 	i�2). Now assume that the resulting pattern in the unit square is
periodically continued in all other unit squares of the plane as shown in Figure 2.1,
or, more technically, consider in addition to the original points xi = �	i�1� 	i�2�
infinitely many copies xi = �	i�1� 	i�2� for all integers k and l. This pattern does not
change under translations which transform points with integer-valued coordinates
into points with integer-valued coordinates.

It makes sense to define functional summary characteristics for the periodic
binomial process that originate in the theory of stationary point processes (see
Chapter 4): D�r�, the distribution function of the distance from an arbitrary point in

W

Figure 2.1 A sample of a periodic binomial process. The patterns in all squares
are congruent.
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the pattern to its nearest neighbour; Hs�r�, the distribution function of the distance
from an arbitrary test point to its nearest neighbour in the pattern; and K�r�, the
mean number of further points of the pattern in a disc of radius r centred at an
arbitrary point of the pattern, divided by n. Note that the distances are measured
with respect to the torus metric as defined on p. 184. For 1 the functions can be
calculated as follows:

D�r�=

⎧⎪⎪⎨
⎪⎪⎩

1 − (1 −
r2
)n−1

for r ≤ 1
2 �

1 −
(

1 − √
4r2 − 1 + r2

(
4arccos 1

2r −

))n−1

for 1
2 <r ≤

√
2

2 �

1 for r>
√

2
2 �

Hs�r�=

⎧⎪⎨
⎪⎩

1 − (1 −
r2
)n

for r ≤ 1
2 �

1 −
(

1 − √
4r2 − 1 + r2

(
4arccos 1

2r −

))n

for 1
2 <r ≤

√
2

2 �

1 for r>
√

2
2 �

K�r�=
{

n−1
n

r2 for r< 1�

4 + n−1
n

r2 for 1 ≤ r<

√
2�

The proof of these formulas uses simple ideas of geometrical probability. Note
that in the calculation of D�r� and K�r� the reference point is excluded; therefore,
the exponent n− 1 and the factor n−1

n
appear; see the discussion at the end of

Section 2.5.2.

2.2.4 Simulation of the binomial process

As explained in Section 1.9, simulation is an important method in point process
statistics. This is due to the fact that for statistical inference it is often necessary to
simulate from a point process model. Therefore, here the simulation of a binomial
point process is described as a first simple example and as an introduction to general
principles. Further examples will show that simulation approaches are often similar
for more complex models and are based on the simple case considered here.

The simulation of a binomial point process is easily done by superpositioning
random points independently in the required region. It is straightforward to simu-
late a random point that is uniformly distributed in 1 . If �un is a sequence of
independent random numbers uniformly distributed in �0�1� then the points

xi = �u2i−1� u2i� for i= 1�2� � � � � (2.2.6)

form a sequence of independent random points uniformly distributed in 1 .
Figure 2.2 shows a sample of 50 points simulated in this way.

More generally, when patterns in a d-dimensional space are considered, a
sequence of random points uniformly distributed in the d-dimensional hypercube
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Figure 2.2 A simulation of 50 random points uniformly distributed in 1 .

�0�1�d is generated by the same mechanism, i.e.

xi = �u�i−1�d+1� � � � � uid� for i= 1�2� � � � � (2.2.7)

Translation and scale changes may be used to produce a sequence of points
uniformly distributed in any fixed rectangle or hypercube.

The simulation procedure described above is the method of choice for a large
number of cases in practice, as data have been collected on a rectangle or in a
cube in many applications and the binomial point process will have to be simulated
in a rectangle or cube. However, in some applications observation windows with
complicated shapes make the simulation approach slightly more difficult. Simulation
of a uniform random point in a bounded region W of arbitrary shape is tackled
using one of three main techniques, of which only the planar case is considered
here; all methods may be canonically generalised to higher dimensions.

(a) Rejection sampling. A rectangle R containing W is found and a sequence
of independent uniform random points is simulated in R. These are rejected
when they are outside W . The first point that falls in W is uniformly
distributed in W . To obtain a binomial point process the whole procedure is
repeated until n points have fallen in W , and these n points constitute the
sample of the binomial point process. To maximise efficiency, R should be
chosen to be as small as possible. Figure 2.3 illustrates the process. Note
that the total number of generated points including those that were rejected
is random.
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Figure 2.3 A simulated pattern of 19 random points in W based on the rectangle
in Figure 2.2. The points � are uniformly distributed in W and the points + are
outside W .

(b) Approximation. The region W is replaced by a disjoint union of k squares
(of equal or different sizes) approximating W . A random point distributed
uniformly in this union is simulated by choosing a square with proba-
bility proportional to its area and then simulating a random point uniformly
distributed in this square. Exact simulations for complicated regions may be
obtained by combining this technique with rejection sampling (a).

(c) Transformation of coordinates. If the region W exhibits some symmetry then
a transformation of coordinates may be useful. For example, if W is the unit
disc b�o�1�, a uniform random point can be described in polar coordinates

x= �r� �� for r in �0�1� and �∈ �0�2
��

The random variables r and � are independent; � is uniformly distributed in
�0�2
� and r satisfies the law

P�r � t�= t2 for 0 ≤ t≤ 1�

Thus, if u1 and u2 are independent random numbers uniformly distributed in
�0�1� then the formulas

r = √
u1 and �= 2
u2

provide a method for simulating x= �r� ��.
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Note that the binomial point process arises from the stationary Poisson point
process by conditioning on n; see property (e) in Section 2.3.2 for details. Conse-
quently, it is not necessary to discuss specific statistical methods for assessing the
hypothesis that a given point pattern is a realisation of a binomial point process;
one can apply the methods for stationary Poisson point processes described in
Section 2.7.

2.3 The homogeneous Poisson point process
2.3.1 Introduction

This section presents the formal definition of the homogeneous Poisson point
process, or homogeneous Poisson process for short. It follows straightforwardly
from the discussions in the previous section and it also essentially explains the
name of the process.

A homogeneous Poisson process N is characterised by two fundamental
properties which have been already mentioned as asymptotic properties in
Section 2.2:

(1) Poisson distribution of point counts. The number of points of N in any
bounded set B follows a Poisson distribution with mean � · ��B� for some
constant �; readers unfamiliar with the definition of the Poisson distribution
may refer to formula (2.3.2) and p. 106.

(2) Independent scattering. The numbers of points of N in k disjoint sets form
k independent random variables, for arbitrary k.

Property (2) is also known as the ‘completely random’ or ‘purely random’ property.
Note that this property does not hold for the centres of hard objects that are
randomly distributed in space. Models have been developed which may be suitable
for these patterns but they are beyond the scope of the Poisson process theory; see
Section 6.5.4 (the random sequential adsorption (RSA) model) and 6.6.1 (Gibbs
hard-core process).

The number � in (1) is the characteristic parameter, called the intensity or point
density, of the homogeneous Poisson process. It describes the mean number of
points to be found in a unit volume and is given by

� · ��B�= E�N�B�� for all bounded sets B� (2.3.1)

In the following, � is always positive and finite. (If �=0, the point pattern contains
no points and an infinite � corresponds to a pathological case.)



The Poisson Process 67

2.3.2 Basic properties

Let N be a homogeneous Poisson process with intensity �. Once the intensity
� is known, the whole distribution of the homogeneous Poisson process can be
determined from properties (1) and (2).

(a) One-dimensional distributions. Property (1) implies that

P�N�B�= n�= �n���B��n

n! exp�−���B�� for n= 0�1� � � � � (2.3.2)

This means that N�B� has a Poisson distribution with parameter ���B�.
(b) Finite-dimensional distributions. Properties (1) and (2) imply that if

B1� � � � �Bk are disjoint bounded sets then N�B1�, � � � , N�Bk� are independent
Poisson random variables with means ���B1�, � � � , ���Bk�. Thus

P�N�B1�= n1� � � � �N�Bk�= nk�

= �n1+ � � �+nk���B1��
n1 · · · · · ���Bk��

nk

n1! · · · · · nk!
exp

(
−

k∑
i=1

���Bi�

)
� (2.3.3)

From this formula the joint probabilities P�N�B1�= n1, � � � , N�Bk�= nk� may be
evaluated for general (possibly overlapping) sets B1, � � � , Bk.

(c) Stationarity and isotropy. A point process N = �xn is stationary if the
translated process Nx = �xn + x has the same distribution for all x in �d (recall
Section 1.6.3). A point process is isotropic if its distribution is invariant with respect
to rotations, i.e. N and rN = �rxn have the same distribution for every rotation r
about the origin. A process is motion-invariant if it possesses both these properties.
The homogeneous Poisson process N is defined by properties (1) and (2) above
and the specification of the intensity �. These properties and the characteristic �
are clearly invariant under rotation and translation. Therefore the homogeneous
Poisson process N has to be stationary and isotropic, that is to say, motion-invariant.
Typically, the older, more traditional name ‘homogeneous’ Poisson process is used
rather than the term ‘stationary’ Poisson process.

That the stationarity and isotropy properties do indeed hold may be verified
directly by establishing that the finite-dimensional distributions above remain the
same no matter whether one uses a homogeneous Poisson processN or its translation
Nx or its rotation rN .

The Poisson process has a further ‘conservation property’ with respect to linear
transformations, where the fundamental properties are retained but only the intensity
changes. This property has a quite natural interpretation and application. Consider
a pattern of trees observed as aerial images, where the images have been taken
at different heights and angles. This results in different patterns, which are linear
transformations of the same original pattern. If the true pattern is Poisson, then the
same is true for all transformed patterns, but the intensities (mean numbers of trees
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per unit area on the images) do of course differ. The difference in intensity can
easily be calculated such that the intensity of the original pattern can be determined.

More technically, the property is formulated as follows. Let A be a non-singular
linear mapping from �d to �d. If N is a homogeneous Poisson process with
intensity �, then AN = �Ax � x∈N is also a homogeneous Poisson process and its
intensity is � · det�A−1�, where det�A−1� is the determinant of the inverse of A.
A simple special case is the linear transformation

x= �	1� 	2�→
(
	1

a
�
	2

b

)
�

which transforms a rectangle of side lengths a and b into the unit square. Clearly,
the intensity of the transformed process is ab�.

(d) Void probabilities. The void probabilities vK of a point process are the
probabilities of there being no point of the process in given test sets K:

vK = P�N�K�= 0��

If N is a homogeneous Poisson process,

vK = exp�−���K��� (2.3.4)

The contact distribution functions are closely related to the void probabilities. An
important special case is the spherical contact distribution function as introduced
in (1.5.6),

Hs�r�= 1 − P�N�b�o� r�= 0��� (2.3.5)

By (2.3.4) this yields for the Poisson process case

Hs�r�= 1 − exp�−�bdrd� for r ≥ 0� (2.3.6)

This is the distribution function of the distance from o to the nearest point of N ;
see Section 4.2.5. The mean and variance of this distribution for d= 2 are given by

mD = 1

2
√
�

(2.3.7)

and

�2
D = 1


�
− 1

4�
� (2.3.8)

The idea can be generalised by considering an arbitrary set B with ��B�> 0 and
o∈B. The contact distribution function HB�r� (with respect to B) is given by

HB�r�= 1 − vrB = 1 − P�N�rB�= 0�� for r ≥ 0�
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It makes sense to consider, for example, the case of a rectangular B. The spherical
contact d.f. is HB�r� with B= b�o�1�.

(e) Conditioning and binomial point processes. Consider the restriction of the
homogeneous Poisson process N to a bounded set W conditional on N�W�= n.
This ‘conditioning’ yields a new point process which is actually the binomial point
process in W with n points.

This assertion can be proved by showing that the finite-dimensional distributions
of the two processes coincide. In fact, it suffices to consider only the void prob-
abilities. If K is a bounded subset of W then the void probability for K of the
conditioned homogeneous Poisson process is given by

P�N�K�= 0	N�W�= n�= P�N�K�= 0�N�W�= n�

P�N�W�= n�

= P�N�K�= 0�P�N�W \K�= n�

P�N�W�= n�
= ���W�− ��K��n

��W�n

by (a) after substitution and cancellation. This formula coincides with (2.2.4) for
the void probabilities of the binomial point process.

2.3.3 Characterisations of the homogeneous Poisson process

One may ask whether properties (1) and (2) are both necessary to completely
characterise a homogeneous Poisson process? Indeed, the properties are not logically
independent; see Kingman (1993). Rényi (1967) showed that property (1) implies
property (2); the Poisson distribution property forces the point process to have the
independent scattering property as described in (e) above. One may thus suspect
that property (2) is superfluous.

However, if property (1) is weakened, property (2) may be necessary for the
characterisation of the homogeneous Poisson process. More specifically, property
(2) does not follow from (1) if (1) holds only for the class of all connected
subsets of �d. Moreover, Moran (1976) shows that it is not enough to assume the
independence and Poisson distribution of counts of points in k arbitrary disjoint
convex sets for some fixed k. In particular, one can construct point processes with
Poisson counts in one size of quadrats which are nevertheless not Poisson processes
(Dale, 1999).

Another set of properties also characterises the Poisson process, and should be
borne in mind as it frequently provides a prima facie case for assuming that an
empirical point pattern is a realisation of a homogeneous Poisson process. This
characterisation asserts that a process must be a homogeneous Poisson process if
the following three properties are satisfied:

(i) Simplicity. Two points never coincide, i.e. the process is a simple point
process; see Section 1.5.

(ii) Stationarity. This has been defined above; see also Section 1.6.
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(iii) Independent scattering. This is property (2) as given at the beginning of this
section.

The most important condition is that of independent scattering. In effect, it asserts
that there is no interaction between the points of the pattern, and it may be
tested statistically. In some cases, independent scattering is suggested by under-
lying biological or physical theories. Whether this is plausible or not, it frequently
provides the starting point for a statistical analysis, even if only as a null hypothesis.

Note that a Poisson process is sometimes used as a ‘white noise’ process, corre-
sponding to the independent and identically distributed (i.i.d.) random variables
in a times series context, which model completely random disturbance effects.
A good explanation of the fact that point patterns often behave like samples of
Poisson processes is the Poisson convergence theorem which says that the super-
position of many thin point processes is a Poisson process (see Kallenberg, 2002,
Theorem 16.18).

2.4 Simulation of a homogeneous Poisson process
As the above sections have shown, many formulas have been derived for the Poisson
process and many important characteristics can therefore be calculated exactly.
Nevertheless, it is still important to be able to also simulate this process. There are
three main reasons for this:

• There are situations where even Poisson process characteristics are difficult
to obtain, for example in the context of tests, as shown in Section 2.7.7
below.

• The Poisson process is a building block for more complex processes. These
can often only be explored by simulation. The simulation of many more
complex models is based on the simulation of a Poisson process.

• To motivate the use of simulations in point process statistics and to facilitate
understanding, it might be helpful initially to use a simple example.

The starting point for the simulation of a homogeneous Poisson process in a
bounded set W is property (e) in Section 2.3.2 that conditioning on the total number
of points in W yields a binomial point process. As a result, once the total number
of points has been determined, simulation methods for the binomial process as
described in Section 2.2 may be applied.

Thus the simulation essentially consists of two steps. First, the number of points
in W is determined by simulating a Poisson random variable, and then the positions
of the points in W are determined by simulating a binomial point process in W
with the number of points determined in the first step.
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The following describes two possibilities for the first step, the simulation of a
Poisson random variable. Which of the two methods is more appropriate depends
on the mean � · ��W� one intends the simulated pattern to have.

If � · ��W� is small, a linear (or one-dimensional) Poisson process may be simu-
lated, exploiting the fact that for such a process the (one-dimensional) inter-point
distances are independent exponential random variables. For this purpose random
numbers ei from an exponential distribution with mean 1 are generated. This can
be achieved by applying the inversion method to uniform random numbers. If ui
is uniform on �0�1� then ei = − ln�ui� is as required. The desired Poisson random
variable is the smallest n for which

n+1∑
i=1

ei >� · ��W�� (2.4.1)

Since addition of logarithms is equivalent to multiplication, the Poisson variable
can be determined more elegantly by

n+1∏
i=1

ui < exp�−� · ��W��� (2.4.2)

If � · ��W� is large, some form of rejection technique can be used; see Devroye
(1986) and Ripley (1987). Alternatively, the central limit theorem may simply
be exploited. It states that for large �, a Poisson random variable with mean �
approximately follows a Gaussian distribution with mean � and variance �. This is
because the mean and variance coincide for a Poisson distribution. Thus a Gaussian
random number may be generated by well-known methods and then rounded to an
integer.

In the special case where W is a disc or a sphere, another method may be used
based on polar coordinates, as described on p. 65. This method, developed by Quine
and Watson (1984), is more elegant than the rejection method and is called ‘radial
generation’.

2.5 Model characteristics
2.5.1 Moments and moment measures∗

Just as moments are important characteristics for ‘standard’ random variables, so are
the corresponding entities for the Poisson process and for general point processes.
Section 1.5 shows that the moments of a point process are given by measures. These
moment measures are described here for the specific case of the homogeneous
Poisson process, where explicit formulas are known. These may appear rather
technical to the applied reader, who might prefer to skip this section. At a later
stage, however, when it has become clearer that the theory is relevant, it might be
useful to return to this section.
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Consider the homogeneous Poisson process N and take a bounded subset B of
�d. Then N�B� is a random variable with first moment or mean

���B�= E�N�B��� (2.5.1)

If B1 and B2 are two bounded sets, N�B1� and N�B2� are two random variables
with a non-centred covariance

��2��B1 ×B2�= E �N�B1�N�B2�� �

The second-order quantity ��2��B1 ×B2� is evaluated by using properties (1) and
(2) in Section 2.3.1 as follows. Note that both B1 and B2 may be decomposed into
disjoint unions

B1 = �B1 ∩B2�∪ �B1 \B2��

B2 = �B1 ∩B2�∪ �B2 \B1��

Applying property (2) and the fact that N satisfies

N�A∪B�=N�A�+N�B�

for arbitrary non-intersecting A and B, one can establish

��2��B1 ×B2�= E �N�B1�N�B2��

= E �N�B1 \B2�� · E �N�B2 \B1��

+ E �N�B1 ∩B2�� · E �N�B2 \B1��

+ E �N�B1 \B2�� · E �N�B1 ∩B2��+ E
(
�N�B1 ∩B2��

2
)

= E �N�B1�� · E �N�B2��+ E
(
�N�B1 ∩B2��

2
)

− �E �N�B1 ∩B2���
2 �

Property (1) ensures that N�B1 ∩B2� is Poisson with mean and variance E�N�B1 ∩
B2��. Using (2.5.1) the final formula can be derived:

��2��B1 ×B2�= E�N�B1��E�N�B2��+ E�N�B1 ∩B2��

=�2 · ��B1� · ��B2�+� · ��B1 ∩B2�� (2.5.2)

Thus, the second-order moment measure ��2� can be expressed in terms of � and
the volume measure �. Note that ��2� is a measure on �d ×�d.



The Poisson Process 73

Variances and covariances can be calculated directly from the second-order
moment measure (this is also true for general point processes). The relevant
formulas are

var�N�B��=��2��B×B�− �E�N�B���2�

cov �N�B1��N�B2��=��2��B1 ×B2�− E�N�B1�� · E�N�B2��

for all sets B, B1 and B2. These equations follow immediately from the definitions
of variance and covariance. In the case of the homogeneous Poisson process one
can use (2.5.2) or calculate directly from properties (1) and (2) to show that

cov�N�B1��N�B2��=� · ��B1 ∩B2�� (2.5.3)

Note that ��2��B1 ×B2� can also be expressed as the expectation of this sum:

��2��B1 ×B2�= E �#��x1� x2� � x1 ∈N ∩B1� x2 ∈N ∩B2�

= E

( ∑
x1�x2∈N

1B1
�x1�1B2

�x2�

)
�

That is, ��2��B1 × B2� is the mean number of pairs of points �x1� x2� in N with
x1 ∈B1 and x2 ∈B2.

The two terms in (2.5.2) correspond to the dissection of this sum into the sum
over distinct pairs of points x1, x2 ∈N and the sum over equal points x1 = x2 ∈N .
For some purposes it is convenient to subtract out the second of these terms. The
result is the second-order factorial moment measure ��2� given by

��2��B1 ×B2�= E �#��x1� x2� � x1 ∈N ∩B1� x2 ∈N ∩B2� x1 �= x2�

= E

( ∑�=

x1�x2∈N
1B1

�x1�1B2
�x2�

)
�

Here
∑ �= denotes the summation over all pairs �x1� x2� such that x1 �= x2.

Since the terms ��2��B1 ×B2� and ��2��B1 ×B2� differ only by the expectation
of the sum

∑
x1�x2∈N�x1=x2

1B1
�x1�1B2

�x2�=
∑
x∈N

1B1∩B2
�x��

we have

��2��B1 ×B2�=��2��B1 ×B2�+��B1 ∩B2��
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In the case of the homogeneous Poisson process,

��2��B1 ×B2�=�2 · ��B1� · ��B2�= E�N�B1�� · E�N�B2��� (2.5.4)

Thus the second-order product density ��2� has the very simple form

��2��x1� x2�=�2 for x1� x2 in �d� (2.5.5)

By analogy with higher-order moments for random variables, higher-order
moment measures may be defined for point processes. The nth-order moment
measure ��n� is a measure on �nd defined by

��n��B1 × · · · ×Bn�= E �N�B1� · · · · ·N�Bn��

= E

( ∑
x1� � � � �xn∈N

1B1
�x1� · · · · · 1Bn�xn�

)

for sets B1, � � � , Bn. The nth-order factorial moment measure ��n� is a measure on
�nd given by

��n��B1 × · · · ×Bn�= E

( ∑�=

x1� � � � �xn∈N
1B1

�x1� · · · · · 1Bn�xn�

)
�

where
∑�= denotes summation over n-tuples �x1� � � � � xn� of distinct points. The

corresponding nth-order product density ��n� is given by the simple formula

��n��x1� � � � � xn�=�n (2.5.6)

and ��n� has the form

��n��B1 × · · · ×Bn�=�n · ��B1� · · · · · ��Bn�� (2.5.7)

2.5.2 The Palm distribution of a homogeneous Poisson
process

In point process theory the so-called ‘typical’ point of a point process N is frequently
considered. Informally, this is a point that has been chosen by a selection procedure
in which every point of the process has the same chance of being selected. For
example, the nearest-neighbour distance distribution function D�r� describes the
distribution of the distance from a typical point x in N to the nearest point in
N \ �x, i.e. to the nearest neighbour of x in N . Mathematically, the idea of the
typical point is precisely described by means of the Palm distribution theory, as
sketched in Section 4.1. In intuitive terms, the Palm distribution probabilities are
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conditional probabilities of point process events given that a point (the typical point)
has been observed at a specific location.

There are two heuristic approaches to the definition of the Palm distribution. The
global approach is described in Section 4.1, while the local approach is used here.
It is demonstrated in the following example.

Calculation of the nearest neighbour distance distribution function for the
homogeneous Poisson process

Consider a conditional nearest-neighbour distance d.f. D��r�, i.e. assume that there
is a point of N in b(o, �). The conditional probability

D��r�= 1 − P�N�b�o� r� \ b�o����= 0 	N�b�o����= 1�

is the probability that the distance from a point in the small sphere b�o��� to its
nearest neighbour in N is smaller than r, under the condition that there is indeed a
point of N in the small sphere. It is well defined for positive � smaller than r, since

P�N�b�o����= 1�=�bd�
d exp

(−�bd�d)
is positive. Using the definition of conditional probability and property (2) of the
homogeneous Poisson process,

D��r�= 1 − P�N�b�o� r� \ b�o����= 0�P�N�b�o����= 1�
P�N�b�o����= 1�

= 1 − P�N�b�o� r� \ b�o����= 0�

= 1 − exp�−����b�o� r��− ��b�o�������

It is reasonable to regard the nearest-neighbour distance d.f. D�r� as the limit of
the above as �→ 0. Setting D�r�= lim�→0 D��r� yields the result

D�r�= 1 − exp�−���b�o� r���

or

D�r�= 1 − exp
(−�bdrd) for r ≥ 0� (2.5.8)

This result can be established in a rigorous way by means of the global approach;
see Stoyan et al. (1995).

The right-hand sides of (2.5.8) and (2.3.6) are equal, i.e. the spherical contact
d.f. and the nearest-neighbour distance d.f. of the homogeneous Poisson process
coincide,

D�r�=Hs�r� for r ≥ 0� (2.5.9)
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The mean and variance corresponding to D�r� in the case d= 2 are thus given by
(2.3.7) and (2.3.8).

The distribution functions D2�r�, D3�r�, � � � of the distances to the 2nd, 3rd, � � �
nearest neighbours are

Dk�r�= 1 −
k−1∑
j=0

exp�−�
r2�
��
r2�j

j! for r ≥ 0� (2.5.10)

and the corresponding probability density functions are

dk�r�=
2��
r2�k

r�k− 1�! exp�−�
r2� for r ≥ 0�

see Figure 2.4.
The corresponding jth moments are

mk�j =
��k+ 1

2 j�

�k− 1�!��
�j/2
for j= 1�2� � � � �

and the position of the mode (maximum of density function) is

rk =
√
k− 1

2

�

�

Similar to the case of D�r� above, the reduced second-order moment measure
function or Ripley’s K-function K�r� can also be calculated explicitly for the
homogeneous Poisson process. The term �K�r� is the mean number of points other

dk(r)

r

9
8
7
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4
3

1

10

2
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k

2 310

Figure 2.4 Density functions of the distances to the kth nearest neighbours for a
homogenous Poisson process of intensity 1, for k= 1, 2, � � � , 10.
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than the typical point in a ball of radius r centred at the typical point. In the Poisson
process case

�K�r�= E�N�b�o� r���� (2.5.11)

i.e.

�K�r�=�bdr
d

and so

K�r�= bdr
d for r ≥ 0� (2.5.12)

The so-called L-function is obtained by

L�r�=
(
K�r�

bd

) 1
d

as

L�r�= r for r ≥ 0� (2.5.13)

and, similarly, the pair correlation function g�r� is given by

g�r�= 1 for r ≥ 0� (2.5.14)

due to the general relation to K�r�,

g�r�= dK�r�

dr

/
dbd�

Using the symbol Po for the Palm distribution, formulas (2.5.9) and (2.5.12) can
be rewritten as

P�distance from typical point to nearest neighbour in N ≤ r�

= Po�distance from o to nearest neighbour in N ≤ r�

= P�distance from o to nearest neighbour in N ≤ r�

and

E�number of points in sphere of radius r around typical point,

which is not counted)

= Eo�N�b�o� r� \ �o��= E�N�b�o� r����
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This means that Palm characteristics of homogenous Poisson processes can be
calculated as stationary characteristics, if a point in the origin o is added to
N . This is the important Slivnyak–Mecke theorem, which states that the Palm
distribution of a homogeneous Poisson process coincides with that of the point
process obtained by adding the origin o to the homogeneous Poisson process. In
particular,

Po�N ∈��= P�N ∪ �o∈��

and

Eo�N�B��= E�N�B��+ 1B�o��

As in Section 1.6, � denotes a point process event; for example, ‘N ∈ �’ may
mean that the point process N has n points in some set B.

The above theorem will be applied repeatedly in this book. The interested reader
may find a formal proof in Stoyan et al. (1995). Heuristically, the theorem says that
the probabilistic behaviour of a homogeneous Poisson process is the same whether
it is seen from an independent test location or from a randomly chosen point in the
process.

A comparison of the formulas for D�r� and K�r� for the Poisson process and the
periodic binomial process reveals that these processes differ slightly. This shows
again that they do not model the same concept and hence that the periodic binomial
process is not an appropriate CSR model.

2.5.3 Summary characteristics of the homogeneous Poisson
process

This section provides an overview of the results for the characteristics of the
homogeneous Poisson process (see Tables 2.1–2.4). In practice, when a pattern’s

Table 2.1 Functional summary characteristics for the homogeneous
Poisson process.

Characteristic Formula Page

K-function, K�r� bdr
d 77

L-function, L�r� r 77
Pair correlation function, g�r� 1 77
Nearest-neighbour distance d.f., D�r� 1 − exp�−�bdrd� 75
Spherical contact d.f., Hs�r� 1 − exp�−�bdrd� 68
J -function, J�r� 1 91

�= intensity = point density, r = inter-point distance, bd = 2 (d= 1), 
 (d= 2) and 4
3
 (d= 3).
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Table 2.2 Numerical summary characteristics for the homogeneous
Poisson process.

Characteristic Numerical value Page

Index of dispersion, ID 1 195
Aggregation index, CE 1 196
Pielou index of randomness, PI 1 196
Mean-direction index, R4 1�799 93

Table 2.3 Formulas for the Poisson–Voronoi tessellation, planar case.

Characteristic Mean Variance

Cell area �−1 0�2802�−2

Perimeter 4
√
�/� 0�9455�−1

Number of vertices 6 1.7808

Table 2.4 Formulas for the Poisson–Voronoi tessellation, spatial case.

Characteristic Mean Variance

Cell volume �−1 0�179�−2

Surface 5�821�−2/3 2�19�−4/3

Number of vertices 27.071 43.99

properties are assessed with regard to CSR, these formulas are regularly applied.
They will also be used as a reference throughout this book when other processes
are compared to the homogeneous Poisson process.

Formulas for further tessellation characteristics may be found in Stoyan et al.
(1995). The exact distributions of area, volume, perimeter, surface, and edge number
are unknown. For volume and area, approximations have been derived which use
gamma distributions.

2.6 Estimating the intensity
The most fundamental statistical question for the homogeneous Poisson process
concerns the estimation of the intensity �, which is the only parameter in the model.
Several estimation methods are available. In a specific situation, the sampling
conditions determine which estimation method may be the most suitable.
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Counting method

If all points in the sampling window W can be counted, the number of points N�W�
divided by the area or volume ��W� of the window is the natural estimator:

�̂= N�W�

��W�
� (2.6.1)

This estimator has some nice statistical properties as it is unbiased and the maximum
likelihood estimator. Its variance is

var��̂�= �

��W�
� (2.6.2)

Note that �̂ is also unbiased for all stationary point processes, even for those that
are not Poisson processes; see Section 4.2.3.

Distance methods

In applications, it may be practically impossible (e.g. if it is too time-consuming)
to count all points. In this case, distance methods can be used. The idea behind
these methods is to measure the distances to points from deterministic test loca-
tions or from points in the process. Unfortunately, this old idea (see Section 1.3.1)
can only be applied with acceptable precision if the distribution of the point
process is known. As noted, the distribution is not explicitly known for most point
processes, and so the only case where it may be realistically applied is the Poisson
process.

Distance methods for the Poisson case are discussed in detail in Diggle
(2003) and Krebs (1998). Here, only the case of deterministic test locations is
considered, assuming that the distances between the locations are large enough
for the nearest-neighbour distances from the test locations to be approximately
independent.

Point-quarter method

More information can be obtained from each test location (indexed by j) by deter-
mining four nearest-neighbour distances, namely those in the north-east quadrant,
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h1j , � � � , and in the north-west quadrant, h4j . Under the assumption of a Poisson
process, for each of the test locations the nearest-neighbour distance in a quadrant
follows the distribution function

Hs/4�r�= 1 − exp
(
−


4
�r2

)
for r ≥ 0�

If the quadruplets of nearest-neighbour distances for different locations were inde-
pendent (which is not exactly true but holds approximately if the inter-test-point
distances are large) � can be estimated by the maximum likelihood method (Cottam
et al., 1953; Diggle, 1982):

�̂= 4


h2
(2.6.3)

with

h2 =
k∑

j=1

4∑
i=1

h2
ij/4k�

where k is the number of test locations.

Confidence intervals

Confidence intervals for � can be based on (2.6.1) since �̂ · ��W�=N�W� has a
Poisson distribution. For large N�W�, Armitage et al. (2001) and Krebs (1998)
provide a simple approximate 100�1 −��% confidence interval for �, employing
the normal approximation and a continuity correction. For example,

(z�/2

2
−√N�W�)2

≤���W�≤
(z�/2

2
+√N�W�+ 1

)2

� (2.6.4)

Here the z�/2 are quantiles of the standard normal distribution:

z�/2 = 1�65� 1�96� 2�58� for �= 0�10� 0�05� 0�01�

In practice, this confidence interval is a simple tool for determining the window
size required for a given accuracy of estimation. If � is the desired (full) width of
the confidence interval and � is the required confidence level, then

� · ��W�
(z�/2

2
+√���W�+ 1

)2

−
(z�/2

2
−√���W�)2

yields the approximation

��W� 4z2
�/2�

�2
� (2.6.5)
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where � itself must be estimated based on data which perhaps have been derived
from a pilot study or by using a priori information.

Example 2.1. Gold particles: intensity estimation
Consider the pattern of gold particles discussed on p. 6 and assume for the moment
that it can be modelled by a homogeneous Poisson process. Formula (2.6.4) yields
the confidence interval (0.000 754, 0.000 984) for � for �= 0�05. For the same �
and �=8 ·10−4 and �=10−4, Formula (2.6.5) suggests a window size of 1 229 300.
That is to say, a square of size 1100 × 1100 is sufficient to obtain 95 % confidence
with an accuracy of 10−4. If the true point process is not Poisson, this sample size
may still be used as an approximation, which is probably a little too large.

Testing homogeneity of point density

Often, the observation window is large and the question may arise whether the
point distribution is really homogeneous (i.e. whether the intensity function ��x�
is really constant). For this purpose, the sampling window W may be split into
two subregions W1 and W2. To test the hypothesis that the point densities in W1

and W2 are equal, one may consider the observed numbers of points n1 and n2 and
subregion measures ��W1� and ��W2�.

Under the null hypothesis of equality, i.e. the hypothesis that the whole pattern
is a realisation a homogeneous Poisson process, the quantity

F = ��W1��2n2 + 1�
��W2��2n1 + 1�

�

follows approximately the F -distribution with 2n1 + 1 and 2n2 + 1 degrees of
freedom. Note that this assumes that the order of the subscripts 1 and 2 is chosen
such that F is greater than one. The equality hypothesis is rejected at a significance
level � if

F>F2n1+1�2n2+1��/2�

Formally this test is correct only if the subregions W1 and W2 are chosen a priori,
before collecting the data, perhaps to investigate specific possibilities of a trend in
the point density. For example, such a trend might relate the point density of tree
locations to some measure of nutrient levels or the water contents in the soil. It
is not appropriate to apply the test a posteriori to a given point pattern that has
unexpected subregions of very high or very low point densities on inspection.
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2.7 Testing complete spatial randomness
2.7.1 Introduction

Testing the CSR hypothesis is an important part of exploratory data analysis of
point patterns: if the hypothesis is accepted, one can assume that the given point
pattern is completely spatially random, which has two main consequences:

(a) There is no need to consider a more complicated model; the simple Poisson
process model can be used, with all its consequences.

(b) If no additional information or data on underlying processes is available it
is not possible to find indicators of interesting interaction between the points
based on the geometry of the observed pattern alone.

Using tests of CSR, Tomppo (1986) showed that 30 % of the permanent inventory
plots in Finland of thinned forests in mineral soil areas can be considered CSR. But
note with respect to point (b) that there are examples from ecology which show that
Poisson-process-like point patterns can result from ecological processes operating
on clustered patterns. Note, further, that real patterns are never truly Poisson process
patterns; not rejecting the CSR hypothesis only means that the pattern is ‘close to’
a Poisson process sample.

If the CSR hypothesis is rejected, the more interesting part of point process
statistics begins, in particular the search for spatial correlations in the given pattern.
Nevertheless, the initial analysis provides valuable information on the direction of
the deviation from CSR, as well as on the cause of the deviation to guide further
analysis.

A large number of tests of the CSR hypothesis have been developed, and research
in this area is still ongoing. Many of the summary characteristics of point processes
can be used to construct such tests, and those that yield extremal or simple values in
the Poisson case are particularly successful. Experience shows that it is not possible
to derive a ‘best’ test if it is only based on a single criterion, and any test is only
capable of assessing particular aspects of CSR behaviour. Which test is the most
appropriate in a given situation depends on the nature of the alternative hypothesis
envisaged. In practical applications, the choice of the appropriate test also depends
on the limitations imposed by sampling methods. Nevertheless, rejection of the
CSR hypothesis by any of the tests means final rejection. (Perhaps this last sentence
should be reformulated by replacing ‘test’ by ‘standard test’, since for true CSR
patterns there are always small deviations from a Poisson process behaviour which
can be used, after inspection of the given pattern, in a highly specialised test for
rejecting CSR.)

In the following, a series of CSR tests will be presented. Note that some of these
tests use point process characteristics which have not yet been explained. These will
be introduced in Chapter 4. Glance over the text below and then go to Chapter 4
to obtain the necessary information and return to this chapter.
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The CSR tests are presented in order of data quality, from the coarsest to the
most detailed data type:

• quadrat counts,

• distance measurement,

• measurement of directions to neighbours as angles,

• use of mapped data.

When the point pattern has been mapped exhaustively, such that measurements
of the locations of all points in the pattern are available, it is worthwhile to use
more sophisticated statistics and tests. These rely on computers and point process
statistics software. Two approaches have been devised.

• The traditional approach uses point process statistics software, for example,
for the estimation of the L- or J -function.

• The more statistical approach is based on the fact that the point distribution
of a Poisson process is uniform. If the window W is a rectangle or a paral-
lelepiped then it can be transformed to the unit square or cube and the given point
pattern can be considered a sample from a binomial process or even a periodic
binomial process. It is then possible to use discrepancy measures from quasi-
Monte Carlo methods in numerical integration techniques (Hua and Wang,
1981; Niederreiter, 1992, Hickernell et al., 2005), which evaluate the discrep-
ancy between the empirical point distribution and the uniform distribution; see
Ho and Chiu (2007a). Alternatively, the usual summary characteristics of point
processes under the periodic binomial process assumption are estimated with an
adapted edge-correction; see Section 2.7.7.

A quite natural approach is the application of goodness-of-fit tests for the unifor-
mity hypothesis. This includes classical goodness-of-fit tests, such as the �2-test
in Section 2.7.2 and the Kolmogorov–Smirnov test in Section 2.7.7. The authors’
favourite test is the L-test based on the L-function, which requires mapped data.
For the sake of the exposition, the two-dimensional case is mainly considered here.
In most cases a generalisation to the three-dimensional case is straightforward.

General idea of CSR tests

Most CSR tests are constructed as follows. A summary characteristic is estimated
for the data and compared with the relevant theoretical summary characteristic for
a Poisson process. If there is a large difference between both characteristics, the
Poisson null hypothesis is rejected. The tests may be based on either numerical
summary characteristics, i.e. a single value, or functional summary characteristics,
i.e. a function of distance r.
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Numerical summary characteristic M: Let M̂ be the estimator of some
summary characteristic M and MP the theoretical value for a Poisson process.
Reject the CSR hypothesis if

	M̂ −MP 	>M��

where M� is some critical value. The test is more powerful if it depends on the
alternatives ‘clustering’ and ‘regularity’: reject the CSR hypothesis if

M̂ >M� if clustering alternative

and

M̂ <M1−� if regularity alternative�

An example of such a test is the mean-direction test; see Section 2.7.5. Note that the
terms ‘clustering’ and ‘regularity’ should not be used naively, since the behaviour
of a point process can be different at different spatial scales.

Functional summary characteristic S�r�: Let Ŝ�r� be an estimator of some
summary characteristic S�r� and let SP�r� be its theoretical Poisson counterpart.
Reject the CSR hypothesis if

max
r≤s 	Ŝ�r�− SP�r�	>Sm� (2.7.1)

or if

s∫
0

�Ŝ�r�− SP�r��
2dr> Si�� (2.7.2)

The test statistics in (2.7.1) and (2.7.2) are called the maximum statistic and
integral statistic, respectively (Thönnes and Van Lieshout, 1999). In the integral of
(2.7.2), �·�2 can be replaced by 	 · 	 or 	 · 	� with some �> 0.

The choice of the maximum r-value s is crucial. Advice on the appropriate choice
of s is given for the specific tests. Choosing values for s that are too large reduces
the power of the tests. This is because r is usually an (inter-point) distance and, for
large r, S�r� cannot be estimated from a bounded window of observation or only
with large variance.

Finally, the method used for the calculation of Ŝ�r� has an impact on the result.
This clear fact was ignored for a long time but demonstrated by Ho and Chiu (2006)
for the L-test.

In some cases, critical values for CSR tests are known. If this is not the case,
simulation tests have to be used. A test of this type is discussed on p. 96 in the
context of the L-test.
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The alternative hypotheses are usually clustering or regularity, and it is assumed
that background knowledge suggests which alternative is most suitable in the
given context. Indeed, this assumption is realistic, since some anecdotal evidence
or prior knowledge is typically available: for example, in forestry it is known
that young trees in natural forests tend to show clustering as the seedlings sprout
in proximity to the parent tree, while old trees in cultivated forests tend to be
regular. In materials science applications, knowledge of the processes that lead to
the structures enables a prediction as to whether the alternative hypothesis should
be one of regularity or clustering. Visual inspection of the pattern is often helpful.

The alternative hypothesis has to be chosen prior to data collection. It is not a good
idea to estimate a summary characteristic, to establish the alternative hypothesis
based on a comparison with the corresponding Poisson process value and to then
show that the observed deviation is significant.

There are, of course, other types of deviation from the CSR hypothesis: the point
pattern may show clustering and regularity in combination, for example at different
spatial scales or in different regions. Also, inhomogeneity or non-stationarity is
an important case of non-CSR. Often inhomogeneity causes CSR tests to indicate
(spurious) clustering.

Example 2.2. Gold particles: CSR testing
In the following, the pattern of gold particles introduced in Chapter 1 (see Figure 1.3)
will serve as a test pattern and all CSR tests will be applied to it. Visual inspection
encourages this choice: the pattern looks rather homogeneous, hence the assumption
that it is a sample of a stationary and isotropic point process can be accepted.

The following will reveal the results based on the statistical methods for the gold
pattern, eventually yielding a clear result. Prior to reading this, readers might now
take a moment to write down what they think of this pattern after visual inspection,
and why.

Figures 4.14, 4.18 and 4.20 may be consulted which show the empirical nearest-
neighbour distance d.f., theL-function and the pair correlation function in comparison
to the corresponding Poisson process characteristics. Figure 4.18 shows the estimated
L-function for the gold particle pattern and the maximum and minimum envelopes
from 99 simulations of binomial processes with 218 points in a 630 × 400 window.
There are big deviations for small r (up to r = 5�65) because of the hard-core of the
empirical pattern. Note also that L̂�r� is close to r at distances as close as r=30, which
may mean that there is some clustering, combined with the hard-core effect.

The pattern of positions of Phlebocarya in Figure 1.4 shows such a high degree
of clustering that a CSR does not make sense; it cannot be regarded as a sample of
a homogeneous Poisson process.

2.7.2 Quadrat counts

The following tests are suitable if the sampling window W has been divided into
k different subregions of equal area ��Q�. In this case, the point pattern has been
sampled as counts of numbers of points falling into these defined subregions. In
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applications, these are often quadrats or squares, i.e. the data have been collected
on a grid with rectangular grid cells of equal size. Note that mapped data may
be transformed into quadrat counts by admitting a grid on the pattern, and the
following tests are equally applicable then. However, since this results in a loss of
valuable information, the use of the better adapted methods described below (e.g.
Section 2.7.7) is recommended.

Of course, the index-of-dispersion test and quadrat count tests in general have
the disadvantage that quite different processes may yet yield quadrat counts of a
similar distribution. Furthermore, the test depends on the number k of quadrats,
which can be chosen freely.

Under the hypothesis of a homogeneous Poisson process, the random number of
points counted in these quadrats follows a Poisson distribution of mean � · ��Q�
and counts in disjoint quadrats are independent. This is convenient, as statistical
tests can be based on these distributional properties and it is not necessary to apply
simulation-based tests.

First the index-of-dispersion test is introduced, which is the simplest test. It is
followed by its refined variant, the Greig-Smith method, which investigates the
extent to which the independence properties are valid.

Index-of-dispersion test

The index of dispersion I is defined by

I = �k− 1�s2

x
� (2.7.3)

where k is the number of quadrats, x is the mean number of points per quadrat, and
s2 is the sample variance of the number of points per quadrat.

This test statistic may seem to have been inspired by the fact that the mean and
variance of a Poisson distribution are equal. But this is not the case: it is exactly the
same test statistic as that of a �2 goodness-of-fit test of the hypothesis that the n
points are independently and uniformly distributed in W . Consequently, the index
I follows approximately a �2-distribution with k− 1 degrees of freedom provided
that k> 6 and � · ��Q�> 1 (Diggle, 2003).

Hence, if I exceeds �2
k−1�� or I is smaller than �2

k−1�1−� the test rejects the CSR
hypothesis at a significance level of 100�%.

In the first case, the alternative hypothesis is that the variability in the process
is stronger than for the Poisson process, i.e. that there is aggregation. Analogously,
in the second case the alternative hypothesis is that there is some regularity in the
point pattern as the variability is smaller.
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Table 2.5 Results of the index-of-dispersion test for the gold particles.

k �2
0�95 I �2

0�05

4 0�352 0�46 7�82
16 7�26 13�05 25�0
64 46�6 70�88 82�5
256 218�7 319�83 293�0

Table 2.6 Quadrat counts for the gold particles and
k= 64.

3 4 6 2 8 4 0 1
5 1 2 4 2 2 5 2
6 1 3 6 2 7 4 2
3 2 2 7 5 4 3 6
4 4 1 3 4 3 0 6
2 6 2 3 3 8 3 1
2 1 2 2 3 2 6 4
4 3 6 7 2 3 2 2

Example 2.3. Gold particles: index-of-dispersion test
Now the index-of-dispersion test is applied to the gold particle data. In addition
to illustrating its use, the test’s heavy dependence on the choice of grid can be
illustrated well with this example.

Table 2.5 shows the results of the index-of-dispersion test for k= 4�16, 64 and
256. For the smaller k, i.e. the larger quadrats, the CSR hypothesis is not rejected,
which might show that on a larger scale the pattern behaves like a Poisson process.
However, for k=256 the Poisson hypothesis is clearly rejected – at small distances
there are deviations from Poisson behaviour, i.e. clustering.

The quadrat counts for the case of k= 64 are shown in Table 2.6. Here the
‘quadrats’ are rectangles of side lengths 630/8 and 400/8.

Greig-Smith method

This method, introduced in Greig-Smith (1964), is an improvement on the simple
quadrat count as it does not consider a single quadrat size but also uses counts
grouped by neighbouring quadrats. In this way, clustering at different scales may
be detected. The example below illustrates this.
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It is assumed that the number of quadrats is k= 2q for some integer q. The
quantities s1, s2, � � � are calculated by

s2
1 =∑

�j�

(
number in the
jth quadrat

)2

− 1
2

∑
�k�

(
number in the kth
pair of quadrats

)2

�

s2
2 =∑

�j�

(
number in the jth
pair of quadrats

)2

− 1
2

∑
�k�

(
number in the kth
quartet of quadrats

)2

�

and so on.
For q=6, the quadrats can be numbered in chessboard notation, since 2q =64. The

pairs of quadrats are then the pairs �a1� a2�, �a3� a4�, � � � , �b1� b2�, �b3� b4�� � � � .
The quartets of quadrats are then �a1� a2� b1� b2�, �a3� a4� b3� b4�, � � � .

The quantities s2
j /2q−j are unbiased estimators of the variance of the random

number of points in a small quadrat. Thus, the index-of-dispersion formula may
now be generalised, the indices

Ij = s2
j /x

may be calculated and the �2-test applied to each of the indices.
Here x is the same as in the index-of-dispersion test. The degrees of freedom for

the �2-statistics I1, I2, � � � are 2q−1, 2q−2, � � � .
The results of the tests should be interpreted as follows. The hypothesis of a

homogeneous Poisson process can be accepted if all the indices Ij lie between
two-sided critical values of the appropriate �2-statistics. Otherwise, the values of
the indices indicate the nature of the deviation from the hypothesis. Thus if, for
example, I3/2q−3 is significantly greater than one, there is evidence of clustering
on the scale of groups of four quadrats, etc.

2.7.3 Distance methods

In some circumstances, the measurements most readily available are distances
between pairs of points of the pattern, and between points of the pattern and chosen
test locations. For example, this is often the case when point patterns of forest
tree locations are being investigated. Distance methods take these limitations into
account and work with these measurements alone. However, when the point pattern
has been mapped, better tests are available, i.e. those using L- and J -functions.

Equations (2.3.6) and (2.5.8) for the distance d.f.s of the Poisson process form
the basis of distance methods as applied to testing the CSR hypothesis. Deviations
of the estimators D̂�r� and Ĥs�r� from 1 − exp�−
�r2� indicate deviations from
CSR. A further starting point is equation (2.5.9)

D�r�=Hs�r�� for r ≥ 0�
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This equation asserts that the nearest-neighbour distance distribution function D�r�
and the spherical contact distribution function Hs�r� coincide for a homogeneous
Poisson process. One might hope to obtain empirical distribution functions corre-
sponding to D and Hs based on distance measurements and then test for their
equality. For example, Diggle (2003) recommends the test statistic

t∫
0

(
Ĥs�r�− D̂�r�

)2
dr

for some t, which may play the role of M on p. 85. The critical values M� can be
determined by simulation; only large deviations are relevant.

A particular difficulty arises in the distance approach: in order to obtain nearest-
neighbour distances one has to sample the points of the pattern at random. However,
this should be done without enumerating all points of the pattern as otherwise
distance methods lose their practical advantage. How can the points of the pattern be
sampled at random without a bias towards points occurring in particular locations?

Byth and Ripley (1980) give an example of a method that overcomes this
problem. A number 2m of locations are chosen in the window W by semi-systematic
sampling. Half of these are used as test points from which to measure distances
to nearest points in the pattern. These distances are denoted by u1, � � � , um. The
other half of the locations are used to define subregions within which the point
pattern is surveyed exhaustively. A common size for all subregions is chosen, with
an expected number of about five points of the pattern falling into each subregion.
A point in the pattern is selected at random from each subregion and the nearest-
neighbour distance is measured for each of these points. This gives rise to m further
distances v1, � � � , vm. Under the CSR hypothesis (since then D�r�=Hs�r�) these
two samples of m numbers each are drawn from the probability distribution given
by

F�r�= 1 − exp�−�
r2� for r ≥ 0�

(ignoring edge effects). The samples are approximately independent and indepen-
dent of each other, if m is not too large. Byth and Ripley (1980) suggest that
m should be around 5 % of the total number of points in the window W . As a
consequence of the CSR hypothesis the quantities u2

1, � � � , u2
m, v2

1, � � � , v2
m are

approximately independent and exponentially distributed with parameter �
. Thus
the statistics

hF =
m∑
i=1

u2
i

/
m∑
i=1

v2
i (2.7.4)
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and

hN = 1
m

m∑
i=1

u2
i

/
�u2

i + v2
i � (2.7.5)

are approximately F -distributed with �2m�2m� degrees of freedom (hF ) and
normally distributed with mean 1/2 and variance 1/�12m� (hN ), respectively. The
measurements ui, vi are paired for the formula involving hN ; this pairing may be
made at random.

These approximate distributional results allow the construction of statistical tests.
Excessively large or small values for either hF or hN indicate departures from the
CSR hypothesis. Which statistic is appropriate depends on the alternative hypothesis
one has in mind. If the alternative involves clustering, hF is more suitable, whereas
hN is preferred if the alternative assumes regularity in the pattern.

Details of these two tests and comparisons with other tests can be found in Byth
and Ripley (1980) and Holgate (1965). For other references to distance methods,
see Diggle (2003).

2.7.4 The J-test

The J -test uses distances but requires mapped data. It is based on the J -function,
which is given by

J�r�= 1 −D�r�

1 −Hs�r�
� (2.7.6)

For a Poisson process J�r�≡ 1.
From (2.7.1) and (2.7.2) above, the test statistics are

�max = max
r�s

	Ĵ �r�− 1	

and

�int =
s∫

0

�Ĵ�r�− 1�2dr�

The J -function has the advantage of measuring both the strength and range of
interaction and of allowing a simple interpretation; see Section 4.2.7.

This test has been thoroughly investigated by Thönnes and Van Lieshout (1999).
They show that its power is strongly influenced by the choice of maximum distance
s: for large values of r, 1 −Hs�r� is close to zero and thus J�r� can have large
fluctuations (which makes the J -test slightly difficult). Therefore, they recommend
values of s close to the interaction radius of the point process or, more simply, for
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which Hs�r� is ‘sufficiently below 1’. The authors of the present book recommend
applying several values of s and comparing the results.

Critical values for this test are obtained by simulation.

2.7.5 Two index-based tests

The Clark–Evans test is based on a numerical summary characteristic, the Clark–
Evans index CE; see Section 4.2.4. It compares the mean nearest-neighbour distance
of a given pattern with the mean nearest-neighbour distance of a Poisson process
of the same intensity as a given process. The estimation of CE is described on
p. 198. Mapped data are not required; it suffices to measure nearest-neighbour
distances.

For a Poisson process the mean value of CE is 1. Reject the CSR hypothesis if

CE>CE� for clustering alternative

or

CE<CE1−� for regularity alternative�

Table 2.7 gives some critical values CE�, for �= � or �= 1 − �, for a square
window. These only depend on the number of points n. The values for rectangular
windows are slightly smaller for � (larger for 1 −�) since edge effects are stronger
and cause more variability.

Statistical experience shows that this test is not very powerful for regular patterns.
The mean-direction test is based on the numerical summary characteristic

mean-direction index R4; see p. 197. It uses the length of the sum of the unit
vectors pointing from the typical point to its four closest neighbours. The esti-
mation of Rk is described on p. 199. Mapped data are not required; measure-
ment of the angles for the directions from the points to their neighbours is
sufficient.

Table 2.7 Critical values CE� by number of points
n for a square window.

n

� 25 50 100 200 400 600

0.99 0.58 0.72 0.80 0.86 0.90 0.92
0.95 0.68 0.77 0.84 0.89 0.93 0.94
0.05 1.12 1.06 1.04 1.03 1.02 1.01
0.01 1.22 1.11 1.08 1.05 1.03 1.03
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Table 2.8 Critical values R4�� as a function of number of points n for a
square window.

n

� 25 50 100 200 400 600

0.99 0.90 1.31 1.50 1.60 1.65 1.68
0.95 1.14 1.43 1.57 1.66 1.69 1.72
0.05 2.40 2.16 2.04 1.94 1.90 1.87
0.01 2.73 2.33 2.11 2.00 1.95 1.91

For a Poisson process the theoretical value of R4 is 1.799. This was obtained by
simulation from 106 quadruples of unit vectors.

The CSR hypothesis is rejected if

R4 >R4�� for clustering alternative

or

R4 <R4�1−� for regularity alternative�

Again, this test shows only weak reactions against hard-core distances in the
pattern.

Table 2.8 gives some critical values R4��, �= � and �= 1 − �, for a square
window, which only depend on the number n of points (Corral-Rivas, 2006). The
influence of the shape of the window is small.

2.7.6 Discrepancy tests

If the pattern has been sampled in a rectangular window, it makes sense to test the
CSR hypothesis by means of classical methods of statistics, by comparison of the
two-dimensional empirical distribution function Un�x� of the uniform distribution
on 1 with its theoretical counterpart U�x�. For this purpose the original points
xi = �	i�1� 	i�2� (0 ≤ 	i�1 ≤ a, 0 ≤ 	i�2 ≤ b) are transformed to the unit square 1 by
�i�1 = 	i�1/a and �i�2 = 	i�2/b. Then

U���=�1�2

and

Un���=
1
n

n∑
i=1

1��i <���
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for �= ��1��2� and �i = ��i�1��i�2�. A suitable test statistic is the L2-star discrep-
ancy

�2 =
1∫

0

1∫
0

�U��1��2�−Un��1��2��
2d�1d�2�

This test characteristic �2 is ‘flawed because its value depends on which corner
of W one chooses as the origin of the co-ordinate system’ (Zimmerman, 1993).
Therefore, Zimmerman decided to choose the average of analogous characteristics
for all four corners, which leads to the test characteristic

�2 = 1
4n

n∑
i=1

n∑
j=1

�1 − 	�1�i −�1�j	��1 − 	�2�i −�2�j	�

− 1
2

n∑
i=1

(
�2

1�i −�1�i −
1
2

)(
�2

2�i −�2�i −
1
2

)
+ n

9
�

A large value of�2 indicates deviations from uniformity such as clustering or hetero-
geneity, while small values indicate that the pattern is more regular. Zimmerman
(1993) gives the critical values for n> 20 shown in Table 2.9.

If �2 exceeds �� (if the alternative is clustering or inhomogeneity) or is smaller
than �1−� (if the alternative is regularity) the test rejects the CSR hypothesis at
significance level 100�%. According to Zimmerman (1993), this test is particularly
interesting for patterns which might be inhomogeneous. Ho and Chiu (2007a)
consider other discrepancies, or measures of uniformity, that are also independent
of the choice of origin, and show that their discrepancies are powerful statistics
against not only inhomogeneous but also clustered alternatives. However, neither
Zimmerman’s nor Ho and Chiu’s discrepancies are very successful at detecting
regularity.

The ideas can be easily extended to the general d-dimensional case.

Table 2.9 Critical values �� of
the discrepancy test.

� ��

0.99 0.043
0.98 0.049
0.95 0.057
0.05 0.281
0.02 0.342
0.01 0.389
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2.7.7 The L-test

The L-test is based on the fact that the L-function of a Poisson process has the
simple linear form

L�r�= r for r ≥ 0�

Deviations of empirical L-functions from L�r�= r can be used to test the CSR
hypothesis. It is indeed better to use the L-function and not the K-function, which
also has a simple form,

K�r�=
r2�

The reason is that the square root transformation

L�r�=√K�r�/
 for r ≥ 0

stabilises variance as discussed in Section 4.3.1.
It is then natural to use the test statistics

� = max
r≤s 	L̂�r�− r	 (2.7.7)

with

L̂�r�=
√
K̂�r�/
�

where K̂�r� is some estimator of the K-function and s is a suitable maximum
distance.

It is advisable to run the L-test based on standard point process software, such as
the spatstat library in R; see Baddeley and Turner (2005, 2006). Good choices
for K̂�r� are Ripley’s isotropic estimator of the K-function (see Section 4.3),

K̂�r�=  ̂R�r�/�̂
2�

or the stationary estimator

K̂�r�=  ̂st�r�/�̂v�r�
2�

If � is large, then the CSR hypothesis is rejected. (The alternative hypothesis is
‘no Poisson process’ without further specification.) The critical value of � for the
significance level �= 0�05 is approximately

�0�05 = 1�45
√
a/n� (2.7.8)
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where a=��W� is the window area and n is the number of observed points (Ripley,
1988, p. 46). This value was obtained by simulations and can be used if nus3/a2 is
small for a ‘wide range of’ maximum distances s. Here, u=U�W� is the boundary
length of W . For �= 0�01 the analogous value is

�0�01 = 1�75
√
a/n� (2.7.9)

see Chiu (2007). So far statisticians have been unable to determine the exact critical
values analytically.

If Ripley’s approximation appears to be inappropriate, simulations may be used
to provide a Monte Carlo test. Here k (e.g. k= 999) independent samples from a
binomial process with n points are simulated in the window W . For each of the
samples the L-function is estimated and the value

�i = max
r≤s 	L̂i�r�− r	 for i= 1�2� � � � � k�

is determined. These values and the corresponding value � for the empirical data
are ranked in ascending order. If the rank of � exceeds �1 −���k+ 1�, the CSR
hypothesis is rejected for the error probability �. The position n��� of � gives an
approximation of the p-value; it is around 1 − n���/�k+ 1�.

A simplified test uses the minimum inter-point distance r̂0 in the pattern (Ripley
and Silverman, 1978). If this is too large, the CSR hypothesis may be rejected and
some regularity alternative accepted. The rule is: reject CSR if

r̂0 >c
√
a/n�

with c=1�38 for �=0�05 and c=1�71 for �=0�01 for the planar case and c=1�20
for �= 0�05 and c= 1�48 for �= 0�01 for the spatial case.

In the literature, different recommendations have been given for the choice of
the maximum distance s of r. Ripley (1979) suggests that s should be 0�25l for
n=25 and 0�125l for n=100 if W is a square of side length l, while Diggle (2003)
suggests that s should not be bigger than 0�25l. Ho and Chiu (2006) demonstrate
that values of s in the order of r̂0 or of the mean cluster diameter also perform well.
However, the same authors show that if the L-function is estimated by  ̂st�r� and
�̂2
V �r� (see Section 4.2.3) the variance-stabilising effect of the use of the square-root

transformation K̂ → L̂ in combination with the adapted intensity estimator is so
strong that the power of the L-test is nearly independent of s, and so half the
diagonal length can be safely recommended.

According to Ho and Chiu (2007b) the L-test can be improved by introducing
weight functions w�r�, which reduce the importance of very small or large r,

� = max
r≤s �	L̂�r�− r	 ·w�r��
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They show that decreasing functions such as w�r�= 1 − 2r
l

or w�r�= 10−r/l are
helpful in the case of processes with short-range correlation, while weight functions
such as w�r�= r

l
e−r/l seem to be suitable for processes with long-range correlation;

l is the side length of the square window as above. They suggest using the empirical
pair correlation function ĝ�r� to determine whether the range of correlation may be
long or short before applying their approach.

2.7.8 Other tests and recommendations

Many other CSR tests have been developed and used; some of them are mentioned
here for the reader’s convenience.

Instead of the L- or the J -function, Hs�r� and D�r� were used in (2.7.2) as
functional summary characteristics; see Diggle (1979), Thönnes and Van Lieshout
(1999) and Myles et al. (1995). The latter paper uses the d.f. of the cell area
for the Dirichlet tessellation with respect to the points in the sample. Since this
function is not known analytically, it was determined by simulation; see also Chiu
(2003). Mecke and Stoyan (2005) use the morphological function n�r� (see p. 202)
for a CSR test, which seems to have power comparable to that of the L-test.
A more sophisticated test is the Q2-test of Grabarnik and Chiu (2002), which uses
the numbers of points with k neighbours within a given distance r. The length
distribution of the minimal spanning tree is used in Hoffman and Jain (1983). The
basic idea is that the minimal spanning tree tends to be shorter for a cluster process
and longer for a regular process, in comparison to the CSR case. Spectral tests are
discussed in Mugglestone and Renshaw (2001).

So far, no one has systematically compared all CSR tests. Myles et al. (1995)
compare the K- and L-test with the index-of-dispersion test and the tests based on
D�r� and Dirichlet cell area distribution and favour the L-test. They use the Thomas
cluster process and the RSA process as alternative models; see Section 6.3.2 and 6.4.4.
Grabarnik and Chiu (2002) compare tests based on their summary characteristic
Q2, on D�r��K�r�, the reduced third moment function and on the variance–area
curve. Their results are rather complex and show that there is no uniformly best test.

Recommendations

• If you have mapped data and do not want to apply a simulation test, then
use the L-test with (2.7.8) and (2.7.9).

• If you can carry out a simulation test then use the L-test based on the periodic
binomial process. Compare the results with that of a classicalL-test and a J -test.

• If you have only quadrat counts as data or if you want to work without a
computer, for instance in the field, use the index-of-dispersion test.

• If you do not have a map of the points but you can visit each point, then use
the CE-test and the mean-direction test.
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Example 2.4. Gold particles: advanced CSR testing
The more advanced tests described in Sections 2.7.4–2.7.7 yield the following
results.

J-test. The test was carried out with the maximum statistic and estimates of the
J -function constructed by means of edge-corrected estimates of D�r� and Hs�r�. For
the distance s the values s= 8, 10 and 20 were used in parallel. For s= 8 a P-value
of 0.058 was obtained by simulation, but for s = 10 and 20 the P-values were
very small (less than 0.0001) and 0.009, respectively. Thus, the CSR hypothesis is
not rejected for s= 8 but is rejected for the larger values of s. The reader should
consider Figures 4.17 and 4.20 in Chapter 4 in order to understand the choice of
the values of s.

Mean-direction test. The empirical mean-direction indexR4 is 1.9095, i.e. between
the critical values for n= 200 and �= 0�05; the CSR hypothesis is not rejected.

Discrepancy test. The test statistic �2 results in a value of 0.0766 and lies between
the limits 0.057 and 0.281. This test does not reject the CSR hypothesis either.

L-test. The test statistic is �=5�65. This value results from the minimum inter-point
distance of 5.65 in the pattern, which implies L̂�5�65�= 0. The critical value �0�05 is

�0�05 =
√

650 · 400
218

= 3�39�

and so the Poisson hypothesis is rejected. The choice of s does not make any
difference to the test results for the gold particle pattern. The test based on r̂0

already rejects the CSR hypothesis.
In their original analysis of the gold particle pattern, Glasbey and Roberts (1997)

also reject the CSR hypothesis, based on a test using

s∫
0

(
D̂�r�− �1 − exp�−�
r2��

)2
dr�

In summary, the gold particle pattern should not be regarded as a sample from
a homogeneous Poisson process. It can perhaps be considered as a point pattern
which is globally similar to a Poisson process, but locally there are heavy deviations
because of the hard-core distance of r̂0 =5�65 and because of small-scale clustering.

The behaviour of the tests when applied to the data set in Example 2.4 may
support the prejudgemental idea that the more complicated tests are also more
powerful than the simple discrepancy and index-based tests. But the reader should
note that the authors have experienced cases where the L-test confirms CSR and
the mean-direction test rejects it. It is always useful to study the nature of a given
pattern and to identify a summary characteristic that indicates well any deviations
from CSR and then to use a test based on exactly that summary characteristic.
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Finite point processes

A finite point process is a model for point patterns with a finite number
of points. These points form either a single cluster (or a finite number
of clusters) or exist within a bounded set, which usually coincides with
the observation window. This set, which could be called the ‘window
of existence’, has an influence on the geometry of the point patterns,
for example its edge is not an arbitrarily chosen edge but a ‘natural’
one and may attract or repulse the points. For these types of patterns
the classical statistical methods for stationary point processes are not
appropriate, and the influence of the window should not be eliminated
by edge correction. It may be helpful to consider Figures 3.1, 3.2, 3.9(a)
and 3.14 before reading the text.

This chapter presents methods for the analysis of such finite
patterns. It starts with methods for the estimation of the intensity func-
tion ��x�, based on both parametric and non-parametric approaches.
Then inhomogeneous Poisson processes, probably the most important
models for inhomogeneous and finite point patterns, are considered.
Section 3.5 presents a series of functional summary characteristics for
finite point processes which are analogues of characteristics commonly
used in the context of stationary patterns such as the K-function,
the nearest-neighbour distance distribution function and the spherical
contact distribution function.

Statistical Analysis and Modelling of Spatial Point Patterns J. Illian, A. Penttinen, H. Stoyan and D. Stoyan
© 2008 John Wiley & Sons, Ltd
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The long concluding Section 3.6 presents the theory and statistical
methods for finite Gibbs processes, which are specific Markov point
processes. They may be used to model the interactions among the
points in an elegant and plausible way. Note that the Gibbs process
methodology, originally developed for finite point patterns, has often
also been applied to point patterns which are not truly finite. But rather
than regarding such a point pattern as a sample from a stationary
process, methods for finite processes have been applied because very
strong parameter estimation methods have been developed for these,
which are based on the maximum likelihood approach.

Those readers who are not interested in finite point processes and
Gibbs processes may skip this chapter. Section 3.6 may serve as a useful
preparation to facilitate the understanding of the theory of stationary
Gibbs processes covered in Section 6.6. Some sections of Chapter 3
assume a basic knowledge of Chapter 4, which, however, is completely
independent of this chapter.

3.1 Introduction
Finite point processes are relevant in many applications. All observed point patterns
are given in a bounded set and consist of only a finite number of points. Never-
theless, it is often convenient and appropriate to apply models that are based on
infinitely many points and to analyse the observed finite point patterns statistically
as if they were finite samples of infinite patterns. The corresponding statistical
methods have been developed for processes termed ‘stationary point processes’ and
are discussed in full detail in Chapter 4 and 5.

However, the assumption that an observed pattern is a finite sample of an infinite
pattern cannot always be made and thus the stationarity approach is not suitable in
all situations. Applying statistical methods that were developed for stationary point
processes in these situations may lead to unsatisfactory results. Nevertheless, many
of the characteristics and methods discussed in this chapter were originally defined
for the stationary case, adapted to finite processes.

Many aspects of the theory of finite point processes are mathematically elemen-
tary, since these processes can be defined with respect to multivariate densities
familiar from classical statistics. A finite point pattern can be regarded as one sample
from a multivariate distribution (of n=N�W� points) that defines the finite point
process. This approach is distributional and many readers will doubtless be familiar
with it. In contrast, stationary point processes are defined in a more abstract way,
which is comparable with the theory of time series. Since finite point processes
have a simpler structure, these are discussed before stationary point processes in
this book.

Consider a finite point process N that consists of N�W� points in a bounded
window W . The set W is both the window of observation and the life space
or window of existence of the points. These may sometimes ‘be aware’ of the
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edge of W and prefer or avoid positions close to it; in other cases they may be
attracted by some centre. Furthermore, the number of points N�W� may be random
or deterministic. In the random case, pn denotes the probability P�N�W�= n�. The
window of existence is often a random set such as in Example 3.6.

This chapter discusses statistical methods that may be applied if the analysed
point pattern is clearly finite in nature and if it is inappropriate to regard it as a
sample from a stationary process. The decision to use methods for finite processes
is often quite clear, dictated by the nature of the patterns; see Examples 3.1, 3.4
and 3.6 below: the window of existence or the bounded region in which the point
cluster lies is given by the scientific problem or the data. In other situations the finite
approach is used for pragmatic reasons, when the pattern is not small and the finite
approach can be considered as a good approximation to the stationary approach.
This may be more convenient for statistical reasons; see Example 3.14. Similarly,
for pragmatic reasons a given pattern may be considered ‘small’ or ‘large’ and the
appropriate methods may then be applied to it; it seems clear that the patterns in
Figure 3.14 are small and that in Figure 3.24 is large.

A number of different finite point processes may be considered. The following
attempts to provide a classification of the different types of situations that may be
modelled with a finite point process.

(a) Small patterns in well-defined regions. In some applications, one considers
small finite patterns that occur in a well-defined region. This means that the
points are observed in a set W which is given naturally or a priori and has
not simply been chosen as an observation window. Consider, for example,
the locations of trees in a city park surrounded by asphalt, collections of
hard spheres in a container, centres of spots on leaves of trees resulting from
a fungal disease (see Figure 3.14 on p. 134), centres of pores of metallic
foams in bounded bodies (see Figure 3.1), or positions of animals in some
fixed region which they do not leave, such as horses in a paddock or fish in
an aquarium. Specific point process models which take the special geometry
of the window W into account have to be applied in situations like these
since it is possible that the objects represented by the points are in some
way ‘aware’ of the geometry of W . This may influence their behaviour and
hence the characteristics of the resulting pattern. To properly analyse such
a pattern it is usually necessary to work with several independent replicates,
i.e. several samples of point patterns in the same W . The number of points
in each sample may be random or fixed.

(b) Single clusters. Another type of finite pattern are patterns that have typically
not been observed in a well-defined region. Thus the observation window
has been chosen based on subjective decision criteria around the clump of
points, and maybe a rectangle or circle, say. Consider, for example, single
large clusters such as the pattern formed by herds of mammals in the wild
where each herd is a point, or local geological phenomena such as sinkholes,
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Figure 3.1 Section through a cylinder with pores of a metallic foam. Data courtesy
of U. Martin.

volcanoes or basalt bodies in areas of some tens of square kilometres (see
Figure 3.2 on p. 111), or locations of seeds or fruits or offspring around the
mother tree as in Example 3.4. In situations like these, often only a single
sample is given but it is still possible to analyse the pattern appropriately.

(c) Quasi-homogeneous large patterns. The two types of spatial patterns
discussed in (a) and (b) are often not homogeneous by their very nature.
However, there are situations where one may want to analyse spatial
patterns with methods for finite patterns even though the pattern may also be
considered as a part of a much larger homogeneous pattern and be analysed
by the statistical methods for stationary processes. Example 3.14 aims to
illustrate this approach.

As in all areas of statistics, both parametric and non-parametric methods may be
applied in the statistical analysis of finite point processes. The analysis of patterns
of type (a) and (b) often starts off based on estimators of the intensity function
��x� which inform the modelling process. In addition, non-parametric summary
characteristics similar to the summary characteristics of the stationary case may be
used, such as the K-function and the nearest-neighbour distance d.f. D�r�. These
may serve as tools in data analysis and for model tests. Finally, a number of
different point process models may be fitted to the patterns, where Cox and Gibbs
point processes play a major role.

In many cases, a single sample is sufficient for the statistical analysis, namely for
i.i.d. clusters, inhomogeneous Poisson processes and Gibbs processes with many
points. More than one sample has to be analysed if the random number of points in
the whole window is of interest or if an inhomogeneous Cox process is analysed. For
a reliable estimation of intensity function trends one sample may be not sufficient
either.
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The fundamentals of the theory of finite point processes are given in the books by
Daley and Vere-Jones (2003) and Van Lieshout (2000). These books are somewhat
technical and the text below is addressed to those readers who prefer a less technical
explanation or do not have the necessary mathematical background. In addition
to the intensity function ��x� and product densities ��k��x1� � � � � xk� discussed in
Section 1.5, a further family of characteristics is used here, the location density
functions fn�x1� � � � � xn�.

1 A finite point process inW can be defined by construction
using

• a discrete probability distribution pn = P�N�W�= n� and

• a family of multivariate density functions fn�x1� � � � � xn�, which are
symmetric in their arguments.

‘Symmetric in their arguments’ means that, independent of the order of the points
xi, the location density functions take on the same value. This requirement is natural
because the order of points in a point pattern has no meaning. Mathematically,
fn�x1� � � � � xn� is a density with respect to the Lebesgue measure on Wn.

To gain a better understanding of the location density functions, consider n
infinitesimally small spheres b1� � � � � bn of volumes dx1� � � � , dxn centred on the
different locations x1� � � � � xn. The quantity

fn�x1� � � � � xn�dx1 � � � dxn

denotes the probability that the first point is in b1, the second in b2 and so on, under
the condition that N�W�= n, that the point process has exactly n points. On the
other hand, the probability of observing the points x1� � � � � xn, exactly one in each
bi, is

pnn!fn�x1� � � � � xn�dx1 � � � dxn�

Here the probability pn appears because the number of points is random, and
the factorial is needed because all permutations of the n points yield the same
value of the location density function and their number is n!. The density function
pnn!fn�x1� � � � � xn� is the likelihood of the finite point process and has an important
role in the estimation of the model parameters from the point pattern data x1� � � � � xn.

The simulation of such a process follows the construction, provided that the
pn and fn are tractable: first a random non-negative number n is drawn from the
distribution 	pn
 and then the n point positions are generated using the density
fn�x1� � � � � xn�. However, in many important cases the formulas for the pn and fn
are too complicated and other simulation methods must be employed.

1 In Van Lieshout (2000) fn is denoted by jn.
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In particular, if the number of points N is random, it is useful to regard point
patterns as unordered sets 	x1� � � � � xn
 instead of vectors, which means that only
the points matter, not their order.

The samples of a finite point process are finite subsets of W . They are members
of the ‘configuration space’ �fin. This space consists of the empty set, all singletons
	x1
 with x1 in W , all pairs 	x1� x2
 with x1 and x2 in W , and so on. The set notation
	x1� � � � � xn
 corresponds to this approach.

Sometimes, a finite point process can be defined in �fin based on another proba-
bility density p�	x1� � � � � xn
� with respect to the Poisson process of unit intensity.
This construction is described in more detail in Section 3.6.3. The location density
function fn then results by conditioning: given that the number of points is n,
N�W�= n, the location density function is

fn�x1� � � � � xn�=
p�	x1� � � � � xn
�∫

W
· · · ∫

W
p�	x1� � � � � xn
�dx1 · · ·dxn

�

3.2 Distributions of numbers of points
When a pattern of type (a) or (b) is considered and replicated patterns are analysed,
the first step in a statistical analysis concerns the random number N�W� of points
in the window W . Here standard methods of probability theory for discrete distri-
butions can be used. Johnson et al. (2005) provides a detailed treatment of discrete
distributions, but for the reader’s convenience those distributions that are of partic-
ular importance for the analysis of finite point patterns are briefly covered here.

Note that the suitability of a specific distribution as a model for a given data set
may be assessed based on a goodness-of-fit test. The �2-test is a standard approach
and may be applied here as well.

3.2.1 The binomial distribution

The binomial distribution is closely related to the so-called Bernoulli process. It
models a series of n independent trials, each of which has only two possible random
outcomes: ‘success’ or ‘failure’. The probability of a success is p for all trials. The
number of successes in n trials is denoted by X, and its distribution is given by

P�X= k�=
(
n

k

)
pk�1 −p�n−k for k= 0�1� � � � � n� (3.2.1)

This is the binomial distribution with parameters n and p. Its mean is

EX= np (3.2.2)

and its variance

varX= np�1 −p�� (3.2.3)
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If the notion of ‘trial’ is suitably interpreted, many situations can be described
by this model. Two examples are as follows.

1. Consider a crystal lattice with n sites that can be randomly and independently
occupied by foreign atoms. Let the probability of occupying a certain site be
p and let it be the same for all sites. Then the total number X of occupied
sites has a binomial distribution with parameters n and p.

2. In a large region B, n independent points are uniformly distributed. Let X
be the number of points in window W , a subregion of B. This number of
points has a binomial distribution with parameters n and p, where

p= ��W�

��B�
�

Statistics for the binomial distribution

If n is known, only p has to be estimated. If the outputs X1� � � � �Xm from m
independent trials are given, p may be estimated by

p̂=
m∑
i=1

Xi

mn
� (3.2.4)

Also, formulas for confidence intervals for p are known (see Armitage et al.,
2001). Furthermore, tests have been developed to test the hypothesis that p has a
specific value p0.

However, if n is unknown the situation is more complicated. The model parameter
can be estimated as follows:

n̂= max
{
S2 2

− 1
�Xmax

}
� (3.2.5)

where

=
⎧⎨
⎩

X
S2 for X≥

(
1 +
√

1
2

)
S2�

max
{
Xmax−X

S2 �1 + √
2
}

otherwise�

Here

X= 1
m

m∑
i=1

Xi� S2 = 1
m

m∑
i=1

�Xi −X�2

and

Xmax = max	X1� � � � �Xm
�
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The estimator in (3.2.5) is a stabilised version of the moment method estimator
(Olkin et al., 1981).

If n has been estimated based on (3.2.5) or (3.2.6), p can be estimated using
(3.2.4), where n is replaced by n̂.

The Bayesian approach may be suitably applied here. First an a priori distribu-
tion for p is assumed (Carroll and Lombard, 1985; Günel and Chilko, 1989). In
particular, a beta distribution with integer parameters a and b may be chosen as
a prior distribution, where the density function of p is proportional to pa�1 − p�b.
If a uniform improper prior distribution is assumed for n, the marginal posterior
distribution of n, the conditional distribution of n, given the sample X1� � � � �Xm,
is proportional to

P���∝
m∏
i=1

(
�

Xi

)⎛⎜⎝�m�+ a+ b+ 1�

⎛
⎜⎝m�+ a+ b

a+ m∑
i=1
Xi

⎞
⎟⎠
⎞
⎟⎠

−1

for �≥Xmax�

(3.2.6)

The �-value n̂ yielding the maximum of P��� is the maximum a posteriori estimator
of the unknown n.

3.2.2 The Poisson distribution

The Poisson distribution is fundamental to the theory of point processes, since the
most important model, the Poisson process, is based on it (see Chapter 2).

A random variable X has a Poisson distribution if

P�X= k�= �k

k! e
−� for k= 0�1� � � � � (3.2.7)

for some �>0. The distribution has only one parameter �, which is both the mean
and the variance of X:

EX= varX=�� (3.2.8)

The Poisson distribution is often used in applications. This may be partly due
to the Poisson limit theorem which states that the binomial distribution can be
approximated by the Poisson distribution if the probability of a success is small
and n large. The term ‘law of rare events’ is for this reason sometimes used in this
context.

More specifically, consider a sequence of Bernoulli schemes with number of
trials n and success probabilities pn, for n= 1�2� � � � . Let the success probabilities
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tend towards zero with npn =� for all n. Then the number of successes Xn in the
nth scheme satisfies

lim
n→� P�Xn = k�= �k

k! e
−� for k= 0�1� � � � �

In the context of spatial point patterns the Poisson distribution may be used as a
model for the number of objects in a given set, where the pattern is a sparse pattern
of irregularly distributed small objects.

Statistics for the Poisson distribution

Consider a sample of m numbers X1� � � � �Xm. Then the parameter � is estimated
by

�̂= 1
m

m∑
i=1

Xi =X� (3.2.9)

An approximate confidence interval with a confidence level of 1 −� can be calcu-
lated as

1
m

(
1
2
z�/2 −

√
mX

)2

≤�≤ 1
m

(
1
2
z�/2 +

√
mX+ 1

)2

(3.2.10)

for large mX; see Armitage et al. (2001). Here z�/2 is as on p. 81 the 1 − 1
2�

quantile of the normal distribution.
For further statistical methods for the Poisson distribution refer to textbooks on

statistics. For example, there are tests of the hypotheses that �=�0 or �1 =�2.
In applications, the binomial and Poisson distribution are often not flexible

enough as they require that the variance-to-mean ratio does not exceed 1. More
specifically:

varX
EX

= 1 −p< 1 for binomial and
varX
EX

= 1 for Poisson�

However, in the context of cluster processes overdispersion is often observed, which
is indicated by ratios larger than 1.

The following thus discusses two important classes of discrete distributions,
which overcome this problem and have many applications in spatial statistics
(Pielou, 1977; Cliff and Ord, 1981).

3.2.3 Compound distributions

In compound distributions one or more of the parameters of a given distribution
are considered random variables. The following illustrates this for the case of the
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Poisson distribution, but similar approaches can be applied to other distributions.
(Note that the construction principle underlying these compound distributions is
closely related to Cox processes; see Sections 3.4.2 and 6.4.) Now assume that �
is a non-negative random variable and construct the random variable X following
the compound distribution in a two-step process. In the first step, the actual value
of � is generated based on some random mechanism following a density function
f���. In the second step a Poisson-distributed random variable is generated, with
the value � drawn in the first step as the corresponding parameter.

The probabilities of the corresponding distribution are given by

P�X= k�=
�∫

0

Pk���f���d�� (3.2.11)

where Pk���= ��k/k!�e−� for k=0�1� � � � . The mean and variance of this random
variable are

EX=m1 and varX=m1 +m2 −m2
1

with

ml =
�∫

0

xlf�x�dx for l= 1�2�

Consider the special case where f��� is a gamma distribution density,

f���= �r

��r�
�r−1e−�� for �≥ 0� �> 0 and r> 0�

with shape parameter r and scale parameter 1
�

. Then X has a so-called negative
binomial distribution:

P�X= k�= ��r + k��r

k!��r��1 +��r+k
for k= 0�1� � � � (3.2.12)

with

EX= r

�
(3.2.13)

and

varX= r�1 +��

�2
� (3.2.14)

These equations may be used to estimate the parameters r and � by the method of
moments. The variance-to-mean ratio of a negative binomial distribution is 1 + 1

�
.
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The negative binomial distribution may also be derived as follows. Again,
consider a Bernoulli process as in the case of the binomial distribution. Let the
success probability be �1 + ��−1. Denote by Xi the random number of successes
between the �i− 1�th and ith failure, i= 1�2� � � � . Then the integer-valued random
variable X,

X=X1 +X2 + · · · +Xr�

has a negative binomial distribution with parameters r and � .
The negative binomial distribution is a very popular distribution in biostatistics

and useful for finite point processes. However, there is no stationary spatial point
process with negative binomial numbers of points in sample sets; see Diggle (2003),
p. 64.

3.2.4 Generalised distributions

Generalised distributions are closely related to patterns with a random number of
clusters of random size. Let � be the number of clusters, where � is another integer-
valued random variable, and let the number of points in cluster i be Ci, which are
non-negative i.i.d. integer random variables, independent of �. The random variable

X=
�∑
i=1

Ci

is the total number of points and has a generalised distribution. Its mean and
variance are

EX= E�EC1 and varX= E�varC1 + �EC1�
2var��

The formula shows that the variance-to-mean ratio is larger than 1.
The probabilities pk = P�X = k� can be calculated on the basis of so-called

generating functions

H�z�=
�∑
k=0

pkz
k� G�z�=

�∑
k=0

P��= k�zk� g�z�=
�∑
k=0

P�C1 = k�zk�

since

H�z�=G�g�z��=
�∑
k=0

P��= k�

( �∑
j=0

P�C1 = j�zj

)k
for 0 ≤ z≤ 1�

where the pk are coefficients of zk in the power series expansion.
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If � and the Ci are Poisson-distributed, with parameters �� and �c respectively,
the resulting generalised distribution is called the Poisson-Poisson distribution.
Here

EX=���c� varX=���c�1 +�c��

G�z�= e���z−1�� g�z�= e�c�z−1��

thus

H�z�= exp���e
�c�z−1� − 1��

Let � now have a Poisson distribution with parameter � and let the Ci have a
‘logarithmic’ distribution:

P�C1 = k�= − �k

k ln�1 −��
for 0<a< 1� k= 1�2� � � � �

Then X has a negative binomial distribution with parameters

� = 1 −�

�
and r = �

ln�1 + 1/��
�

3.3 Intensity functions and their estimation
The intensity function ��x� was introduced in Section 1.5. It describes the mean
number of points of a point process N in a set B as

E�N�B��=��B�=
∫
B

��x�dx� (3.3.1)

In a local interpretation, ��x� is proportional to the point density at location x. A
classical point process model which is entirely based on the intensity function is
the inhomogeneous Poisson process; see Section 3.4.1.

The locally variable point densities of several independent samples from a
finite point process follow the deterministic ��x�; in particular, regions of high or
low point density occur in similar parts of the observation window. Based on a
single point pattern or a sample of patterns, the underlying function ��x� can be
estimated for all x in W . This results in a two-dimensional smooth function or
intensity surface. This procedure is a valuable form of data analysis or regionalisa-
tion, which converts the point pattern into a function. Estimation methods for ��x�
are described below.

Note that more general models may also be considered where ��x� is random
rather than fixed. In these models a random mechanism generates an individual
��x� for every sample in the first step, and in the second step the points are
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scattered based on ��x�. The classical model here is the Cox process, which is
discussed in Sections 3.4.2 and 6.4. For Cox processes, the functions �i�x� that
describe the variable point density of sample i may usefully be estimated. However,
unlike for the inhomogeneous Poisson process, if k samples are analysed, the
functions �1�x�� � � � � �k�x� may vary so strongly that the average contains only
little information. It is even possible that this mean is constant, e.g. when the Cox
process is stationary. The methods described in the subsequent sections can be used
to estimate the function �i�x�.

3.3.1 Parametric statistics for the intensity function

In applications, the point pattern(s) often suggest(s) a theoretical form of ��x�.
In other words, a parametric model can be used to estimate the intensity function
and hence the parameters of this model have to be estimated. The simplest and
somewhat trivial case of a uniform point pattern, which leads to the binomial
process, has already been considered in Chapter 2. If W , n and p are given, no
further parameters have to be estimated.

Typical non-trivial examples include point patterns whose intensity function
shows a trend (see Figures 3.7(a) and 4.49), which can be determined by regression.
Other examples are patterns that consist of single clusters (see Figure 3.2). A simple
model in this context is the i.i.d. cluster model as discussed in Daley and Vere-Jones

+

Figure 3.2 Basalt formations in an area of the Swabian Alps. The centre of the
point pattern is close to the town Dettingen an der Erms, known for a thermal
anomaly with thermal sources. The distance between the two rightmost points is
5�0 km�+ is the estimated centre.
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(2003), a point process specified by a probability density and having n points. Here
a d-dimensional probability density function f�x� is given,

f�x�= f��1� � � � � �d� for x= ��1� � � � � �d��

The point process is formed by n points that are independent and identically
distributed with respect to f�x�. The random number of points N�B� in any set
B follows a binomial distribution with parameters n and p = ∫

B
f�x�dx. (With

reference to the previous section, note that if the number of points in the cluster is
random, N�B� follows a compound binomial distribution.)

The intensity function is

��x�= E�N�W��f�x� for x∈W� (3.3.2)

and the location density function is

fn�x1� � � � � xn�= f�x1� · · · · · f�xn�� (3.3.3)

The parameters from f�x� can be estimated by classical methods of multivariate
statistics, both for one and for k samples.

Example 3.1. Basalt formations in the Swabian Alps
Figure 3.2 shows the centres of 105 Tertiary basalt formations (volcanic pipes
that are likely to be related to small-scale thermal anomalies in the Earth’s upper
mantle; Goes et al. 1999) in the Swabian Alps. Clearly, the points are randomly
distributed (but not uniformly!) and concentrated in the central region. The aim
of the following analysis is to fit a simple model to the points in order to gain
further understanding of the underlying geological processes. Figure 3.4 on p. 116
shows two non-parametric estimates of the intensity function, derived from kernel
estimation (as discussed below). The left-hand figure appears to be too complex,
so that it is not clear what type of model could be suitably fitted to it; see the
discussion below and in Example 3.2.

A different and much simpler approach is to fit an i.i.d. cluster with a two-
dimensional Gaussian density to the pattern:

f��1� �2�=
1

2��1�2

√
1 −�2

× exp
{
− 1

2�1 −�2�

(
��1 −�1�

2

�2
1

− 2�
��1 −�2���2 −�2�

�1�2

+ ��2 −�2�
2

�2
2

)}
�

This model is defined on the whole plane �2.
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The Gaussian density function has ellipses as isolines; the equations of these
ellipses are

��1 −�1�
2

�2
1

− 2�
��1 −�1���2 −�2�

�1�2

+ ��2 −�2�
2

�2
2

= c2�

where c is a constant. The ellipse given by the constant c contains the probability
mass P�c� given by

P�c�= 1 − exp
(

− c2

2�1 −�2�

)
�

The coordinates are defined with respect to a coordinate system that was chosen a
priori and independently of the pattern. The �1-axis is the bottom edge of the figure
(west–east direction) and the �2-axis is the left edge (south–north direction).

The parameters may be easily interpreted: �1 and �2 are the means of the �1- and
�2-coordinates respectively, �2

1 and �2
2 are the corresponding variances, and � is the

correlation coefficient of the point coordinates �1 and �2. The standard estimators
from classical statistics can be applied, i.e. the sample means �1, �2, the sample
variances s2

1, s2
2 and the empirical correlation coefficient r.

The centre of the ellipses (see above) is located at the point ��1��2� and their
major semi-axis lies on the line defined by

x2 =�2 + sign���
�2

�1

�x1 −�1�� sign���=
⎧⎨
⎩

1 for �> 1�
0 for �= 0�

−1 for �< 0�

For �= 0 this yields a circle.
For the point pattern in Figure 3.2 the central point ��1� �2� is shown graph-

ically by +, while s1 = 8�5, s2 = 8�3 and r = 0�027. (The unit of measurement
is the kilometre, as in Figure 3.2.) These values are used as estimates of the
parameters �1� � � � � �.

For the isotropic Gaussian cluster (�1 = �2 = �) the intensity function ��r�
depends only on the distance from the centre and is given by

��r�= m

2��2
exp
(

− r2

2�2

)
for r ≥ 0�

where m is the mean number of points of N ; if the number of points were random,
m would be the mean.

Figure 3.3 shows the result of another approach which fits a radial spanning tree
to the pattern with respect to the estimated central point. The shape of the graph
clearly reflects the single-cluster nature of the pattern and the model seems to be
suitable. Thus, the basalt formations seem to result from a unique tectonic process
and are grouped around a centre.
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+

Figure 3.3 The radial spanning tree (see Section 1.8.5) for the point pattern of
Figure 3.2. The graph was constructed with respect to the centre ��1� �2�.

Centred processes are a generalisation of the simple i.i.d. cluster model consid-
ered above which are strictly defined relative to a central point. In the following, the
origin o is chosen as this centre and is assumed not to be a point of the pattern. In
this construction it is useful to work with polar coordinates x= �r���.

Of particular interest is the isotropic case with rotation-invariant point distri-
bution. Then the first-order behaviour is described by an intensity function ��r�
yielding the mean number of points in the sphere b�o� r� as

EN�b�o� r��=
r∫

0

dbdr
d−1��r�dr�

where dbdr
d−1 is the surface area of the ball of radius r.

The second-order behaviour can be described by adapted characteristics; see
Daley and Vere-Jones (2008, Section 15.3). It suffices to use r1, r2 and �1 −�2 rather
than the variables x1 = �r1��1� and x2 = �r2��2� of the second-order product density
��2��x1� x2�. The one-dimensional point process 	r1� r2� � � � 
 of ordered distances
from o is also of statistical interest; its intensity function is ��r�=dbdr

d−1��r�.

3.3.2 Non-parametric estimation of the intensity function

The intensity function ��x� is frequently estimated with non-parametric methods
that do not assume a specific parametric model for the first-order behaviour. The
estimation approach is typically based on kernel methods.
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In this context, Diggle (1983) discusses the simple circular (spherical) kernel,
which is the most commonly used approach. Here the estimator of ��x� is

�̂�x�= N�b�x�h��

��b�x�h��
for x∈W� (3.3.4)

or in the planar case

�̂�x�= N�b�x�h��

�h2
for x∈W� (3.3.5)

where h is the bandwidth of the kernel, which determines the degree of smoothing.
The approach described in (3.3.4) is quite natural: the point density ��x� in the

vicinity of x is estimated by the point density in a sphere of radius h centred at x.
If the point number is large and h small, one can expect precise estimation results.
The estimation can be refined by edge-correction; see Diggle (1985).

Equation (3.3.4) may be generalised and be based on a general kernel function
k�z�, yielding

�̂�x�= ∑
xi∈N

k�x− xi�� (3.3.6)

Note that (3.3.4) is obtained by the specific kernel function

k�z�= 1b�o�h��z�/��b�o�h���

The main difficulty with both (3.3.4) and (3.3.5) is the choice of an appropriate
bandwidth h. For any kernel function a small value of h may result in an estimated
surface �̂�x� that is too spiky, whereas a large h leads to smoother surfaces but
may ignore local features of ��x�. Diggle (2003, p. 116) discusses the choice of
h in the context of a specific model, a stationary Cox process, and recommends a
technique which minimises the mean squared error (mse) of the estimator.

In general, however, no simple recipe for the choice of bandwidth exists.
Normally, the point patterns themselves contain little information either on the
appropriate choice of smoothness required or on the appropriate choice of h. Hence
purely data-based methods usually do not produce satisfactory results. Background
information on the objects that form the pattern, such as dispersal distances for
plants, might inform bandwidth choice. However, in the absence of this the user
should simply consider a number of values of h and choose the one that gives the
most plausible result in the specific context. An old recipe by Diggle (in his 1983
book, but not in the revised version of 2003) recommends choosing h proportional
to 1/

√
n in the planar case. Also, if the pattern is large and ‘homogeneous enough’

such that the density function hs�r� of the spherical contact d.f. can be estimated
(see Section 4.2.5) then the r value of the (first) maximum of hs�r� should be
determined and used as an upper bound for h. Note that all methods for choosing
h based on formulas or recipes should be only regarded as rough guidelines.
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Example 3.2. Non-parametric estimation of ��x� for the basalt formations in the
Swabian Alps
Recall the pattern discussed above and shown in Figure 3.2. The intensity of this
pattern has now been estimated using the kernel method and is displayed using
isolines in Figure 3.4, as discussed above, for two different bandwidths.

The box kernel function

kh�x�=
1

4h2
1�−h�h�×�−h�h��x�

and Diggle’s edge-correction have been applied. Due to the small bandwidth that
was used in the figure on the left-hand side, the empirical intensity function shows
several maxima, which seems to be inappropriate. Probably the simpler Gauss model
in Example 3.1 or the right-hand figure corresponding to the larger bandwidth are
more realistic.

Interesting applications of the kernel estimation method in histological research
may be found in Muche et al. (2000).

An alternative estimator of the intensity function ��x� based on the Voronoi
tessellation, which is particularly useful for clustered patterns, is

�̂�x�= 1

��V�x��
for x∈W� (3.3.7)

+
+

0.002

0.002

0.004
0.006

0.
01

2
0.

01
2

0.016
0.018

0.0140.014
0.01

0.008
0.008 0.002

0.
00

2

0.001

0.002

0.0
12

0.0
1

0.001

0.001
0.002

0.004 0.003
0.005

0.007

0.01

0.011

0.009
0.008

0.006

Figure 3.4 Estimated intensity functions for the point pattern in Figure 3.2 shown
by isolines, constructed with formula (3.3.5): (left) bandwidth h= 3�9 km; (right)
h=9�0 km. Perhaps the left-hand figure shows too much detail since the bandwidth
is too small. The right-hand figure may be more satisfying. The location of the
maximum of the empirical intensity function is quite close to the centre of gravity,
shown as +.
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where V�x� is the Voronoi cell which contains x; see Bernardeau and Van de
Weygaert (1996). By construction it is constant in the cells. This estimator is well
adapted to strong variation in point density, which is typical of clustered patterns.

3.3.3 Estimating the point density distribution function

Recall that the point density d.f. G�t�, introduced in Section 1.5, describes the
frequency of the values of the intensity function. Clearly, an estimator �̂�x� of the
intensity function ��x� induces an estimator of the point density d.f. G�t� by

Ĝ�t�= ��Ŵt�

��W�
� (3.3.8)

Here Ŵt is defined similarly to Wt in (1.5.9) but ��x� is replaced by its estimate
�̂�x�, yielding

Ŵt = 	x∈W � �̂�x�≤ t
�

Example 3.3. Point density d.f. for dislocation density
Figure 3.5 shows a rather irregular point pattern derived from a planar section
through a sample of crystalline silicon, and the points show locations where dislo-
cation lines intersect the section plane. There are millions of these points, and �̂�x�
varies strongly both within the same sample and between different samples, whereas

Figure 3.5 A typical sample of a dislocation pattern on a silicon wafer. The darker
regions indicate a higher density of dislocation clusters. The maximum density is
around 107 cm−2. Data courtesy of M. Rinio.
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Figure 3.6 The empirical point density d.f. for the pattern in Figure 3.5. A Weibull
distribution provides an excellent fit, i.e. G�t�= 1 − exp	−�t�
 with parameters
�= 0�007 and �= 0�44.

the point density d.f. (Figure 3.6) is more stable and provides useful summary
information which can be used in further modelling; see Ghorbani et al. (2006).

3.4 Inhomogeneous Poisson process and finite Cox
process

3.4.1 The inhomogeneous Poisson process

Basic properties

The homogeneous Poisson process may be generalised in a straightforward way by
introducing inhomogeneity to yield the inhomogeneous Poisson process. This means
that the constant intensity � of the homogeneous Poisson process is replaced by an
intensity function ��x� whose value varies with the location x. This is reflected in
the properties of the inhomogeneous Poisson process; the fundamental property (1)
of the homogeneous Poisson process (see p. 66) is generalised, whereas (2) remains
unchanged.

(1) Poisson distribution of point counts. The number of points of N in any
bounded set B has a Poisson distribution with mean

∫
B
��x�dx.

(2) Independent scattering. The random numbers of points of N in k disjoint
sets are independent random variables, for arbitrary k.

The basic properties (a), (b) and (d) of the homogeneous Poisson process
discussed on pp. 67–68 have natural analogues in the inhomogeneous case. In
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particular, the conditional distribution of the points of N in a bounded set W given
that N�W�= n is not uniform, unlike in the homogeneous case. The corresponding
location density function of the n points is

fn�x1� � � � � xn�=
n∏
i=1

��xi�

��W�
for x1� � � � � xn ∈W� (3.4.1)

with ��W�= ∫
W
��x�dx, i.e. the n points form a sample of n independent points

with a probability density function proportional to ��x�.
Finally, the product density of the inhomogeneous Poisson process is

��n��x1� � � � � xn�=
n∏
i=1

��xi�� (3.4.2)

Simulation of the inhomogeneous Poisson process

The logic of the algorithm used in the simulation of inhomogeneous Poisson
processes applies to a wide range of situations. It is often used in simulations and
called the ‘rejection method’; see Ripley (1987, p. 60). In this approach, the simu-
lation of an inhomogeneous Poisson process in a bounded set W consists of two
steps. First, a sample of the homogeneous Poisson process with intensity �=�∗ is
generated, with

�∗ = max
x∈W

��x��

using the method described in Section 2.4. Of course, �∗ is assumed to be finite. The
number of points in the resulting pattern is much higher than in the final pattern,
which is generated in the second step by independent, location-dependent thinning
with thinning function p�x�=��x�/�∗, as introduced by Lewis and Shedler (1979).

In practice, this means that, based on the thinning function, a decision is made
for each point x1� � � � � xn in the sample of the homogeneous Poisson process with
intensity �∗ as to whether to ‘retain’ or ‘thin’ it. A point xi is retained with
probability p�xi�= ��xi�/�

∗, each point being retained or deleted independent of
what happens to any of the other points. Note that any value larger than �∗ may
also be used instead of �∗ if it is difficult to determine �∗. However, this results in
a less efficient simulation since more points have to be rejected.

Figure 3.7 shows two simulated samples from an inhomogeneous Poisson process
obtained by the method described above. Part (a) shows a linear trend with ��x� y�=
a�x+ y�, and part (b) is a sample with Gaussian scattering which is a particular
case of an isotropic centred Poisson process. For this type of process the intensity
function depends only on the distance from origin o; it is given by

��r�= md�r�

dbdr
d−1

� (3.4.3)
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(a) (b)

Figure 3.7 Samples from an inhomogeneous Poisson process: (a) linear trend,
��x� y�= a�x+ y�; (b) Gaussian scattering, ��r�= c exp�−dr2�, where r is the
distance from the origin.

where m is the mean number of points in W , m = E�N�W��, and d�r� is the
probability density of the distance of a randomly chosen point from the origin o.

A pattern with a linear trend may occur due to a trend in soil quality in a plant
pattern, and a pattern that may be described by the isotropic centred Poisson process
is discussed in Example 3.4 below; the pattern in Example 3.1 may also be regarded
as a sample from such a process.

Parametric intensity functions

A single cluster at a fixed position x0 may be modelled with the intensity function

��x�=m�x− x0��

Here, m is the mean number of points and  is a multivariate probability density
function. This is an example of an i.i.d. cluster with a Poisson-distributed number
of points. In Example 3.4,

�x− x0�=�
x
�=p�r��

When there are c clusters at fixed positions xk, the intensity function

��x�=
c∑

k=1

mk�x− xk�

may be used. Here mk is the mean number of points of the kth cluster and xk its
centre. Figure 3.8 shows a ��x� of this form for c= 3 and Gaussian �x�.
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Figure 3.8 Intensity function with three Gaussian clusters.

For a thinned homogeneous process, a suitable intensity function is

��x�=�op�x��

where p�x� is the retention probability. Lepš and Kindlmann (1987) consider the
case

p�x�= min

{
1�

l∑
k=1

exp
(−a
x− xk
2

)}

in a forestry application.

Statistics for the inhomogeneous Poisson process

The intensity function ��x� can be estimated using non-parametric methods as
described in Section 3.3.

If the form of the intensity function ��x��� with parameter � is known, the
unknown parameter � can be estimated by the maximum likelihood method, i.e. a
parametric method. The likelihood function is given by

L�x1� � � � � xn� ��=��x1� �� · · · · ·��xn� �� exp

⎛
⎝−

∫
W

��x���dx

⎞
⎠ � (3.4.4)

Bootstrap methods may be used to assess the quality of estimated intensity
functions; see Davison and Hinkley (1997, p. 419), Cowling et al. (1996) and
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Section 7.3 below. Either the inhomogeneous Poisson process with intensity func-
tion �̂�x� is simulated or n points are sampled at random with replacement from
the observed points and then the intensity function is again estimated by means of
(3.3.4) or (3.3.6). This is repeated k times (e.g. k=1000) and the resulting intensity
function estimates are then analysed statistically.

Example 3.4. Statistical analysis of fruit dispersal of anemochorous forest trees
Consider an anemochorous tree, i.e. a tree with wind-dispersed fruits or seeds such
as ash, lime or maple. Foresters are interested both in estimating the total number
of seeds of an individual (mother) tree and in understanding the dispersal pattern.
To this end, traps of area a (e.g. 0�25 m2) are put up around the tree and the
random numbers of fruits falling into the traps are counted. Based on such data,
the statistical problem may be solved; see Ribbens et al. (1994) and Stoyan and
Wagner (2001).

The point process formed by the positions of fruits may be modelled by an
isotropic centred Poisson process with intensity function ��r� with origin at the
mother tree. Then the mean total number m of fruits is

m= 2�

�∫
0

��r�rdr� (3.4.5)

Set

p�r�=��r�/m for r ≥ 0� (3.4.6)

The probability density function d�r� of the distance of a randomly chosen fruit
position from the mother tree satisfies

d�r�= 2�rp�r� for r ≥ 0� (3.4.7)

Different types of density functions have been used for d�r�, for example Weibull
or lognormal distributions. In the latter case, which is considered in the following,

d�r�= 1

�r
√

2�
exp
(

− �ln r −��2

2�2

)
for r ≥ 0�

For this choice of d�r�, the intensity function ��r� depends on the parameters m,
� and � , i.e. � is a vector of parameters �= �m�����.

The three parameters are estimated based on distances ri of traps from the mother
tree and the corresponding numbers of fruits ni in the traps. Table 3.1 shows the
data for an example, taken from Wagner (1997).

The likelihood function is

L���=
n∏
i=1

�
ni
i

ni!
e−�i with �i = amp�ri��
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Table 3.1 Distances ri (in metres) and numbers ni of fruits for 66 traps around
an ash tree.

ri ni ri ni ri ni ri ni ri ni

5 1 5 4 5 5 5 5 15 3
15 3 15 3 15 3 15 7 15 8
15 10 15 14 30 0 30 1 30 1
30 1 30 1 30 2 30 2 30 3
30 3 30 3 30 3 30 4 30 4
30 4 30 5 30 5 50 0 50 0
50 0 50 0 50 1 50 1 50 1
50 1 50 1 50 1 50 1 50 1
50 1 50 2 50 3 50 3 70 0
70 0 70 0 70 0 70 0 70 0
70 1 70 1 70 1 70 1 70 1
70 1 70 1 70 2 70 2 70 3
90 0 90 0 90 0 90 0 90 1
90 1

where a is the trap area (= 0�25 m2), m the mean number of fruits, and p�ri� is
given by (3.4.6) and (3.4.5). For these data numerical methods yield the estimates
m̂= 179 800, �̂= 3�93 and �̂ = 0�94.

By the way, in the neighbourhood of the maximum the likelihood function turned
out to be very flat. For this reason it was important that the numerical maximisation
procedure was carried out with high precision.

This approach was generalised to the non-isotropic case in Wagner et al. (2004),
while Näther and Wälder (2003) addressed the issue of experimental design, i.e.
the appropriate choice of the trap positions.

A successful method for testing the goodness of fit of a fitted model is to
use residuals as sketched in Section 4.6.5; see Baddeley et al. (2005) and related
papers.

3.4.2 The finite Cox process

Basic properties

Cox processes may be considered in the context of finite as well as of infinite (even
stationary) processes. In this section the finite case is discussed; refer to Section 6.4
for a treatment of the stationary case.

Cox processes are a class of very flexible and popular point process models.
They are a generalisation of inhomogeneous Poisson processes where the intensity
function ��x� is random. Similar to the compound distributions discussed on p. 107,
a Cox process can be regarded as the result of a two-stage random mechanism;
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for this reason Cox processes are sometimes termed ‘doubly stochastic Poisson
process’. In the first step, a non-negative intensity function ��x� is generated.
Conditional on this, an inhomogeneous Poisson process with intensity function ��x�
is constructed in the second step. In order words, given ��x�, the point distribution
is completely random. This approach is a special case of the hierarchical modelling
approach, which is commonly used in model construction in many areas of classical
statistics.

Note that it is not possible to distinguish a finite Cox process from an inho-
mogeneous Poisson process based on a single sample. A number of samples
from the same process in the same window may indicate that ��x� is a random
variable.

Models for finite Cox processes can be derived by randomising the parameters
of the inhomogeneous Poisson process models discussed in Section 3.4.1, i.e. the
model parameters m, �, � , xk or a, l, xk become random variables. A rather simple
example of this approach is the mixed Poisson process, where the intensity is a
random variable and ��x� is constant for every sample. (The process is made finite
by restricting it to the window W .)

Another class of finite Cox processes may be derived by considering a stationary
Cox process Nstat as in Section 6.4 and by intersection with the window W ,

N =Nstat ∩W� (3.4.8)

In particular, the Neyman–Scott process may serve as Nstat; see Provatas et al.
(2000) and Waagepetersen (2007). A finite Cox process also results from restricting
a stationary Poisson process to a random set W .

The fundamental distributional characteristics of finite Cox processes can be
formally expressed as expectations of the respective characteristics for inhomoge-
neous Poisson processes. For example, the nth-order product density is

��n��x1� � � � � xn�= E���x1� · · ·��xn��� (3.4.9)

and the location density function is

fn�x1� � � � � xn�=
E �exp�−��W��∏n

i=1 ��xi��

E �exp�−��W�����W��n� (3.4.10)

with ��W�= ∫
W
��x�dx. The total number of points N�W� of a finite Cox process

follows a compound Poisson distribution.
The finite Cox processes can be simulated in a straightforward way, based on

the hierarchical nature of the model. In a first step the intensity ��x� is generated
(or its parameters such as m, � and �) and in a second step the point pattern
is simulated given ��x� using the same method as for inhomogeneous Poisson
processes.
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Statistics for finite Cox process

For the model in (3.4.8) methods for stationary Cox processes can be used, such as
the use of pair correlation function or K-function; see Section 6.4.2.

Recall that several samples in the same window W are required to distinguish a
Cox process from an inhomogeneous Poisson process. The techniques developed
for inhomogeneous Poisson processes can be applied to each sample from a finite
Cox process in the same window W . This results in several intensity function
estimates �̂1�x�� � � � � �̂k�x� or model parameters such as m̂1� � � � � m̂k, �̂1� � � � � �̂k
and �̂1� � � � � �̂k.

These data can be analysed statistically to understand the first-step variability of
the Cox process. Even the simple variability of the number of points per sample may
be assessed: in the case of an inhomogeneous Poisson process it follows a Poisson
distribution, whereas a finite Cox process is only appropriate if the variability is
larger, in particular if the variance-to-mean ratio is larger than 1.

3.5 Summary characteristics for finite point
processes

A number of non-parametric summary characteristics can be used to gain an under-
standing of the spatial distribution of the points of finite point processes. These
describe the inter-point distances and the relative positions in the patterns in various
ways. Those readers who are familiar with the statistics of stationary point processes
will recognise some of these summary characteristics but will also notice differ-
ences, in particular the strong influence of the window W . Indeed, it does not
make sense to eliminate the influence of the window for finite point processes as
is commonly done in the stationary case, and therefore edge-correction methods
are applied only in the case (c) of quasi-homogeneous processes as explained on
p. 102. If the local point distribution in W is of interest, e.g. the point density in
dependence on the distance from the window’s boundary, the intensity function
should be used (see Figure 3.9).

Those readers who are less familiar with the methods for stationary point
processes are referred to Chapter 4, in particular to Sections 4.2.5, 4.2.6 and 4.3.

Recall that the binomial process is the null model for finite point processes
similar to the Poisson process in the context of stationary point processes.

Several summary characteristics use nearest-neighbour distances, i.e. analogues
of the nearest-neighbour distance d.f. D�r� and of the spherical contact d.f. Hs�r�
are considered. However, the definition of these is entirely based on finite charac-
teristics. In addition, an analogue of the K-function may be suitably applied. These
summary characteristics can be compared to those for the binomial process. Unfor-
tunately, unlike in the stationary approach, where the Poisson process is the null
model, some formulas become a little complicated in the finite case, which uses the
binomial process as a null model. Note, finally, that the summary characteristics
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Figure 3.9 (a) A sample of hard discs of radius 1 in a circular window of radius
10. (b) The intensity function ��r� for the disc centres of the model underlying the
sample, as a function of distance r from the midpoint of the circle, obtained by
simulation of many samples; see p. 132 below for more explanation.

discussed in this section have been chosen such that they can be estimated using
existing software for stationary point processes.

Assume throughout this section that m point patterns N1� � � � �Nm in the same
(or similar) window W are being analysed. If the window and the number of points
are not too small, m= 1 may be sufficient. The summary characteristics are usually
determined for each of these patterns Nl and then regarded as a sample of numerical
values or functions.

3.5.1 Nearest-neighbour distances

The finite nearest-neighbour distance d.f. Dfin�r� is defined as

Dfin�r�= E

(
1

N�W�

N�W�∑
i=1

1�d�xi�≤ r�

)
for r ≥ 0� (3.5.1)

where d�xi� is the distance of the point xi to its nearest neighbour. The corresponding
estimator is

D̂fin�r�=
1
m

m∑
l=1

D̂l�r�=
1
m

m∑
l=1

1
nl

nl∑
i=1

1�d�xli�≤ r� for r ≥ 0� (3.5.2)

where nl is the number of points of Nl and d�xi� is the distance of point xi in Nl to
its nearest neighbour in Nl. The estimator D̂fin�r� is clearly unbiased. This estimator
does not contain an edge-correction factor and was used, for example, in Gignoux
et al. (1999) in the context of ecological point patterns.



Finite Point Processes 127

Dfin(r)

0.0 0.5 1.0
0.0

0.5

1.0

r

Figure 3.10 Nearest-neighbour distance d.f. Dfin�r� of binomial process in 1 with
n= 10 (solid line) in comparison to D�r� of a homogeneous Poisson process of
intensity 10 (dashed line).

Clearly, the nearest-neighbour distance d.f. Dfin�r� for a binomial process as
defined in (3.5.1) deviates from D�r� for a homogeneous Poisson process of equal
point density, given in (2.5.8). Figure 3.10 shows the two d.f.s for the case of
W = 1 and n=�=10. The differences result from edge effects. If the point process
is not constrained to the window W the nearest neighbours of points close to the
boundary of 1 may actually be outside the window.

Note that the D̂l�r� in (3.5.2) can easily be calculated using a simple trick, the
large-window trick, based on existing software for the stationary case: apply the
border estimator (see p. 209) to a very large window Wd that has the original
window W and the points x1� � � � � xn at its centre, as shown in Figure 3.11. In this
way, window effects are eliminated, and numerically the border estimator yields
exactly the same result as D̂l�r�.

3.5.2 Dilation function

The dilation function S�r� is in some sense analogous to the spherical contact
distribution function Hs�r� (see Section 4.2.5), as defined for stationary processes.
It is a very suitable characteristic for describing the mutual positions of the points
in N . For a pattern of n points S�r� is formally defined as

S�r�= E

(
�

(
n⋃
i=1

b�xi� r�

))
for r ≥ 0� (3.5.3)

This means that the dilation function reflects the expected area (volume) of the
union of discs (spheres) of identical radius r centred at the points xi. These discs
do not overlap for regular patterns even for relatively large values of r. Hence,
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Wd

W

Figure 3.11 The true window W surrounded by a constructed enlarged artificial
window Wd. Here, each point has its nearest neighbour in W and the border
estimator applied to Wd yields the same result as an estimator which uses the nearest
neighbours within W , ignoring potential points outside.

their union covers a relatively large area. Thus, large values of S�r� indicate a
regular point distribution. The value of S�r� for those r for which the discs do not
overlap is

S�r�= nbdr
d�

In contrast, the discs overlap for small values of r in a clustered pattern, and hence
S�r� takes on relatively small values.

A natural estimator of S�r� is

Ŝ�r�= �

(
n⋃
i=1

b�xi� r�

)
for r ≥ 0� (3.5.4)

For a sample of m patterns the arithmetic mean can be used to estimate the overall
dilation function,

Ŝ�r�= 1
m

m∑
l=1

Ŝl�r� for r ≥ 0� (3.5.5)

The function Ŝ�r� can be calculated with any program that estimates the spher-
ical contact d.f. Hs�r� as explained in Section 4.2.5, using the large-window
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trick: determine Ĥs�r� for a very large window Ws which has the original window
W at its centre and set

Ŝ�r�= Ĥs�r���Ws�� (3.5.6)

3.5.3 Graph-theoretic statistics

Valuable summary characteristics can be derived from geometric graphs as intro-
duced in Section 1.8.5, if these are constructed for given finite point patterns.
Particularly useful are subgraphs or counts of components and corresponding
distributions, such as

• the number of edges or components (e.g. triangles containing no other points)

• node degrees (number of edges emanating in nodes or vertices)

• metric characteristics such as edge lengths.

See Example 3.6 for an application of this approach.

3.5.4 Second-order characteristics

Ripley’s K-function has proved very versatile as a second-order summary charac-
teristic (see Section 4.3) in the context of stationary point processes, where �K�r�
describes the mean number of further points in a disc (sphere) of radius r that is
centred at the typical point.

In the context of finite point processes an analogous quantity Kfin�r� can be
defined. Consider first a deterministic number of points n in the window W .
Here the finite characteristic is constructed such that it can be estimated by the
estimators of the classical K-function K�r� for stationary point processes. (For
large inhomogeneous patterns the inhomogeneous K-function Kinhom�r� introduced
in Baddeley et al., 2000, may be considered – see Section 4.10 below – but this is
a rather different approach.) Note that an analogue of the pair correlation function,
which is discussed in Section 4.3 and is in some sense a derivative of the K-
function, is not considered here and cannot be recommended due to the small sizes
of the samples in the finite case.

The finite K-function is defined as

Kfin�r�= E

⎛
⎝ n∑

i=1

n∑
j=1
j �=i

1�
xi − xj
 ≤ r�

��Wxi
∩Wxj

�

⎞
⎠
/

n�n− 1�
��W�2

� (3.5.7)
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The function Kfin�r� has the same structure as the stationary estimator �̂st�r�
/
�̂2

given by (4.3.27). The expectation term in (3.5.7) is equal to

∫
W

∫
W

1�
x− y
 ≤ r�

��Wx ∩Wy�
��2��x� y�dxdy� (3.5.8)

where ��2��x� y� is the second-order product density of N .
Explicit formulas for Kfin�r� for the binomial process are known. They depend

on the shape and size of W , but are independent of n (which is larger than 2):

Kfin�r�= bdr
d for r ≤ r1 (3.5.9)

and

Kfin�r�= 2d��W� for r ≥ r2� (3.5.10)

where r1 is the largest radius such that b�o� r�⊆W ⊕ W̌ = 	x− y � x� y ∈W
 and
r2 the smallest radius such that W ⊕ W̌ ⊆ b�o� r�. Figure 3.12 shows Kfin�r� for
circular and quadratic W . Equation (3.5.10) only applies if the window W is central-
symmetric, e.g. a disc or rectangle. In other cases 2d��W� has to be replaced by
��W ⊕ W̌ �. If W is a circular window, W = b�o�R�, then r1 = r2 = 2R, and if W is
a square with side length a, then r1 = a and r2 = a

√
2. For r1 ≤ r ≤ r2,

Kfin�r�= ��W ⊕ W̌ ∩ b�o� r��� (3.5.11)

Kfin(r)

0 1.4
r

0.7

Figure 3.12 The finite K-function Kfin�r� for binomial processes with a quadratic
(solid line) and circular (dashed line) window, both of area 1.
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For rectangular W the formula for the volume on the right-hand side of (3.5.11)
may be found in Appendix B.

If the number N�W� of points is random, Kfin�r� can be defined by replacing n
by N�W� in (3.5.7).

An unbiased estimator of Kfin�r� may be obtained by simply considering the
right-hand side of (3.5.7) without the expectation E:

�̂fin�r�=
1
m

m∑
l=1

⎛
⎝ nl∑

i=1

nl∑
j=1
j �=i

1�
xli − xlj
 ≤ r�

��Wxli
∩Wxlj

�

/
nl�nl − 1�
��W�2

⎞
⎠ � (3.5.12)

Again, the estimator can be calculated using software for the estimation of Ripley’s
K-function based on �̂st (see p. 228) and using the estimator (4.3.34) of the squared
intensity in Section 4.3. It is ratio-unbiased by construction.

The variance of the estimator in the case of a binomial process is

var�̂fin�r�= 2
(a
n

)2
(
�r2

a
+ 2ur3

3a2
+ 1�34

n

a
· ur

5

a2

)
for r ≤ r1� (3.5.13)

where a= �2�W� and u is the perimeter of W ; see Ripley (1988).
By analogy with the stationary case a finite L-function may be considered,

defined as

Lfin�r�= d

√
Kfin�r�

bd
for r ≥ 0� (3.5.14)

In order to eliminate the influence of the shape of the window W even more, the
normalised K-function Knor�r�, defined by

Knor�r�=
Kfin�r�

Kfin�b�r�
for r ≥ 0� (3.5.15)

may be applied, where Kfin�r� is the finite K-function of the finite point process
that is being analysed and Kfin�b�r� the finite K-function of the binomial process in
W with the same number of points n.

The corresponding statistical estimator is

K̂nor�r�=
�̂fin�r�

Kfin�b�r�
for r ≥ 0� (3.5.16)

where equations (3.5.9) to (3.5.11) yield Kfin�b�r�. Note also that for large r there
is no model-independent value of Knor�r�, despite the normalisation.
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Another second-order characteristic that may be considered is the random pair
distance d.f., the distribution function of the random distance between an arbitrary
pair of points of N ,

P�r�= E

⎛
⎝ n∑

i=1

n∑
j=1
j �=i

1�
xi − xj
 ≤ r�

⎞
⎠
/

�n�n− 1�� for r ≥ 0� (3.5.17)

which can be expressed in terms of the product density as

P�r�=
∫
W

∫
W

1�
x− y
 ≤ r���2��x� y�dxdy� (3.5.18)

Hence, this is clearly a second-order characteristic. It depends, of course, on the
shape and size of W .

For a binomial process in W the probability density corresponding to P�r� is

p�r�= 2�d/2rd−1�W�r�

��d/2���W�2
for r ≥ 0� (3.5.19)

where �W�r� is the isotropised set covariance of the window W ; see Appendix B.
The approximation formula

p�r�= 2�r
a

− 2r2u

a2
+ o�r2�

holds for small r for arbitrary convex W , where the notation is the same as in
(3.5.13).

The function P�r� can be estimated by

P̂�r�= 1

m

m∑
l=1

⎛
⎝ nl∑

i=1

nl∑
j=1
j �=i

1�
xli − xlj
 ≤ r�
/
�nl�nl − 1��

⎞
⎠ for r ≥ 0� (3.5.20)

see Bartlett (1964). Software for the estimation of the K-function can be modified
to yield an estimator of P�r�, in a similar way to that discussed above for Dfin�r�.

Example 3.5. Finite planar RSA process in a circular window
Consider a finite point process N consisting of n points in the disc W =b�o�R�. The
points are the centres of hard discs b�xi��� with xi ∈W and �<R. These find their
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positions by the random sequential adsorption principle (see also Section 6.5.4)
where

• the location of first point is chosen following a uniform distribution in W ,

• once the kth point has been allocated a position, the �k+ 1�th point finds its
position following a uniform distribution among those positions in W which
guarantee that there is no overlap with the first k discs.

It is possible that in simulations not all n points can be allocated a position –
these configurations are rejected here. This means that the distribution is based on
the assumption that all n discs find a position.

Figure 3.9(a) shows a simulated pattern of the planar RSA process with n= 55,
R=10 and �=1. Clearly, the pattern looks like a sample from an isotropic process
(whose distribution is invariant with respect to rotations around o), but the point
centre density is not constant in W : it is constant for r ≤ 8, but has a minimum at
r= 8�2 and for r> 8�2 larger values, as shown in Figure 3.9(b). This clearly results
from the fact that it is easier to place discs close to the boundary of W than in
its interior, since there are no hard discs outside W which have to be taken into
account.

Finally, Figure 3.13 shows the normalised K-function Knor�r� for the planar RSA
process obtained by simulation in comparison to that of the binomial process. It
indicates that the process clearly deviates from a binomial process – in particular,
the hard-core behaviour of the process is reflected well: Knor�r� is equal to 0 for
r ≤ 2�60 and still smaller than 0.5 for r ≤ 3�64. However, the inhomogeneity of the
pattern is not apparent in Knor�r�.

Example 3.6. Black spots on maple leaves
Figure 3.14 shows 10 small point patterns, derived from the centres of black spots
of diameter 1–2 cm of the tar spot disease (Rhytisma acerinum), a fungal disease
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Figure 3.13 Normalised K-function Knor�r� for the planar RSA process. The value
for r = 20 is slightly smaller than 1.
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Figure 3.14 (a)–(j) Ten point patterns of tar spots on maple leaves in squares of
side length of c. 14 cm. (k) Contour of the largest leaf (h) on a smaller scale. The
+ marks the origins of local coordinate systems.
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found in maple trees, on the leaf surface of Norway maple. The spores of these
fungi attack the leaves in spring, when clouds of spores surround the trees.

Note that the leaves are both windows of existence and observation windows,
and in this example these are of variable, random size.

In the statistical analysis two issues are considered:

1. Is the spot density higher at the base of the leaf than across the whole leaf?
(In other words, the question is whether the leaves still grew after having
been infected by spores.)

2. Can the patterns of spot centres be regarded as a part of samples from a
homogeneous Poisson process? From the infection mechanism of the leaves
one might suspect CSR, i.e. a uniform random distribution of the spots resem-
bling samples from stationary point processes. However, visual inspection
suggests that there is a weak tendency towards regularity with a considerable
hard-core distance.

The sample mean and variance of the number of points per leaf are x= 9�3 and
s2 = 9�12, i.e. both values are very similar, x∼ s2. However, due to the compound
nature of the distribution of the number of points, resulting from the random size
of the leaves, one would expect s2>x; see the treatment of compound distributions
on p. 107, where the variable � corresponds to variable leaf size. But the sample
size m= 10 is rather small; if hundreds of leaves were analysed, the true variance
might be found to be larger than the true mean.

The spot density across all the leaves is 0.138 cm−2, calculated as �̂= n
a
= 93

676 ,
where a is the total area of all leaves and n the total number of all spots. In
addition, the spot density was also estimated in a subwindow close to the leaf base,
the rectangle �−2�2�× �0�3� positioned at the origin (which is contained in all 10
leaves). This yields the estimate 0.15 cm−2, which is rather close to 0.138 cm−2.
One may thus assume that the spot density is uniform on the leaf surfaces.

Next, the Poisson process hypothesis is assessed. Due to the complicated geomet-
rical shape of the leaves and since the spots appear to be homogeneously distributed
across the leaves, the analysis applies characteristics that are based on short inter-
point distances:

• the d.f. Dfin�r�,

• the d.f. E2�r� of the edge length of the 2-neighbour graph. The value k= 2
was chosen in order to avoid repeating the case k=1, which is closely related
to Dfin�r�, and to avoid problems with edge effects. These are likely to be
substantial for larger values of k in these rather small patterns,

• the d.f. P�r�.

Figure 3.15 shows D̂fin�r� for all 10 leaves in comparison to D�r� for a
homogeneous Poisson process. The corresponding intensity was estimated using
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Figure 3.15 The empirical nearest-neighbour distance d.f. D̂fin�r� for the spots
(solid line) in comparison to D�r� for a Poisson process of intensity �= 0�146
(dashed line).

the mean nearest-neighbour distance and equation (2.3.7), yielding the value
0.146 cm−2, which is close to the two intensity estimates above.

Considering the minimum inter-point distance of 0.71 cm, one may clearly doubt
the Poisson hypothesis. Indeed, based on the hard-core test (see p. 96) the CSR
hypothesis has to be rejected: the critical value r0�05 is 0.39 cm, which is much
smaller than r̂0 = 0�71 cm.

Figure 3.16 shows the empirical edge length d.f. Ê2�r� for the 2-neighbour graph.
The mean length is 2.38 cm, which corresponds to an intensity �= 0�08 cm−2 for
a homogeneous Poisson process. As the finiteness of the spot pattern is apparently
well reflected here, an approximation by a homogeneous Poisson process does not
make sense.
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Figure 3.16 The empirical edge length d.f. E2�r� for the 2-neighbour graph (solid
line) and its counterpart for a restricted homogeneous Poisson process on Wleaf with
�= 0�15 (dashed line).
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Figure 3.17 Two P�r�-functions: empirical (solid line), restricted Poisson process
with �= 0�14 (dashed line).

The same figure shows the theoretical E2�r� for a finite Poisson process for
a window Wleaf of area 71 cm2 which is shaped like an idealised maple leaf, a
symmetric pentagon. Now the intensity is taken as �=0�15 cm−2, which reproduces
the mean edge length.

The behaviour of P�r� is similar to that of E2�r�: with an intensity � of 0.13 cm−2

the theoretical function of a restricted Poisson process on Wleaf is close to the
empirical P�r�-function, as shown in Figure 3.17.

In summary, the statistical analysis leads to the conclusion that the spots globally
follow a homogeneous Poisson process but that there is some local inhibition.
The deviations from CSR are apparently more clearly indicated by E2�r� than
by P�r�. In this example a rigorous application of the finite approach suggests
that the stationary approach is more suitable. This is in contrast to Example 3.5.
Clearly, the edges of the windows of existence play a quite different role in the two
examples.

3.6 Finite Gibbs processes
3.6.1 Introduction

The finite Poisson and Cox process models discussed above have many applications
in situations where the objects (or points) are mutually independent of each other,
i.e. are not interacting: in Poisson processes the points are independently distributed
in W and in Cox processes they are conditionally independent given the intensity
function. However, in many cases the analysis of a spatial point pattern focuses on
the detection and characterisation of interaction among the points. This interaction
is often a mutual repulsion leading to patterns of some regularity. However, in some
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applications the points interact positively, i.e. attract each other, which is reflected
in clustered patterns.

The waterstrider data described in Section 1.2.4 are an example of a situation
where any reasonable point pattern model should include some form of interaction
between the points. Recall that waterstriders are arthropods living on the surface of
ponds. They are able to communicate by sending and receiving signals using the
water surface as a medium. In addition, ecologists know from experiments that the
later larval stages and male adults form their own territories and tend to prevent
other males from entering these. Hence, it is not very realistic to assume any kind
of independence among the individuals a priori since very close pairs of points are
unlikely.

Similar patterns appear in many other biological applications, but also in physics
and materials sciences. The jargon in physics describes the interaction among the
points in a point pattern as ‘forces’, which may be repulsive as well as attractive, and
the pattern is a result of these forces. In physics process parameters (the so-called
pair potential) are usually given that describe these forces and the resulting point
process is studied. In a statistical approach, however, point patterns, i.e. samples
from a point process, are studied and the corresponding parameters are sought.
Since many different assumptions are possible for the forces, different point process
models can be formed in this way, leading to the class of Gibbs processes. Note
that the term ‘Gibbs process’ derived from physics is preferred in this book, even
though the term ‘Markov point process’ is popular among statisticians. Also note
that a ‘Markov chain’, despite the similarity in name, is a very different concept,
a stochastic process in discrete time. Markov chains are used frequently in the
simulation of Gibbs processes; see pp. 143ff. below as well as Van Lieshout (2006b).

Gibbs processes are very versatile models, in particular for point patterns with
repulsion, but they are mathematically rather complicated. In order to help readers
who do not have the requisite mathematical background, this section introduces
Gibbs processes step by step. The exposition first discusses the case of processes
with a fixed number of points in W , which is the window of existence of the
process. Physicists call these types of processes ‘canonical ensembles’. In the next
step, processes with a random number in W are discussed, termed ‘grand canonical
ensembles’ in physics. As with other parts of this book, a reader new to spatial
point processes should first concentrate on the simulation methods (see pp. 143 and
149) and examples and return to the mathematical details later.

A large number of spatial point processes can be very usefully and elegantly
defined through a density function. Simple examples are the binomial process,
the finite homogeneous and inhomogeneous Poisson process, and the finite Cox
process. Hence, despite the difficulties, constructing point processes based on a
density function is not necessarily complicated. In the context of Gibbs processes
this modern approach turns out to be very powerful and quite intuitive.

In the discussion in the previous sections, finite point processes were constructed
based on counting probabilities and intensity functions. In the following, point
processes are defined through probability densities.
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3.6.2 Gibbs processes with fixed number of points

Consider n points randomly distributed in W , where n is fixed. Assume that
their positions are given by a multivariate probability density, the location density
function

fn�x1� � � � � xn� for x1� � � � � xn ∈W� (3.6.1)

which does not depend on the order of the points. This multivariate density defines
a point process with exactly n points in W .

As a preparation for more complicated constructions below, consider the
following interpretation of (3.6.1). Point patterns that follow this distribution may be
simulated as follows. Generate a realisation 	x1� � � � � xn
 from a binomial process
in W with n points. Accept this realisation with a probability proportional to
fn�x1� � � � � xn�. The accepted point patterns exactly follow the density function fn
which is, mathematically speaking, defined with respect to the Lebesgue measure
on ��d�n.

Recall that the binomial process, or equivalently, the conditional Poisson process
with n points, is in this class of point processes with density fn�x1� � � � � xn�=
1/��W�n. Similarly, the inhomogeneous Poisson process conditional on the number
of points n was defined in (3.4.1) in terms of the multivariate density function with

fn�x1� � � � � xn�=
n∏
i=1

��xi�

��W�
for x1� � � � � xn ∈W�

where ��W�= ∫
W
��x�dx. This process is equivalent to the i.i.d. cluster process

generated by the d-dimensional density

f�x�= ��x�

��W�
for x∈W�

with n independent points. Note that due to the independence among the points
the multivariate density in these first two examples is a simple product of n one-
dimensional densities, i.e. fn�x1� � � � � xn�= f�x1� · · ·f�xn�. It is clearly symmetric
in the xi.

This section focuses on processes which may be used to model patterns exhibiting
inter-point interactions, and thus more complicated types of multivariate densities
have to be considered.

A very elegant and useful example of such a process is the Gibbs process with
a fixed number of points. Consider the location density function

fn�x1� � � � � xn�= exp

(
−

n−1∑
i=1

n∑
j=i+1

�
xi − xj
�
)/

Zn (3.6.2)
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for x1, � � � , xn ∈W . The function �r� in this formula is often called the pair
potential, a name that originates in physics: it measures the ‘potential energy’ caused
by the interaction among pairs of points �xi� xj� as a function of their distance

xi − xj
. It is through the pair potential function that the interaction among the
points is expressed.

Clearly, more complicated ways of modelling the interaction of points have been
considered theoretically; see Section 3.6.5. However, statistical experience shows
that in many cases pairwise interaction is sufficient.

The pair potential attains values in the range −�<�r�≤� with the convention
that exp�−��=0. The term Zn in (3.6.2) is the ‘configurational partition function’,
a normalising factor ensuring that (3.6.2) is really a probability density, i.e. that its
integral is 1. In most cases it is extremely difficult to calculate Zn or even to find
a satisfactory approximation.

The double sum over all pairs of different points in the exponent of (3.6.2),

U�x1� � � � � xn�=
n−1∑
i=1

n∑
j=i+1

�
xi − xj
� � (3.6.3)

is often called the ‘total energy’ of the system of points with pairwise interaction
defined by the pair potential function �r�. The exponential form of the density
function (3.6.2) is neither arbitrary nor a convention. It is motivated in physics by
the aim of maximising the entropy

−
∫
W

· · ·
∫
W

fn�x1� � � � � xn� ln�fn�x1� � � � � xn��dx1 · · ·dxn

for a fixed expected total energy∫
W

· · ·
∫
W

U�x1� � � � � xn�fn�x1� � � � � xn�dx1 · · ·dxn�

Refer to (3.6.2) to understand the influence of n, �r� and W on the density and
hence the nature of the interaction structure and configuration of the pattern. Pairs
of points with distances r where �r� > 0 contribute only little to the exponent
in (3.6.2) and thus these distances are less likely to occur. This is reflected in the
pattern as ‘repulsion’ among pairs of points with this distance. Values of �r�< 0
have the opposite effect and thus result in ‘attraction’, such that there are many
points with an interpoint distance of r.

If �r�= 0 there is no interaction at distance r and if �r�≡ 0 for all r>0, there
is no interaction at any distance. In other words, this yields the binomial process,
which hence can be regarded as a special case of the finite Gibbs process with
fixed n. If there is an rmax with �r�= 0 for all r > rmax then rmax is called the
range of interaction; this is the distance beyond which there is no interaction. (Note
that in Chapter 4 the notion of ‘range of correlation’ is defined, which is a rather
different concept. It is denoted by rcorr and is usually larger than rmax.)
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Many different types of pair potential functions may be considered, and the
following presents some examples which have been applied in various contexts.
The exposition starts with some simple pair potential functions that result in models
of considerable practical interest. More flexible models have also been discussed
and the readers are encouraged to develop new pair potentials for their applications.

Example 3.7. Gibbs hard-core process with fixed number of points
This process is defined through the pair potential function

�r�=
{� for r ≤ r0�

0 for r> r0�
(3.6.4)

with a fixed hard-core distance r0. There are no pairs of points that are closer than
the distance r0. This results in a ‘regular’ point pattern, if n is not small and W not
too large. (For small W , large n and r0 it is possible that the process does not exist.)
This model is useful for example in the situation where the points are centres of
spherical or circular non-elastic particles of the same size and r0 is the diameter of
these particles, which is the same for all particles.

Example 3.8. Strauss process with fixed number of points
Following Strauss (1975), define

�r�=
{
� for r ≤ r1�

0 for r> r1�
(3.6.5)

with 0<�<�. The parameter r1 is the same as rmax. Here the location density
function is

fn�x1� � � � � xn�= exp�−�n2�r1��/Zn for x1� � � � � xn ∈W�

where

n2�r�=
1
2

∑�=

xi�xj∈N
1�
xi − xj
 ≤ r� for r> 0

denotes the number of pairs of points with an interpoint distance of r or less. Here
n2�r1� is a sufficient statistic for �, i.e. all information on � in the point pattern is
reflected in the number of r1-close pairs.

Example 3.9. Overlap model
In the Strauss process all pairs of points with at most a (fixed) distance r1 have
the same strength of interaction. However, this might not be very realistic in
applications. In models of competition in plant ecology or forestry, the strength of
interaction between two competing individuals might vary with distance relative to
the respective areas of influence.
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The pair potential function of the Strauss process discussed above has thus been
refined by Penttinen (1984). Rather than assuming a constant strength of interaction
for inter-point distances less than r1, he defines the strength as ��b�xi�

1
2 r1� ∩

b�xj�
1
2 r1��, the area of the intersection of two discs (spheres) of radius 1

2 r1 with
centres xi and xj . The interaction is higher for smaller distances and attains its
maximum when r ↓ 0, it is decreasing when r increases, and for values of r > r1

the points are not interacting at all, as in the Strauss process. This results in the
pair potential function

�r�=
{
�
(
r2

1
2 arccos

(
r
r1

)
− r

2

√
r2

1 − r2
)

for 0<r< r1�

0 otherwise�

where � is a positive model parameter. Møller and Waagepetersen (2004) have
generalised this model further by introducing random radii.

Other pair potential models are, for example:

• the hard-core Strauss or square well (Figure 3.18(a)),

�r�=r0���rmax
�r�=

⎧⎪⎨
⎪⎩

� for r ≤ r0�

� for r0 <r ≤ rmax�

0 for r> rmax�

• the multiscale (Penttinen, 1984),

�r�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� for r ≤ r0�

�1 for r0 <r ≤ r1�

�2 for r1 <r ≤ r2�

���
�k for rk−1 <r ≤ rmax�

0 for r> rmax�

• the very-soft-core (Ogata and Tanemura, 1984; see also Figure 3.18(b)),

�r�= − ln
(

1 − exp
(

− r2

�2

))
for 0<r<��

• and the Lennart–Jones potential (e.g. Ogata and Tanemura, 1984),

�r�=�1

(�
r

)n1 −�2

(�
r

)n2

for 0<r<� and �1��> 0, �2 ≥ 0 and n1 >n2.
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r

(a) (b)

rr0 r1

β

φ (r) φ (r)

Figure 3.18 (a) Hard-core Strauss (square well) and (b) very soft-core potentials.

Interaction function

As mentioned above, the potential function �r� originates in statistical physics. In
this context it is interpreted as a measure of energy: it measures the contribution
of a pair of points �xi� xj� with 
xi − xj
 = r to the energy of the whole system of
points. The pairwise interaction between points may also be described in terms of
the pairwise interaction function

h�r�= e−�r�� (3.6.6)

see Ripley and Kelly (1977), Ripley (1977), Van Lieshout (2000) and Møller and
Waagepetersen (2004).2 The location density function of the Gibbs process in
Equation (3.6.2), for example, can be re-expressed as

fn�x1� � � � � xn�=
n−1∏
i=1

n∏
j=i+1

h�
xi − xj
�
/

Zn� (3.6.7)

The interaction function satisfies h�r�=1 if the members of a pair of points �xi� xj�
with interpoint distance r do not interact. Pairs of points �xi� xj� with distance r
exhibit repulsion if h�r�< 1 and exhibit clustering if h�r�> 1.

Simulation of a Gibbs process with fixed number of points

The simulation of Poisson and Cox processes as discussed above is quite straight-
forward and follows directly the construction of the models. For the simulation of

2 Note that in the literature the function h�r� has also been denoted by �r�.
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Gibbs processes, however, one has to resort to more complicated methods. Here an
iterative procedure called the Markov chain Monte Carlo method is applied. The
idea is to construct a Markov chain (note: not a Markov point process!) the states
of which are point configurations in W and the stationary distribution of which is
that of the Gibbs process. This method was developed by physicists (Metropolis
et al., 1953) and has been applied in many contexts in statistics where it would
otherwise be very difficult to simulate directly from a distribution. The algorithm
simulates the Markov chain for a long time. Once the chain is in its stationary
regime, every state of it is a sample from the stationary distribution of the chain.
Møller and Waagepetersen (2004) provide a recent detailed overview of MCMC
algorithms for point pattern simulation.

The MCMC approach is often implemented as a simulation algorithm based
on the spatial birth-and-death process or, alternatively, as the Metropolis–Hastings
algorithm. In the following, the birth-and-death algorithm is described in detail to
provide the reader with the necessary knowledge to understand the mechanism and
to implement it. Initially a simple but non-trivial example is discussed, followed by
a description of the general birth-and-death algorithm.

The approach is iterative in so far as that the simulation commences
with an initial point pattern which is modified in a step-by-step fashion by
deleting some points (‘death’) and generating others (‘birth’). This procedure is
repeated many times such that the algorithm eventually converges and gener-
ates patterns that may be considered realisations of a process with the specified
density.

Here, the initial configuration is an arbitrary point pattern in W with n
points for which the location density function attains a positive value. The
properties of the initial configuration are irrelevant since the impact of the
initial configuration quickly disappears, often after roughly 10n iteration steps
(Ripley, 1987).

Example 3.10. Simulation of a Gibbs hard-core process with n points
Consider first the special case of a Gibbs hard-core process with a fixed number of
points and with hard-core distance r0 as discussed in Example 3.7.

The starting configuration may be any n-point pattern in W in which the closest
inter-point distance is not less than r0, e.g. a grid of n points. Assume that the
current state of the Markov chain after l steps is 	x1� � � � � xn
. The �l+ 1�th step is
as follows:

(i) A point in the set 	x1� � � � � xn
 is deleted at random, where each point in
	x1� � � � � xn
 has the same probability 1/n of being deleted. The deleted
point is, say, xk.

(ii) A new point x is drawn from within W with uniform distribution. If

min	
x− xi
 � i= 1�2� � � � � n� i �= k
≥ r0�
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then x is chosen to replace the point previously deleted to form a new set of
n+ 1 points 	x1� � � � � xk−1� x� xk+1� � � � � xn
. Otherwise, if

min	
x− xi
 � i= 1�2� � � � � n� i �= k
< r0�

the point x is rejected and a new point is drawn until the proposed point can
be accepted. When n and r0 are large, it often takes a long time to find such
a point.

Note that, although the number of points n is large, this algorithm only simulates
from d-dimensional distributions since the proposal x is a point of �d. Figure 3.19
shows various simulated point patterns obtained by the algorithm.

(a)

(d) (e)

(b) (c)

Figure 3.19 Samples simulated from a Gibbs hard-core process with n = 100
points in 1 . The hard-core distance is r0 = 0�06. (a) Initial configuration.
Configuration after (b) 20 steps, (c) 1000 steps and (d) 2000 steps. The point
patterns (c) and (d) are statistically similar and can be regarded as samples
from the hard-core process. (e) Another pattern for 2000 steps with n = 36
points with r0 = 0�15. Note that it is not possible to generate patterns with
100 points in 1 with a hard-core distance as large as 0.15. The pattern with
36 points exhibits some boundary effect called ‘drift towards the boundary’:
the point density along the edge of the window is slightly higher than in its
interior.
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General birth-and-death algorithm

The general algorithm used to generate simulated samples from a Gibbs process
with a finite number of points has a similar structure to the algorithm described for
the special case of the Gibbs hard-core process above. A randomly chosen point
in the pattern is deleted and a new point is generated following the conditional
probability density function as above. The simulation starts with an initial point
configuration of positive density, which does not ‘contradict’ the pair potential.

Suppose that after the first l steps the point pattern is 	x1� � � � � xn
.

(i) A point in the set 	x1� � � � � xn
 is deleted at random, where each point in
	x1� � � � � xn
 has the same probability 1/n of being deleted. The deleted
point is, say, xk.

(ii) Simulate a new point based on the conditional probability density function

fn�x�x1� � � � � xk−1� xk+1� � � � � xn�=
fn�x1� � � � � xk−1� x� xk+1� � � � � xn�∫

W
fn�x1� � � � � xn�dxk

�

The new configuration 	x1� � � � � xk−1� x� xk+1� � � � � xn
 is the result after l+1
steps.

As above for the Gibbs hard-core process, the x in step (ii) may be simulated by
the rejection method: let M be an upper bound of the non-normalised conditional
density function

��x�= exp

(
−

n∑
j=1�j �=k

�
x− xj
�
)
�

A random point x is generated uniformly in W along with an independent uniform
random number u on �0�1�. The point x is accepted if ��x�≥Mu. Otherwise a new
point x is proposed.

Note that the algorithm for the Gibbs hard-core process follows this approach
with ��x�= 1 if 
x−xj
>r0 for all j= 1� � � � � n� j �=k, and zero everywhere else.

Example 3.11. Simulation of a Strauss process with a fixed number of points
Here the non-normalised conditional density function is

��x�= exp

(
−�

n∑
j=1�j �=k

1�0< 
x− xj
 ≤ r�

)
�

where the sum in the exponent describes the number of points in the sequence
x1� � � � � xk−1, xk+1� � � � � xn with a distance less than r0 from x. Assume that �> 0;
then the upper bound M can be assumed to be 1. In the birth step a point, sampled
uniformly from within W , is accepted if ��x�≥ u for a u sampled uniformly from
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Figure 3.20 A sample simulated from a Strauss process in 1 with n= 20, rmax =
0�08 and �= 0�4.

the interval �0�1�. Figure 3.20 shows an example of a simulation from a Strauss
process with a fixed number of points.

3.6.3 Gibbs processes with a random number of points

The above discussion should provide sufficient preparation for the reader to embark
on the case of Gibbs processes with a random number of points. These processes
are also described by density functions, but now the set-theoretic notation x is used,
where x is a point configuration in �fin, with an arbitrary number of points in W ;
	x1� � � � � xn
 is the configuration consisting of the points x1� � � � � xn.

The distribution of the process N is given by a probability density function p�x�
with respect to the distribution of a Poisson process of unit intensity restricted to
W , satisfying ∫

�fin

p�x���dx�= 1�

as

P�N ∈��=
∫
�

p�x���dx�� (3.6.8)

The notation here is similar to the notation on pp. 27 and 104, i.e. � is a subset
of �fin or a point process event, � denotes the distribution of the Poisson process
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restricted to W . The assumption of intensity 1 is only a formality, the same process
would be obtained for any other intensity, and only the Z in (3.6.11) would be
affected.

The distribution given in (3.6.8) is best understood by initially considering the
simulation approach: first a sample x from the Poisson process is generated as
described in Section 2.4. This is accepted as a realisation with probability propor-
tional to p�x�. The latter can be realised by von Neumann’s rejection sampling
method (Ripley, 1987). For this, the maximum M of p has to be determined. A
random number u uniformly distributed in �0�M� is generated and compared with
the value p�x� for the Poisson sample x. If u<p�x� then x is accepted; otherwise
it is rejected and a new sample is proposed. If, for example, the density function
p vanishes for configurations with minimum inter-point distance smaller than r0,
samples of hard-core processes are generated. This simple simulation method has
indeed been used in practice, but this book discusses some more efficient methods
below.

The probabilities pn and location density functions fn are
given by

pn = e−��W�

n!
∫
W

· · ·
∫
W

p�	x1� � � � xn
�dx1 · · ·dxn (3.6.9)

and

fn�x1� � � � � xn�=
p�	x1� � � � � xn
�∫

W

· · · ∫
W

p�	x1� � � � � xn
�dx1 · · ·dxn
� (3.6.10)

The Gibbs process with a random number of points is defined through the following
density with respect to a Poisson process of unit intensity:

p�	x1� � � � � xn
�= exp

(
−
(
�n+

n−1∑
i=1

n∑
j=i+1

�
xi − xj
�
))/

Z (3.6.11)

with x1� � � � � xn ∈W for n=0�1� � � � . In this equation the term �, the self-potential
or chemical activity, appears, which is an important term in the total energy

U�x1� � � � � xn�=�n+
n−1∑
i=1

n∑
j=i+1

�
xi − xj
�� (3.6.12)

Similar to the case of a fixed number of points, the pair potential function �r�
describes the interaction, whereas the self-potential together with the pair potential
determine the pn = P�N�W�= n�, i.e. the distribution of the number of points. The
same pair potential functions as for Gibbs processes with fixed point number (see
p. 142) may be also used for Gibbs processes with a random number of points. The
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normalising factor Z in (3.6.11) depends on W , � and the pair potential function
�r�. It is usually analytically intractable.

After all these difficult facts, there is finally a good message: the Papangelou
conditional intensity (see p. 28) is

��x�	x1� � � � � xn
�=
p�	x1� � � � � xn� x
�

p�	x1� � � � � xn
�

= exp

(
−�−

n∑
i=1

�
x− xi
�
)

(3.6.13)

and fortunately does not contain a normalising factor. Only those points xi that
interact with x, i.e. the points for which �
x− xi
� �= 0, contribute to the sum
in the exponent. Often the number of these points is very small compared to the
total number of points. This easy formula is of great relevance in the simulation of
Gibbs processes.

Simulation of a Gibbs process with a random number of points

The simulation of a Gibbs process with a random number of points is again
based on an iterative MCMC procedure, just as for a Gibbs process with fixed
number of points discussed above. Hence, again, the simulation starts with an initial
configuration associated with a positive density value which is modified during the
simulation. At each simulation step, either a point is added or a point is deleted
or nothing happens. Several algorithms have been described in the literature that
may be used for this purpose. A common feature of all these algorithms is that
they are based on ratios of densities. As a result, the intractable normalising factors
conveniently cancel out.

A successful MCMC algorithm is the birth-and-death algorithm, a modified
version of the algorithm used in the simulation of a Gibbs process with fixed
number of points as described on p. 143 above; see also Stoyan et al. (1995, p. 185)
or Stoyan and Stoyan (1994, p. 324). Another common MCMC method is the
Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), which
has been modified for Gibbs process simulation by Geyer and Møller (1994). In
what follows, the Metropolis–Hastings algorithm will be described in detail. Further
discussion may be found in Møller and Waagepetersen (2004). Geyer and Møller
(1994) argue that it is often preferable to the birth-and-death algorithm and may be
easier to implement.

Metropolis–Hastings simulation algorithm

The main idea of the Metropolis–Hastings simulation algorithm is that at every
step a random proposal is made for a change in the current configuration by birth
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or death, which is accepted or not, depending on chance. For Gibbs processes it is
based on the non-normalised density

��	x1� � � � � xn
�= exp

(
−
(
�n+

n−1∑
i=1

n∑
j=i+1

�
xi − xj
�
))

with x1� � � � � xn ∈W for n= 0�1� � � � . Proposals are controlled by the following
simulation parameters:

• b�	x1� � � � � xn
�, the probability that the ‘birth’ of a new point will be
proposed, while 1 − b�	x1� � � � � xn
� is the probability that the ‘death’ of a
point will be proposed;

• qbirth�	x1� � � � � xn
� x�, the proposal density function for the location of the
new point x;

• qdeath�	x1� � � � � xn
� xk�, the probability for the proposal to delete the point
xk from the set 	x1� � � � � xn
.

The simulation starts with a point pattern 	z1� � � � � zm
 for which

p�	z1� � � � � zm
�> 0�

i.e. which does not contradict the basic properties of the process. (For example, it
is a hard-core pattern if a hard-core process is required.)

Suppose that after l iteration steps the configuration is 	x1� � � � � xn
. At step l+1
initially a decision is made as to whether a new point may be added to the pattern
(birth) or removed (death), with probability b�	x1� � � � � xn
� or 1−b�	x1� � � � � xn
�,
respectively.

If step l+ 1 is a birth, the position of the new point x∈W is proposed from the
density function qbirth�	x1� � � � � xn
� x� and the proposal is accepted with probability

�birth = min 	1� �birth
 �

where

�birth = ��	x1� � � � � xn� x
��1 − b�	x1� � � � � xn� x
��qdeath�	x1� � � � � xn� x
� x�

��	x1� � � � � xn
�b�	x1� � � � � xn
�qbirth�	x1� � � � � xn
� x�

is the so-called Metropolis–Hastings birth ratio. With this ratio and the corre-
sponding death ratio the Markov chain is controlled such that its stationary distri-
bution is the desired point process distribution. If the proposal is accepted, the
new point is added to the point configuration. If the proposal is not accepted, the
configuration does not change in this step.
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If step l+1 is a death and if 	x1� � � � � xn
 is not empty, a point xk in 	x1� � � � � xn

is proposed for deletion with probability qdeath�	x1� � � � � xn
� xk�. This deletion is
accepted with probability

�death = min 	1� �death
 �

where

�death = ��	x1� � � � � xn
 \ 	xk
�b�	x1� � � � � xn
 \ 	xk
�qbirth�	x1� � � � � xn
 \ 	xk
� xk�
��	x1� � � � � xn
��1 − b�	x1� � � � � xn
��qdeath�	x1� � � � � xn
� xk�

is the Metropolis–Hastings death ratio. Here 	x1� � � � � xn
 \ 	xk
 denotes the point
pattern 	x1� � � � � xn
 without the point xk, k∈	1� � � � � n
. If the proposal is accepted,
the point xk is removed from the configuration. If the proposal is not accepted, the
configuration does not change at this step. (If the configuration is empty, the empty
configuration does not change at a death step.)

Note that in �birth

��	x1� � � � � xn� x
�

��	x1� � � � � xn
�
=��x�	x1� � � � � xn
��

and in �death

��	x1� � � � � xn
 \ 	xk
�
��	x1� � � � � xn
�

= 1
��xk�	x1� � � � � xn
 \ 	xk
�

�

In other words, the conditional intensity forms an integral part of the Metropolis–
Hastings algorithm.

Simple concrete choices of the parameters of the algorithm are as follows:

b�	x1� � � � � xn
�≡ 1
2
�

qbirth�	x1� � � � � xn
� x�= 1
��W�

for x∈W�

qdeath�	x1� � � � � xn
� xk�= 1
n

for xk ∈ 	x1� � � � � xn
�

Experience shows that tuning the algorithm increases its efficiency, i.e. it converges
earlier to the stationary state and ‘mixes’ better, and the correlations between
subsequent samples decrease faster.

Any MCMC algorithm, and hence both the birth-and-death algorithm and the
Metropolis–Hastings algorithm, only generates patterns from the required point
process model after a certain number of iterations, after some ‘burn-in’ period,
the length of which is not known a priori. This implies that the user has to
observe the simulation process and decide if the algorithm is likely to have



152 Finite Point Processes

converged. Possible indicators are the current number of points n or the current
energy U�	x1� � � � � xn
� given by Equation (3.6.12); see the plot in Figure 3.22.
The computing times can be long, in particular for Gibbs processes with a high
point density.

Example 3.12. Simulation of a Strauss process with a random number of points
The Strauss process with parameters �= −8�0, �= exp�0�3�= 1�35 and r1 = 0�08
is simulated in 1 . The parameters of the Metropolis–Hastings algorithm are chosen
as above.

Suppose the configuration at step l is 	x1� � � � � xn
. At first, a decision has to be
made as to whether to add or delete a point, either of which happens with probability
1
2 . If a point is to be added to the configuration, the candidate x is chosen uniformly
withinW . Then the value of the Metropolis–Hastings ratio for a birth is calculated,

�birth = 1
n+ 1

exp

(
−�−�

n∑
i=1

1�0< 
x− xi
 ≤ r1�

)
�

The proposal x is accepted with probability

�birth = min	1� �birth
�

This means that a random number u is drawn from [0,1] and, if u≤ �birth, the
proposal x is accepted and the new configuration is 	x1� � � � � xn� x
. If u>�birth,
the old configuration 	x1� � � � � xn
 is not changed. (Note that a similar mechanism
is used above to decide whether the next step is a potential ‘birth’ or ‘death’.)

If a point is to be deleted, a number k is randomly chosen from 	1� � � � � n
 and
xk is proposed for removal. The Metropolis–Hastings ratio for a death

�death = n exp

(
�+�

n∑
i=1�i �=k

1�0< 
xk − xi
 ≤ r1�

)

and �death =min	1� �death
 are evaluated. The proposal is accepted, i.e. xk is removed,
with probability �death as above. If the proposal is accepted, the new configuration
is 	x1� � � � � xk−1� xk+1� xn
, otherwise the configuration does not change.

In this simulation example, the initial configuration is a realisation from a bino-
mial process with 120 points. Figure 3.21 shows the simulation results after 100,
5000 and 10 000 iterations, where the random numbers of points were 120, 166
and 166, respectively. (It is only by coincidence that the last two numbers are the
same.) Figure 3.22(a) shows the evolution of the number of points N�W� in the
10 000 iteration steps.

In this particular case, the burn-in took around 2000 iterations, after which the
generated point patterns were considered realisations from the Strauss process.
Two point patterns are shown in Figure 3.21 (c) and (d). In Figure 3.21(e) the
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(d)

(b) (c)
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Figure 3.21 Simulated samples from a Strauss process with random number of
points generated by the Metropolis–Hastings algorithm on 1 . The parameters of
the process and the specific implementation of the algorithm are described in the
text. (a) Initial configuration (n= 120). Configuration after (b) 100 steps (n= 120),
(c) 5000 steps (n= 166) and (d) 10 000 steps (n= 166). The point patterns (c)
and (d) are statistically similar and may be considered samples from the Strauss
process. A tendency towards regularity can be detected but close pairs are also
allowed. (e) The disc graph G�N�0�08� for the pattern in (d). Points which interact
are connected by edges.

interacting points of the pattern (d) are connected by edges forming a disc graph
G�N�0�08�.

The number of points in the point patterns at iterations 2001 to 10 000 may be
used to inspect the distribution of N�W�. Clearly, N�W� is a random variable. If the
process’s finite nature itself is really of interest, this distribution is investigated. The
histogram of this distribution is shown in Figure 3.22(b). In particular, an estimate
of E�N�W�� seems to be 164.38.

Conditional simulation

A common problem is the conditional simulation of point processes, where the
generated patterns have to meet some specific condition. Consider, for example,
that a spatial point process N has to be simulated in a window W , given that there
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Figure 3.22 (a) A plot of the number of points N�W� at iterations 1 to 10 000 of
a run of the Metropolis–Hastings algorithm described in the text. (b) The corre-
sponding histogram of the distribution of the random number of points N�W� derived
from the simulations after 2000 steps.

are points of N at locations y1,� � � ,yl, while other points may have random positions.
With the simulation mechanisms discussed above it is straightforward to simulate
Gibbs processes with an additional condition like this. The points at locations
y1,� � � , yl are simply fixed points in all configurations that are generated by the
algorithm and are never changed during the simulation, but contribute to the rates
�birth and �death.

Perfect simulation

An important attempt to solve the problems with the burn-in period is perfect simu-
lation, which can be realised by ‘coupling from the past’ or other techniques; see
Kendall and Thönnes (1999), Møller (2001), Møller and Waagepetersen (2004) and
Van Lieshout and Stoica (2006). This approach has already been applied success-
fully in many situations, but not yet in cases of high point density or large interaction
radii. When planning long series of simulations one should consult an expert.

3.6.4 Second-order summary characteristics of finite Gibbs
processes

Gibbs process may be naturally characterised by their pair potential �r�, whereas
closed-form expressions for the general summary characteristics discussed in
Section 3.5 have often not been found. These depend on �r�, the number of points
n or chemical activity �, and the window W and can usually only be approximated
by simulation. Usually, there is not even a formula for the mean number of points
E�N�W��, and it is only by simulation that E�N�W�� may be estimated, as, for
example, for the patterns in Figure 3.21. The complex relationship between the pair
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potential �r� and second-order characteristics has been intensively investigated in
the physics literature; see Section 6.6.1.

As in classical statistics, large-sample approximations for finite Gibbs processes
with asymptotics for extreme point densities have been considered. This concerns
the asymptotic behaviour of sparse data with a decreasing point density and highly
dense systems, which tend to be similar to crystals with regular point positions.

For example, the finite K-function Kfin�r� of the hard-core Strauss process has
been approximated by sparse data approximation in Saunders et al. (1982); see also
Ripley (1988), Stoyan et al. (1995) and Gubner et al. (2000). This is based on the
approximate distribution of the number of close pairs in the process, where both
the area (volume) of W and n tend to infinity in such a way that nd/��W� is kept
constant. The term ‘sparse data’ is used as the point density is decreasing in �2 at
a rate of 1

n
when the point number n increases. The approximation is appropriate

for large W and a short range of interaction.

Sparse data approximation for the K-function for the hard-core Strauss
process

Recall that a finite hard-core Strauss process N = 	x1� � � � � xn
 in W is a finite
Gibbs process defined by the pair potential function

�r�=
⎧⎨
⎩

� for r ≤ r0�
� for r0 <r ≤ rmax�
0 for r> rmax�

(3.6.14)

Setting r0 = 0 and �> 0 yields the classical Strauss process, and setting r0 = 0 and
�= 0 the binomial process. The double sum

n2�r�=
1
2

∑�=

xi�xj∈N
1�
xi − xj
 ≤ r� for r> 0� (3.6.15)

is the number of pairs of points with inter-point distance not exceeding r. In
general, the distribution of n2�r� is unknown. However, for sparse point patterns,
the following formula may be used as an approximation:

En2�r�=
⎧⎨
⎩

0 for r ≤ r0�
c�r2 − r2

0 �e
−� for r0 <r ≤ rmax�

c�r2
max − r2

0 �e
−� + c�r2 − r2

max� for rmax <r<Rmax�
(3.6.16)

where Rmax is a value beyond the range of interaction and

c= 1
2

�

��W�
n�n− 1��

The approximation (3.6.16) ignores edge effects and in this sense does not
distinguish between finite and stationary Gibbs processes, which is irrelevant in the
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Figure 3.23 The finite L-function of the Strauss process with parameters
�= −8�0, �= 1�35 and rmax = 0�08 as in Example 3.12. In the simulation, 5000
iterations of the Metropolis–Hastings algorithm were calculated and the L-functions
were derived as means from 50 samples from every 500th iteration.

large-sample approximation. (Note that stationary Gibbs processes are discussed in
Section 6.5.) Equation (3.6.16) yields an approximation for Kfin�r� for small r:

Kfin�r�≈
2 · ��W�
n�n− 1�

En2�r� for r> 0� (3.6.17)

Figure 3.23 shows the finite L-function for the Strauss process considered in
Figure 3.21. As this process has no hard-core distance, Kfin�r� starts to increase at
r = 0. It has, just as (3.6.17) predicts, a cusp point at r = 0�08.

A generalised theory can be found in Jammalamadaka and Penrose (2000).

3.6.5 Further discussion

Inhomogeneous Gibbs processes

The Gibbs processes considered so far may be referred to as being defined in a
‘homogeneous environment’. For large windows W the patterns can be regarded
as samples from stationary processes, whereas for small W there is some weak
influence of the boundary, and for repulsive processes there is some ‘drift to
boundary’; see Figure 3.19. Sometimes, however, Gibbs processes are desired
with stronger forms of non-stationarity, for example with some trend of point
density within the window. The homogeneous Poisson process was generalised
in Section 3.4.1 for inhomogeneous environments allowing the intensity ��x� to
be location-dependent. Similarly, Gibbs processes with interacting points may be
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generalised to account for inhomogeneous environments. This may be done by no
longer assuming that the chemical activity � in (3.6.11) is constant in W but that
it depends on location. That is, ��x� reflects how likely it is that a point is located
in x∈W .

Then the process density function has the form

p�	x1� � � � � xn
�= exp

(
−

n∑
i=1

��xi�−
n−1∑
i=1

n∑
j=i+1

�
xi − xj
�
)/

Z� (3.6.18)

see Ogata and Tanemura (1986) and Stoyan and Stoyan (1998). Note that the model
in (3.6.18) still assumes that the interactions are homogeneous and do not depend
on location. Inhomogeneous Gibbs processes with a fixed number of points may
be constructed similarly.

The conditional intensity

��x�	x1� � � � � xn
�= exp

(
−��x�−

n∑
j=1

�
xi − x
�
)

(3.6.19)

might reflect the situation more clearly; the density at a specific point x depends on
the environment through ��x� and on the interaction with other points x1� � � � � xn ∈
W through the pair potentials.

A statistical question is how to model ��x�. If location-dependent covariates
z1�x�� � � � � zp�x�, describing environmental heterogeneity, have been observed,
these can be used as explanatory variables for ��x�. The function ��x� may also
be modelled parametrically.

Area-interaction process

The Strauss process in W with random number of points is defined through the
probability density

p�	x1� � � � � xn
�= exp �−�−�n2�r1��
/
Z

with respect to the Poisson process of unit intensity. Here n2�r1� is, as above, the
number of pairs of points of 	x1� � � � � xn
 with an inter-point distance of at most
rmax = r1. Usually, the interaction parameter � is assumed to be positive. That is,
due to this restriction the model can only model inhibition. Even though the density
is also finite for �< 0 if the number of points is fixed, the realisations are not
stable; the points tend to form a single cluster at a random position. If the number
of points is not fixed, it increases during the simulation. The conclusion may be
that a Gibbs process based on pairwise interactions is not a model for clustered
point patterns.

One approach to constructing point processes that are suitable for modelling
aggregation is to ‘penalise’ the effect of a high number of rmax-close pairs. Baddeley
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and Van Lieshout (1995) demonstrate how this penalisation can be done parsimo-
niously. Define the density

p�	x1� � � � � xn
�= exp�−�n−�S�R��
/
Z� (3.6.20)

where

S�R�= �

(
n⋃
i=1

b�xi�R�∩W
)

is similar to the dilation function introduced in (3.5.4). The model has three param-
eters, �, � and R, and describes the area (volume) of the union of discs (spheres)
of radius R centred at the points xi within W . Here again, the normalising factor Z
is intractable.

The area-interaction process expresses the interaction in the pattern in terms
of the area of the union covered by the ‘areas of influence’ of the points with
radius R. In biological applications, the points may represent locations of plants or
birds’ nests and the ‘area of influence’ may be the area in which a plant takes up
nutrients from the soil or the areas in which the animals forage. Scarce resources
may force the plants or animals to maximally exploit resources in the environment,
which translates to maximising S�R�, the environment used by the whole population
or colony. In terms of the area-interaction process this corresponds to a negative
parameter � and results in a tendency towards regularity in the point pattern. In
other situations, facilitation among plants or mutual protection in animals translates
to minimising the area S�R�, and thus � > 0 and the point pattern tends to be
clustered. Both cases result in a valid density. The value � = 0 yields a Poisson
process.

Note that the area-interaction process is not based on simple pairwise inter-
actions but on a much more complex structure of interactions. Nevertheless,
the model has only three parameters, making it both parsimonious and inter-
pretable; see Van Lieshout (2000) for more details. It may be generalised to
different types of points with different radii; see Kendall et al. (1999). Another
generalisation are morphological Gibbs processes, which have turned out to be
useful in physical applications; see Brodatzki and Mecke (2002) and Stoyan and
Mecke (2005).

Marked Gibbs processes

In many realistic applications the interaction among the objects represented by the
points is likely to depend on the distances among the objects but also on the objects’
properties such as their sizes. For this purpose, marked Gibbs processes may be
defined in a natural way. Now the energies also depend on marks; e.g. the pair
potential has the form �m1�m2� r�, where m1 and m2 are the marks of the two
points of distance r . Refer to Ogata and Tanemura (1985) and Diggle et al. (2006),
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who study bivariate patterns, and Møller and Waagepetersen (2007), who use a pair
potential for a tree pattern which is influenced by the sizes of trees.

Markov point processes

Gibbs processes as introduced above describe interactions in terms of interactions
among pairs of points. This allows inhibition and (sometimes) clustering to be
modelled. However, modelling more complicated relationships between the points,
e.g. with local alignments of points or connected components, is beyond the scope
of this approach. A more general class of processes has been defined which may
provide suitable models in these situations.

Kelly and Ripley (1976) and Ripley and Kelly (1977) suggest the general class of
Markov point processes which exploits the famous Hammersley–Clifford theorem;
see Van Lieshout (2000) for a fine presentation. This theorem provides an explicit
factorisation of the density of such a process in terms of interactions between the
points. A finite Markov point process is defined through a density

p�	x1� � � � � xn
�= exp

(
−∑

C

V�C�

)/
Z for x1� � � � � xn ∈W� (3.6.21)

with respect to the Poisson process of unit intensity, where 	C
 is the family of all
non-empty subsets of 	x1� � � � � xn
 and V a function which assigns non-negative
numbers to these sets. If V�C�= 0 for all subsets with more than two points, the
pairwise interaction Gibbs process is obtained.

The general form of (3.6.21) allows the generalisation of the pairwise interaction
approach to three-point interactions, etc.

Ecological applications

Note that the logic behind Gibbs processes is in many ways akin to an approach in
ecology which has been termed ‘ecological field theory’, as introduced by Wu et al.
(1985). Ecological field theory models the growth and survival of an individual
plant on the influence of competing plants in terms of their distance and their
dimension. In this context a number of competition indices (different from those in
Sections 4.2.4 and 5.2.4) together with ecological modelling of growth of species
over time have been discussed (see, for example, Kuuluvainen and Pukkala, 1989;
Miina and Pukkala, 2002; Kühlmann-Berenzon et al., 2005; Schneider et al., 2006).
Clearly, Gibbs processes as such do not model the growth of individuals based on
distances. However, in modelling the spatial locations of individuals they may be
considered as modelling the survival of individuals in the given locations dependent
on distances from competitors (Illian et al., 2008) and competitor properties if
marks are included in the model (Møller and Waagepetersen, 2007).

Degenhardt (1999) analyses the evolution of a forest. At various points in time
pair potentials are estimated, which clearly show the increasing regularity of the
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forest as well as the decreasing influence of the tree size marks. She found that the
interaction radius in forests can be determined by

rmax = a√
�

with a between 1.2 and 1.5.

3.6.6 Statistical inference for finite Gibbs processes

Statistical inference for finite point processes may be difficult in places, and this
is not different for finite Gibbs processes. The simplest part is inference on the
number of points n=N�W�, which is straightforward if the analysis is based on m,
sufficiently many, independent samples, and if the window W is clearly defined by
the problem itself, as it is in the maple leaves example (Example 3.6). The situation
becomes even easier in cases where it is clear from the start of the analysis whether
n should be regarded as random or as fixed. But in both cases the estimation of the
density of the Gibbs process is far from being an elementary task.

However, often only a single sample is available. In this case, statistical inference
on the point number N�W� is impossible of course; one cannot decide whether
n is random or fixed. Thus the main interest focuses on the estimation of the
pair potential �r�. For this reason, only the case of a fixed number of points is
considered in the following. If the point pattern appears to be homogeneous and
the window W is part of a larger region with similar point distribution, it seems
to be mainly a question of taste whether the analysis will be based on finite Gibbs
processes or on stationary Gibbs processes. There are arguments in favour of finite
Gibbs processes since the maximum likelihood method can be applied to them, a
method which many statisticians believe to be the best estimation method. Indeed,
classical statistics provides theoretical results which justify this argument. However,
in the context of spatial point processes a proof that maximum likelihood estimators
are really superior in general is yet to be given. Fortunately, experience has shown
that it is acceptable not to clearly distinguish finite and stationary Gibbs processes
with regard to statistical inference. In Diggle et al. (1994) stationary and finite
methods were applied in parallel to the same simulated samples and the different pair
potential parameter estimation methods showed very similar behaviour. Therefore,
this section focuses mainly on examples based on a single-sample case with fixed n
and discusses mainly maximum likelihood methods. See Section 6.5 for stationary
inference approaches.

Sparse data methods

In most cases statistical inference for Gibbs processes is computationally inten-
sive, as will become obvious in the following. Nevertheless, there are some easier
approximate methods, which are particularly suitable for sparse patterns, for large
W and n and weak interaction.
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Cusp-point method. The first method of this type is the cusp-point method,
suggested in Hanisch and Stoyan (1983) and Stoyan and Grabarnik (1991a). It is
based on the sparse data approximation discussed in Section 3.6.4 in the context of
approximative calculation of the K-function. Consider a finite Gibbs process with
pair potential (3.6.14) for a data set of points 	x1� � � � � xn
 in W . This pair potential
has two discontinuities, at r0 and rmax, which have to be estimated statistically,
along with the interaction parameter �.

The location of the first discontinuity, the hard-core radius r0, can simply be
estimated by the maximum likelihood method, i.e. using the minimum inter-point
distance in the data.

One can show that for large windows and sparse data the right and left derivatives
of the K-function at rmax appear in the relationship

limr↑rmax
K′

fin�r�

limr↓rmax
K′

fin�r�
= e−�� (3.6.22)

which may be exploited in parameter estimation. First the ‘cusp point’ of the
K-function at rmax (the range of interaction), corresponding to the discontinuity
of �r�, is estimated from the nonparametric estimator of Kfin�r� obtained with
traditional estimators of the K-function. Then � can be estimated from (3.6.22).
Admittedly, this approach ignores the finite nature and hence the edge effects.

Note here that the empirical J -function also leads to estimates of rmax, by (4.2.51).

Maximum likelihood estimation. The second approach to sparse data approxi-
mation is maximum likelihood estimation. The corresponding estimators can usually
be applied together with MCMC simulations (see below). With modern computing
power this is not a shortcoming in the data analysis since a number of efficient
simulation algorithms have been developed for Gibbs processes as described in
Section 3.6.2 and well-tested software – the spatstat library in R – exists;
see Baddeley and Turner (2005, 2006). Note that the simulation approach is less
approximate and does not ignore edge effects.

In the case of finite Gibbs processes with fixed n, the n observed points are
considered as the data, while the parameter � (which may also be a vector �=
��1� � � � � �p�) of a pair potential �r� of fixed form ��r� has to be estimated.
Examples of these functions can be found in Section 3.6.2. Given one sample, the
likelihood function is simply the location density function given by (3.6.2), and the
log-likelihood function is

l�x1� � � � � xn� ��= − lnZn���−
n−1∑
i=1

n∑
j=i+1

��
xi − xj
�� (3.6.23)

Note that the likelihood function also contains the normalising factor Zn which
depends on � and is thus referred to as Zn���. The maximum likelihood estimator
is the value �̂ which maximises this function for fixed x1� � � � � xn with respect to �.
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After this rather optimistic start it has to be admitted that the problem is rather
complicated due to the normalising factor Zn���. It depends on �, n and the window
W and is intractable in most cases, as noted in Section 3.6.2. Since Zn��� is an
integral part of the log-likelihood, conventional (numerical) methods cannot be
applied when determining the maximum likelihood estimators. In addition, even if
it were possible to find maximum likelihood estimators in some way, little could
be said about the asymptotic variances of the estimators as no sound theoretical
results exist.

Consequently, in maximum likelihood estimation approaches the normalising
factor is usually approximated, either by sparse data methods or by Monte Carlo
methods.

Ogata and Tanemura (1981) propose a sparse data approximation

Zn���≈ ��W�n
(

1 − a���

��W�

)n�n−1�/2

� (3.6.24)

where

a���=
�∫

0

�1 − exp�−��r���dbdr
d−1dr�

in which dbd is the surface area of the unit ball in �d (i.e. 2� in �2). This
approximation relies on the so-called cluster or virial expansion originating in
statistical physics. The validity of this approximation has been discussed in Ogata
and Tanemura (1984), Gates and Westcott (1986) and Mateu and Montes (2001).

For the planar Strauss process in Example 3.8 this yields

a���= �1 − e−���r2
max�

If it is assumed that rmax is known, the approximate maximum likelihood estimator
of � is

�̂appr = − ln

(
n2�rmax����W�−�r2

max�

�r2
max

(
1
2n�n− 1�− n2�rmax�

)
)
�

where

n2�rmax�=
1
2

∑�=

xi�xj∈N
1�0< 
xi − xj
 ≤ rmax�� (3.6.25)

i.e. the number of rmax-close pairs in the observed point pattern.
For the planar hard-core Strauss process, assuming that r0 and rmax are known,

this yields

a���= (1 − e−�)� (r2
max − r2

0

)
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and

�̂appr = − ln

(
n2�rmax�

(
��W�−�

(
r2

max − r2
0

))
�
(
r2

max − r2
0

) (
1
2n�n− 1�− n2�rmax�

)
)
�

In practice, r0 and rmax have to be estimated separately, as discussed earlier.
Penttinen (1984) proposes a similar sparse data approximation for the norma-

lising constant of more general planar Gibbs processes assuming a finite range
of interaction, i.e. the existence of a constant rmax > 0 such that �r�= 0 for all
r> rmax. Then

Zn���≈ exp
(

1
2
n�n− 1��r2

max �A���− 1� ��W�
)

(3.6.26)

with

A���= 2
r2

max

rmax∫
0

r exp�−��r��dr�

This approximation yields similar results to (3.6.24). The resulting approximate
maximum likelihood estimator for the Strauss process is

�̂appr = − ln

(
n2�rmax���W�

1
2n�n− 1��r2

max

)
�

and for the hard-core Strauss process

�̂appr = − ln

(
n2�rmax���W�

1
2n�n− 1���r2

max − r2
0 �

)
�

Even though the sparse data approximations are quite simple, they can be
expected to work well for really sparse data. They yield preliminary approximations
for less sparse data at best. The crucial parameter in the planar case is roughly
nrmax/��W�, where rmax is the range of interaction. If n or rmax increases or ��W�
decreases, the approximations become increasingly unsuitable. In particular, these
approximations do not work for very regular, nearly lattice-like point patterns. A
further drawback of the sparse data approximations is that these ignore boundary
effects, which might have an effect for small samples.

Monte Carlo maximum likelihood

Monte Carlo approximation of the likelihood. Recall that Zn��� is
intractable in most cases, which implies that the likelihood function is also
intractable. In this situation, the idea in Monte Carlo maximum likelihood
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approaches is to approximate the logarithm of the likelihood function of the finite
Gibbs distribution or its derivatives by simulating it for a set of parameter values
�. This implies approximation of the normalising factor. This approach is well
known in statistics in general – it is an application of Monte Carlo integration, or
equivalently, evaluation of expectations by means of simulation; see Ripley (1987).
In what follows the method of Geyer and Thompson (1992) is discussed in detail;
see also Geyer (1999) and Møller and Waagepetersen (2004).

To be more specific, Monte Carlo integration involves the following. Let X be a
random variable with probability density function f�x� and assume that (independent
or dependent) simulations X1� � � � �XL are available. Then the expectation

I = E�h�X�� f�=
∫
h�x�f�x�dx

for some function h�x� is approximated by the mean

1
L

L∑
l=1

h�Xl��

Here, E� · � f� denotes the expectation with respect to the distribution with density
f�x�.

In the application considered here, Monte Carlo integration has to yield the
log-likelihood function for many parameter values for the optimisation, which is
computationally expensive. A clever idea which makes the algorithm more efficient
is to approximate the logarithm of the likelihood ratio by

ln
(
L�x1� � � � � xn� ��

L�x1� � � � � xn� �

)
= l�x1� � � � � xn� ��− l�x1� � � � � xn� ��

or l���− l� � for short, where  is some fixed parameter value already close to the
maximum likelihood solution, found perhaps by one of the sparse data methods.
Recall that the normalising factor Zn��� is of the form

Zn���=
∫
W

· · ·
∫
W

exp�−U��	x1� � � � � xn
��dx1 · · ·dxn� (3.6.27)

where

U��	x1� � � � � xn
�=
n−1∑
i=1

n∑
j=i+1

��
xi − xj
�
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is the total energy corresponding to the parametrised pair potential ��r�.
Equation (3.6.27) yields that

Zn���

Zn� �
=
∫
W

· · ·
∫
W

exp�−U��	x1� � � � � xn
��

exp�−U �	x1� � � � � xn
��

×Zn� �
−1 exp�−U �	x1� � � � � xn
��dx1 · · ·dxn

= E
(
exp
(− (U��	x1� � � � � xn
�−U �	x1� � � � � xn
�

))
� 
)
� (3.6.28)

where the expectation is with respect to the finite Gibbs distribution with known
parameter value  .

Generate a sequence of length L (where L is large) of point patterns
x�l� = 	x

�l�
1 � � � � � x

�l�
n 
 for l= 1� � � � �L in W from the Gibbs distribution with pair

potential  �r�. Then for parameter values � ‘close’ to the fixed value  applied
in the simulation, the Monte Carlo integration approach yields

E
(
exp
(− (U��	x1� � � � � xn
�−U �	x1� � � � � xn
�

))
� 
)

≈ 1

L

L∑
l=1

exp
(
−
(
U��	x

�l�
1 � � � � � x

�l�
n 
�−U �	x

�l�
1 � � � � � x

�l�
n 
�
))
�

This leads to the following approximate log-likelihood ratio with respect to  :

l���− l� �≈ − (U��	x1� � � � � xn
�−U �	x1� � � � � xn
�
)

− ln

(
1
L

L∑
l=1

exp
(
−
(
U��	x

�l�
1 � � � � � x

�l�
n 
�−U �	x

�l�
1 � � � � � x

�l�
n 
�
)))

�

(3.6.29)

The maximum likelihood estimator is the value of � which maximises (3.6.29); it
is determined by numerical methods. Note that even though the derivation of the
approximation is general, there might be problems in practice when one aims to
estimate the log-likelihood function for parameter values � that are not close to the
fixed value  that was used in the simulation. Example 3.13 below illustrates this
issue for the Strauss process.

Note also that the computation of an expectation using simulations from a
different distribution, as above, is known as ‘importance sampling’, see e.g. Ripley
(1987), p. 122.

Example 3.13. Monte Carlo maximum likelihood for the Strauss process
Refer to Example 3.8 for the potential function. Assume that rmax is known a priori
or has been estimated using the cusp-point method or some other methods such that
� is the only unknown parameter. The likelihood function is

L�x1� � � � � xn���= exp �−�n2�rmax�� /Zn��� for �> 0�
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with n2�rmax� as in (3.6.25). Let  >0 be a preliminary parameter value for � chosen
a priori or perhaps an estimate of � obtained through a sparse data approximation.

A sequence of point patterns 	x�l�1 � � � � � x
�l�
n 
 for l=1�2� � � � �L is simulated from

the Strauss process with parameter value  and the sufficient statistic n�l�2 �rmax� is
derived from each simulation. Then

l���− l� �≈ −��− �n2�rmax�− ln

(
1
L

L∑
l=1

exp
(
−��− �n

�l�
2 �rmax�

))
� (3.6.30)

Its derivative is

d

d�
l���≈ −n2�rmax�+

∑L
l=1 n

�l�
2 �rmax� exp

(
−��− �n

�l�
2 �rmax�

)
∑L

l=1 exp
(
−��− �n

�l�
2 �rmax�

) �

and the approximate estimation equation can be written as

n2�rmax�=
L∑
l=1

w
(
�� �n

�l�
2 �rmax�

)
n
�l�
2 �rmax�� (3.6.31)

where

w
(
�� �n

�l�
2 �rmax�

)
=

exp
(
−��− �n

�l�
2 �rmax�

)
∑L

k=1 exp
(
−��− �n

�k�
2 �rmax�

) for l= 1�2� � � � �L

(3.6.32)

are so-called importance weights. Equation (3.6.31) can be solved by numerical
methods.

If � is not close to  , it is possible that a few of these weights are very
different from zero and the approximation may be poor. When � is close to  the
weights are evenly distributed around 1/L, and the approximation is expected to
work well.

Penttinen (1984) suggests another Monte Carlo algorithm for the maximum
likelihood method. It is based on the Newton–Raphson numerical algorithm where
the first and second derivatives of the log-likelihood function are approximated
by the Monte Carlo method. Heikkinen and Penttinen (1999) combine the two
algorithms. First the stochastic Newton–Raphson algorithm is applied to find a
parameter value close to the maximum likelihood estimate. The result is then used
as the fixed parameter value  in the Geyer–Thompson algorithm as described
above.
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Profile likelihood method. In the Strauss process and hard-core Strauss process
there are two types of parameters: the ‘range’ parameters r0 and rmax and the
strength-of-interaction parameter �. Baddeley and Turner (2006) call the former
parameters ‘irregular’ and the latter ‘regular’. The irregular parameters cause diffi-
culties in the maximum likelihood procedure and are estimated directly from the
data or derived from prior knowledge. The profile likelihood method is a modifica-
tion of the maximum likelihood method which can also handle irregular parameters.
Consider the Strauss process as an example. The profile likelihood of rmax is
defined as

L�x1� � � � � xn� rmax�= argmax�L�x1� � � � � xn� rmax����

and the profile likelihood estimator r̂max maximises the profile likelihood
L�x1� � � � � xn� rmax�. In practice, the profile likelihood method may become compu-
tationally demanding for Gibbs processes.

Pseudo-likelihood method

A method that was developed early in the history of spatial point process statistics
to circumvent the problems with the normalising factor in parameter estimation for
finite Gibbs processes is the pseudo-likelihood method (Besag, 1975, 1978), see
also Møller and Waagepetersen (2004), p. 171. The observed data 	x1� � � � � xn
 and
a parametrised pair potential are linked by the pseudo-likelihood function

PL���=
(

n∏
i=1

���xi�	xj� j �= i
�

)
exp

⎛
⎝−

∫
W

���x�	x1� � � � � xn
�dx

⎞
⎠ � (3.6.33)

The first term is the contribution of the observed points, while the integral
part is related to the ‘empty space’. Note that (3.6.33) resembles the likelihood
function

L���=
(

n∏
i=1

���xi�

)
exp

⎛
⎝−

∫
W

���u�dx

⎞
⎠

of the inhomogeneous Poisson process in the sense that the intensity function ��x�
is replaced by the conditional intensity.

Practical experience shows that PL estimation may be a poor method when
the interactions in the model are very strong. Another drawback is that in some
situations the integral in (3.6.33) can be difficult to calculate even by numerical
methods.

Baddeley and Turner (2000) show that when the integral in PL (�) is approx-
imated by a finite sum in a clever way this results in an approximate pseudo-
likelihood which is formally equivalent to the weighted likelihood of a log-linear
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model with Poisson responses. (This procedure is referred to as the ‘Berman–
Turner device’.) Hence standard software developed for generalised linear models
may be used to compute the PL�!� estimates. However, the asymptotics used
to derive standard errors that are provided by the software are not theoreti-
cally justified. An advantage of the approach is that information on covariates
influencing the point density can easily be taken into account. This may be
useful in a preliminary study on the role of potential covariates. However, the
maximum likelihood approach is preferable as a method for obtaining the final
results.

The Monte Carlo maximum likelihood method solves the parameter estimation
problem but no reliable method for variance estimation is known. In practical
applications the parametric bootstrap may be used; see Chapter 7.

Baddeley and Turner (2006) present a general estimation procedure including
both maximum likelihood and pseudo-likelihood methods for a wide class of finite
Gibbs processes. Huang and Ogata (1999) improve the pseudo-likelihood estimation
as follows. An MCMC chain is generated based on the pseudo-likelihood estimate as
a parameter estimate to estimate the score and Fisher information. These values are
used in the Fisher scoring algorithm, yielding an approximation for the maximum
likelihood estimate.

Example 3.14. The positions of 69 Spanish towns
The example originates from the seminal paper by Glass and Tobler (1971) and has
been further considered by Ripley (1977, 1988) and Stoyan et al. (1995). Figure 3.24
shows the positions of 69 towns in a square window W of side length 40 miles

Figure 3.24 Positions of 69 Spanish towns in a 40×40 mile square. Data courtesy
of B.D. Ripley.
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Figure 3.25 The empirical Kfin-function for the Spanish towns. The hard-core
distance and the chosen cusp point are marked by vertical line segments.

within the Spanish Plateau south-east of Madrid; for details, see Glass and Tobler
(1971).

The plot of the Kfin-function is shown in Figure 3.25, revealing two properties.
There is a minimum inter-point distance of 0�84 miles and inhibition up to 3�5 miles,
where a cusp point can be detected. Ripley (1988) suggests the Strauss hard-core
point process for this data set based on second-order analysis. In what follows, four
methods will be applied for parameter estimation, i.e. for the estimation of rmax and
�, �= �rmax���. In all approaches the value r0 = 0�83 obtained by (4.2.46) is used
for the hard-core distance.

(i) The cusp-point method. The cusp point is estimated visually as the distance
r̂max = 3�5 miles. The relation (3.6.22) is applied by fitting two local regres-
sion lines, which yields the estimate �̂= 0�859. This method uses mainly
information of the Kfin-function near the cusp point.

(ii) The mimimum contrast method. The parameters are determined by
minimising the integral

"��� rmax�=
Rmax∫
0

(
L̂fin�r�−L��rmax

�r�
)2

dr

with respect to � and rmax; see Section 7.2. Here L̂fin�r� is an estimate
of Lfin�r� computed from data and L��rmax

�r� is its theoretical counter-
part for the finite Gibbs process with parameters � and rmax. In this
application, the latter is computed with the approximation (3.6.16), but,
as an alternative, simulation can be used. The Lfin-function is applied
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instead of the Kfin-function because its estimator has a more stable vari-
ance for different values of r. For Rmax the value 7�5 miles is used.
The estimates are r̂max = 2�16 and �̂ = 0�81. The minimum contrast
method is based on the information in the K̂fin-summary over the interval
�0�Rmax�.

(iii) The pseudo-likelihood method. The logarithm of the pseudo-likelihood func-
tion (3.6.33) for fixed rmax is minimised with respect to � and the value
of rmax is chosen that maximises the maximum log-pseudo-likelihood. The
estimates obtained are r̂max = 3�50 and �̂= 0�67.

(iv) Approximate maximum likelihood. The useful approximate method of Huang
and Ogata (1999) starts from the pseudo-likelihood method. Then MCMC
simulation is used to improve the initial estimate resulting in an approxi-
mation for the maximum likelihood estimator. Again the value r̂max = 3�50,
obtained through the pseudo-likelihood method, is used; for � the estimate
�̂= 0�76 is obtained.

Note that in (iii) and (iv) the estimation algorithms provided in spatstat
(Baddeley and Turner, 2005, 2006) were used. The results for all four methods are
shown in Table 3.2.

Ripley (1988) obtained the estimates r̂max = 3�5 and �̂ between 0�59 and 0�67,
while in Stoyan et al. (1995) the estimates were 3�5 and 0�85, respectively. Due
to strong inhibition the pseudo-likelihood method underestimates the interaction;
hence the maximum likelihood solution is an improvement. The cusp-point method
performs well, while the minimum contrast method gives a very small estimate
for rmax. The minimum contrast method differs from pseudo- and maximum likeli-
hood estimation in the sense that it also includes large interpoint distances (larger
than rmax).

In Section 7.4 the goodness-of-fit of the hard-core Strauss model for the param-
eters obtained by the maximum likelihood method is tested, with a positive result.

Note that the pattern of the gold particles cannot be fitted by the hard-core
Strauss process. A Gibbs process with estimated parameters r̂0 =5�6, r̂max =10�0�m

Table 3.2 Estimation results of hard-core Strauss process fits for the Spanish
towns data.

Parameter Estimation method

Cusp point Minimum
contrast

Pseudo-
likelihood

Maximum
likelihood

rmax 3�50 2�17 3.50 3.50 (fixed)
� 0�86 0�81 0�67 0�76
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and �̂ between −1�159 and −1�048 shows dense clusters of points, which do
not exist in the empirical pattern. The explanation is that attraction in the Gibbs
process model with these parameters on the medium scale is too strong. This clearly
indicates that Gibbs processes may not be very suitable for clustered patterns even
if there is a small hard-core distance.
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4

Stationary point processes

This very long chapter forms the core of this book as it deals with
the classical non-parametric methods of point process statistics, which
assume stationarity or homogeneity and also implicitly that the samples
are parts of infinite point patterns. This assumption makes the statis-
tical methodology much simpler and more elegant than in the case of
finite patterns. It is realistic in many applications, where the patterns
are indeed homogeneous or where homogeneous subsamples in larger
inhomogeneous patterns may be chosen with the aim of analysing the
local interaction of the points.

The chapter discusses in detail the intensity or point density �,
which is a fundamental first-order characteristic, as well as Ripley’s
K-function, Besag’s L-function and the pair correlation function,
which are second-order characteristics. However, these are only some
of the characteristics which may be used to analyse point patterns.
Other concepts, including indices, nearest-neighbour characteristics
and higher-order and topological characteristics, are discussed as well.

The presentation takes a systematic approach and therefore
commences with some basic definitions and theoretical concepts which
might seem technical but will be relevant throughout the chapter
and the book. This includes a discussion of several edge-correction
methods, which are necessary to eliminate the influence of the choice
of the observation window W .

Statistical Analysis and Modelling of Spatial Point Patterns J. Illian, A. Penttinen, H. Stoyan and D. Stoyan
© 2008 John Wiley & Sons, Ltd
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Furthermore, a number of aspects of high practical relevance are
considered such as issues of window choice, replicated patterns,
detection of anisotropies as well as outliers and missing values. Finally,
modern ideas for the analysis of inhomogeneous patterns are discussed
that are based on concepts originally designed for stationary processes.

4.1 Basic definitions and notation
The concept of a stationary point process was introduced and explained in
Section 1.6. ‘Stationary’ in the context of spatial point patterns means ‘spatially
homogeneous’ and does not refer to the temporal behaviour of the data. This
property has a strong impact on the statistical analysis.

Statistical methods for stationary point processes consist of those classical
approaches that are usually subsumed under the umbrella term ‘point process
statistics’. This includes well-known concepts such as intensity, K-function and
edge-correction, which are directly connected to stationarity. This section presents
the relevant theory.

Recall that a point process N = �x1� x2� � � � � in �d is stationary (or statistically
homogeneous) if N and the translated point process

Nx = �x1 + x�x2 + x� � � � �

have the same distribution for all x, or, in mathematical notation, if

N
d=Nx�

In other words, both point density and configuration of the process N randomly
fluctuate in the same way throughout the whole space.

The reader will soon realise that the statistical methods for stationary point
processes are simpler and more elegant than those for finite point processes, which
were covered in Chapter 3 and are important examples of non-stationary point
processes. Stationarity also facilitates the derivation of formulas for summary
characteristics. In the following, this will be demonstrated in detail for the intensity
function, void probabilities and second-order characteristics.

Intensity

The mean behaviour of a stationary point process is summarised by a single number,
the intensity �. The mean number of points in B satisfies

E�N�B		=� · 
�B	� (4.1.1)

where B is any subset of �d.1

1 Technically, B is a Borel set (as in Section 1.5).
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The interpretation of � is straightforward. Consider, for example, B as a set of
unit area (or volume), 
�B	= 1. Then the right-hand side of equation (4.1.1) is
simply �, the mean number of points in N per unit area (volume). Hence, � is
called the intensity or point density. Note that in the literature symbols based on
the Greek letter rho such as �, � or �0 are sometimes used instead.

Equation (4.1.1) can be derived as follows. In general, the mean behaviour of a
point process that is not necessarily stationary is described by the intensity measure
�B	, where

�B	= E�N�B		= mean number of points of N in B�

If the distribution of N coincides with that of the translated process Nx, then

E�N�B		= E�Nx�B		�

and since Nx�B	=N�B− x	

E�N�B		= E�N�B− x		�

As x can be chosen arbitrarily, the same is true for −x, yielding E�N�B		 =
E�N�Bx		 or

�B	=�Bx	 for all sets B and all x∈�d� (4.1.2)

A well-known theorem from measure theory then yields that the translation-invariant
measure  must be a multiple of the Lebesgue measure or area or volume 
, i.e.

�B	=� · 
�B	� (4.1.3)

Campbell theorem

The Campbell theorem is a very useful tool for the calculation of mean values of
point process characteristics or statistical estimators. Many of these have the form∑

x∈N
f�x	�

as discussed in Section 1.5. Basically, the Campbell theorem states that the mean
of such a sum can be calculated by solving a volume integral.

In the stationary case the Campbell theorem has a very simple form: equa-
tion (1.5.10) becomes

E

(∑
x∈N

f�x	

)
=�

∫
f�x	dx� (4.1.4)
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i.e. the mean of the sum f1�x1	+ f�x2	+ � � � can simply be expressed as �
times a volume integral over f�x	. This is true without any specific distributional
assumption, i.e. also for non-Poisson processes provided they are stationary.

Example 4.1. Use of the Campbell theorem. Continuation of Example 1.1

(1) Seed density

ESf = 2��

�∫
0

m exp�−cr	rdr = 2�� · m
c2
�

using dx= 2�rdr, the area differential in polar coordinates.

(2) Counting birds

ESf = 2��

�∫
0

p�r	rdr�

and for p�r	= 1 − ar (for r ≤ 1/a) the value

ESf = 2�� · 1
6a2

is obtained.

Spherical contact d.f. or empty-space distribution

In the stationary case the probability P�N�b�x� r		= 0	 that the sphere of radius r
centred at location x is empty does not depend on x. Thus the spherical contact
d.f. is also independent of x, and it can be defined with respect to x= o, yielding
a simplification of (1.5.6):

Hs�r	= 1 − P�N�b�o� r		= 0	 for r ≥ 0� (4.1.5)

Second-order moments

In the stationary case the second-order product density ��x1� x2	 depends only on
the difference h= x1 − x2, since by stationarity

��x1� x2	=��x1 + x�x2 + x	 for all x� x1 and x2�

For convenience, the notation ��h	 is typically used, with h ∈ �d. If N is also
motion-invariant then the product density depends only on the distance r of x1 and
x2 or the length of h, r = �h�. Then the notation simplifies further to ��r	, where
r is a positive number.
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Palm distribution∗

The Palm distribution is one of the more complicated topics within the theory of
point processes. Nevertheless, it is introduced here as it plays a fundamental role
in point process statistics. Important point process characteristics such as Ripley’s
K-function or the nearest-neighbour distance d.f. are of a ‘Palm nature’. Readers
familiar with the Palm distribution theory will gain a deeper understanding of these
characteristics.

Palm characteristics are probabilities or means that refer to individual points in
a point process. Consider the following two examples:

(a) Let x be a point in N , x∈N , and consider nx�r	=N�b�x� r	\�x�	, the number
of points of N in the sphere of radius r centred at x, not counting x itself.

(b) Consider the event nx�r	 > 0 that there is at least one point of N within
distance r from x or that the distance d�x	 from x to its nearest neighbour
h�x	 is less than r.

Note that nx�r	 with x ∈N and ny�r	 for some given fixed deterministic point y,
which is not a point in N , are of a different nature: the fact that x is a point in the
point process often has an influence on the value of Nx�r	. For example, if there is
a minimum inter-point distance r0 in N , then nx�r	= 0 for r < r0 and all x, while
E
(
ny�r	

)=�bdr
d for all r, using (4.1.1). If x is part of a cluster, E �nx�r		 may be

larger than �bdr
d.

Clearly, in the stationary case one aims to define Palm distributional characteris-
tics such that these are independent of the particular position of the random point x
since all characteristics should be the same throughout space. The usual approach
considers a point at the origin o. However, the probability that a stationary point
process has a point exactly at o is zero. Therefore, the probability that N has some
property provided that it has a point at o is a difficult quantity.

Statistically, a mean related to (a) and a probability related to (b) with x= o
may be determined as follows. Consider an observation window W in which
N has N�W	 = n points. These points x1, � � � , xn are taken in turn and N is
shifted such that the relevant point lies at the origin o, i.e. N − xi is considered
for i= 1, 2, � � � , n.

For (a) the numbers ni�r	 of points in N − xi in b�o� r	 may then be determined.
Their average yields an estimate of the mean number of points in a sphere of radius
r centred at a point process point, where in all cases the point xi itself is never
counted.

For (b) one checks whether the nearest neighbour of o in N − xi may be found
at a distance smaller than r from o. If so, an indicator ti is assigned the value 1,
otherwise 0. Then the sum

∑n
i=1 ti is equal to the number of points with a small

nearest-neighbour distance, and the value
∑n

i=1 ti/n is an estimate of the proba-
bility that a point in the point process has its nearest neighbour at a distance less
than r.
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Note that in this book the theoretical analogues to the mean and the probability
discussed above will be denoted by

Eo�N�b�o� r	\�o�		 and Po�N�b�o� r	\�o�	> 0	�

where the index ‘o’ indicates the shifting of the patterns towards o. In the liter-
ature the mean and probability above are typically denoted by �K�r	 and D�r	,
respectively.

The exact technical definition of the Palm probability Po is the following:

�
�W	Po�N ∈�	= E

( ∑
x∈N∩W

1��N − x	

)
� (4.1.6)

Here W is some ‘test set’ of positive area (volume) 
�W	, and N ∈� is a general
notation for ‘point process N has property �’. Clearly, � has to be a property
which makes sense for a point process with a point at o. An example of this is
‘N�b�o� r	\�o�	=0’. The indicator 1��N −x	 is 1 if the shifted point process N −x
has property � and 0 otherwise.

Analogously,

�
�W	Eo���N		= E

( ∑
x∈N∩W

��N − x	

)
� (4.1.7)

where ��N	 is a (real) number assigned to N . An example is ��N	=N�b�o� r	 \
�o�	= no�r	, the number of points of N in b�o� r	 excluding o.

Equation (4.1.6) is the definition of the Palm distribution as given by Mecke
(1967), who showed that the definition of Po�N ∈�	 is independent of the choice
of the set W .

Remarks. Po�N ∈�	 is often called the conditional probability that N has property
� given that a point of the process is in o. This condition has probability zero for a
stationary point process. Thus it is clear that the conditional probability discussed
cannot be defined in the classical way as P�A	B	 for P�B	> 0.

Fortunately, under some conditions Po�N ∈ �	 can be obtained as a limit of
conditional probabilities with the condition N�b�o��		= 1 for �→ 0, i.e. that there
is a point of N in a small sphere around o; see p. 75 for the Poisson case.

Geometrical relationships between N and its Palm version No (the point process
having the distribution Po, with a point at the origin) are studied in Thorisson
(2000) and Holroyd and Peres (2005): N and No are related by a ‘shift coupling’,
i.e. there is a random point X in N such that the translated process N−X has the
same distribution as No.

In the literature the term typical point is often used and refers to the probability
and the mean discussed above. For example,
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• Po�N�b�o� r	 \ �o�	> 0	 is the probability that there is at least one point in a
sphere of radius r centred at the typical point;

• Eo�N�b�o� r	 \ �o�		 is the mean number of points in a sphere of radius r
centred at the typical point, excluding the typical point itself.

This book also uses this terminology.
Palm distributions can also be constructed with respect to two or more points;

see Kallenberg (1983) and Hanisch (1982, 1983).

Campbell–Mecke formula

The Palm mean appears in a refined form of the Campbell theorem, the Campbell–
Mecke formula:

E

(∑
x∈N

f�x�N	

)
=�

∫
Eo�f�x�N−x		dx=�Eo

(∫
�f�x�N−x	dx

)
� (4.1.8)

Note that here f�x�N	 depends not only on x but also on other points in N .
Section 4.2.6 applies the Campbell–Mecke formula in the context of the nearest-
neighbour distance distribution function.

4.2 Summary characteristics for stationary point
processes

4.2.1 Introduction

As explained in Section 1.7, the aim of summary characteristics is to provide a brief
and concise description of point patterns using numbers, functions or diagrams.
Summary characteristics for stationary and isotropic point processes are particularly
efficient. Well-known examples include the intensity � (see Section 4.2.3) and the
K-function (see Section 4.3).

Prior to the application of summary characteristics that are suitable for stationary
processes, the pattern should be investigated at least by visual inspection to verify
that the stationarity assumption holds, as recommended in Section 1.6. A reasonably
stationary pattern would be one that appears as if it could be continued in space
in the same way many times. It is risky, for example, to apply stationary summary
characteristics to a pattern which looks like a single cluster in a window, with
sparsely distributed points close to the margin. In this case it is not clear if there
are further clusters in the pattern outside the window or whether the pattern is more
uniform elsewhere.

It is often useful to adapt the observation window W to the point pattern,
i.e. to either reduce W by removing empty marginal regions or to use a larger
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window (which may involve collecting more data). This may lead to irregular,
non-rectangular or non-circular windows; see Wiegand and Moloney (2004). The
window may be adapted if the original window was chosen based on theoretical
considerations, and the choice was not made on the basis of the nature of the
statistical problem. Sometimes, inappropriate windows lead to strange behaviour
in the summary characteristics, which is not typical of summary characteristics of
stationary processes. This is the case in particular for large arguments (i.e. large
distances) of functional summary characteristics such as the pair correlation func-
tion g�r	; see Example 4.17. In this way, the summary characteristics themselves
indicate that the window might have to be modified. The issue of window adaptation
is discussed in greater detail in Section 4.8.

In the context of stationary point processes, edge-correction of statistical esti-
mators of summary characteristics is particularly relevant. With these correc-
tions many estimators are unbiased and the influence of the window is reduced.2

Edge-corrections are necessary since many estimators take information on the
neighbourhoods of all points in a pattern into account. If a data set only provides
information on the points inside the window, the complete information on the neigh-
bourhood is not available for those points that are close to the window’s boundary
or edge. The following section shows what can be done to still obtain unbiased
estimators.

The text above may appear to imply that the use of summary characteristics for
stationary processes was questionable or complicated. However, the following will
demonstrate that with sufficient knowledge of potential difficulties this is not the
case. Stationary summary characteristics are quite natural, in particular if the focus
of the statistical analysis is on short-range fluctuations or local interactions.

The remainder of this chapter is organised as follows: initially the various
summary characteristics are introduced in terms of probability theory. This is neces-
sary for an exact and thorough understanding of the nature of the characteristics and
their properties, but may appear rather theoretical. This is followed by a discussion
of the statistical estimation of the characteristics, which may be more relevant for
those readers who are more interested in applications.

Formulas for the summary characteristics of specific point process models are
presented in Chapter 6. These may be used to identify a suitable model for a specific
data set and serve as a basis for parametric statistical approaches.

4.2.2 Edge-correction methods

When working with the statistics of stationary point processes one often faces a
difficult problem: the data are given for a bounded observation window W only,
but the pattern is (implicitly) assumed to be infinite and the summary characteristic
to be estimated is defined independently of W and should not show any traces of

2 See Appendix A for an explanation of the terms ‘unbiased’ and ‘ratio-unbiased’.
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W . However, natural estimators of the summary characteristic would need informa-
tion from outside W , in particular for unbiased or ratio-unbiased estimators. This
problem is typical of spatial statistics, but it also appears in a similar way in survival
analysis, where information is often ‘censored’ as only a finite time interval can be
considered.

The issue is explained here for two typical point-related summary characteristics.
For the case of location-related characteristics refer to p. 189. In later sections of
this chapter and in the following chapters it is always stated which edge-correction
method is suitable for the given characteristics.

Consider the following two summary characteristics for stationary point
processes:

(i) the mean distance mD = Eo�d�o		 between the typical point and its nearest
neighbour;

(ii) the mean number �K�r	= Eo�no�r		= Eo�N�b�o� r	 \ �o�		 of points in a
disc of radius r centred at the typical point (where the latter is not counted).

The ‘natural’ estimator of Eo�d�o		 is

d= 1
n

n∑
i=1

di� (4.2.1)

where n= N�W	 is the number of points in the observation window W and the
di are the distances to the respective nearest neighbours of these points. This
estimator is not unbiased, since n is random. However, under certain conditions it
is ratio-unbiased (see below).

Unfortunately, in this naive form the estimator d cannot be applied if only
information on the points in W is available: for points close to the boundary of W ,
the true distances di cannot be accurately determined. Of course, every point in W
has a nearest neighbour in W , but beyond the border of W (i.e. outside W ) there
might be closer neighbours including the true nearest neighbour, see Figure 4.1.

The situation is similar for Eo�no�r		. The naive natural estimator is

n�r	= 1
n

n∑
i=1

ni�r	� (4.2.2)

where n is as above and ni�r	= N�b�xi� r	 \ �xi�	 is the number of points of N
within distance r of point xi, again excluding xi itself. Note that n�r	 may be
rewritten as a double sum

n�r	= 1
n

n∑
i=1

n∑ �=

j=1

1��xi − xj� ≤ r	 (4.2.3)



182 Stationary Point Processes

W

Figure 4.1 Points within a window W and outside. The nearest neighbour of the
point marked by a filled circle is outside W . If information on points outside W is
not available, it is not possible to correctly determine the nearest-neighbour distance
of this point.

since the number of points in the disc b�xi� r	 is equal to the number of points in
N with a distance equal to or smaller than r from xi,

ni�r	=
n∑ �=

j=1

1��xi − xj� ≤ r	�

(The superscript �= indicates that j �= i in the sum.) As with d, it is often impossible
to determine n�r	 if only information on points within W can be used: for points
close to the border of W the discs b�xi� r	 do not completely lie within W , in
particular for large r. As a consequence, ni�r	 cannot be correctly calculated for all
xi. Or in other words, if only the points within W are given, an incomplete list of
pairs �xi� xj	 as in (4.2.3) has to be used.

Almost all types of estimators of point-related summary characteristics considered
in this book correspond to one of the two cases discussed above. For these, two
different edge-correction strategies may be used:

• All points xi in W for which the nearest neighbour cannot be correctly
determined are simply excluded; often even further points in W are excluded.
The remaining points are weighted to compensate for the resulting loss of
information.

• Only those pairs �xi� xj	 for which xj is inW are used. In order to compensate
for the pairs �xi� xj	 that are excluded because xj is outside W , the retained
pairs are weighted.
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Many edge-correction methods follow these strategies. These are discussed in the
following, but for the sake of completeness four other methods of a different
character are mentioned as well. In addition, the missing-data approach is also
mentioned here (Geyer, 1999) as well as the reconstruction method (see Section 6.7).

Note that edge-effects problems become more aggravated in higher-dimensional
spaces. This is easy to understand: consider a square and a cube of side length
a and compare its area and volume with that of a square and a cube where the
side length is reduced by the same value � in order to exclude points close to the
boundary. Clearly �a−�	3/a3 <�a−�	2/a2.

Plus-sampling

Plus-sampling estimators assume that the estimators (4.2.1) and (4.2.2) can be
applied. This implies that more information than that contained in W has to be
available. For example, this situation may occur in forestry research, when a
specific stand is investigated and the forester can determine nearest neighbours
outside W for those trees that are close to the border of the stand, if necessary.
For example, the estimator d of mD, given by (4.2.1), is ratio-unbiased since
En= E�N�W		=�
�W	 and

E

(
n∑
i=1

di

)
= E

(∑
x∈N

1W�x	d�x	

)
=� · Eo�d�o		 · 
�W	�

by the Campbell theorem for stationary marked point processes (see p. 302). Here
d�x	 denotes the nearest-neighbour distance of point x. Plus sampling may be
analogously applied to derive an estimator for �K�r	.

No edge-correction

If both the window W and the number of points n are large, edge effects can simply
be ignored. This means that in (4.2.1) the di are simply the nearest-neighbour
distances in the window, i.e. the search for the nearest neighbour of point xi is
restricted to the points in W . Analogously, the ni�r	 in (4.2.2) are then the numbers
of points in the discs b�xi� r	 intersecting with W ,

ni�r	=N�b�xi� r	∩W	�

It is clear that d tends to be (a little) too large and n�r	 (a little) too small. This
simple method can be recommended for the estimation of the distributional indices
in Section 4.2.4, as shown in Pommerening and Stoyan (2006).

The following two methods, periodic and reflection edge-correction, may be
regarded as ‘speculative’ in as much as they are unrelated to the structure of point
processes. They are (rough) attempts to generate large patterns for which plus
sampling can be used. The windowW is assumed to be a rectangle or parallelepiped,



184 Stationary Point Processes

W

Figure 4.2 A point pattern in a rectangular windowW and its periodic continuation.

but attempts have also been made to extend the methods to circular windows; see
Windhager (1997). The authors of the present volume do not recommend their use.

Periodic edge-correction

The point pattern in W is enlarged by periodic continuation as shown in Figure 4.2;
see also Section 2.2 on the periodic binomial point process. Clearly, this is only
possible if W is a rectangle or parallelepiped.

The resulting point pattern can be analysed statistically by means of plus-sampling
methods. To do this, the distances have to be redefined. In the planar case this is
termed a torus metric: if W is the rectangle with side lengths a and b with left lower
vertex at the origin, the distance between two points x and y ∈W with x= ��1� �2	
and y= ��1��2	 is

�x− y� =√
�min�	�1 −�1	� a− 	�1 −�1	�	2 + �min�	�2 −�2	� b− 	�2 −�2	�	2�

Clearly, this method is suitable when the pattern in W is a result of a simulation
with ‘periodic boundary conditions’ or in the context of statistics for binomial point
processes on a rectangle or parallelepiped. Otherwise strange and spurious point
configurations may appear along the borders, and the method is merely a cheap
trick to provide more points.

Reflection edge-correction

The point pattern in W is enlarged by reflection at the borders, as shown in
Figure 4.3. Again the resulting large point pattern can be analysed by means
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W

Figure 4.3 A point pattern in a rectangular window W and its continuation by
reflection.

of plus-sampling methods. This method is even more problematic than periodic
edge-correction as it constructs configurations close to the edges that may differ
substantially from the usual configurations in the point process N . It is difficult to
predict its statistical properties.

Conditional simulation outside W

This method, which is a missing-data approach, uses simulation to generate a larger
sample that includes the investigated pattern given inW , such that plus sampling can
be applied. This method may look very laborious as it comprises two difficult steps.
First, one has to statistically analyse the given data to obtain a model or, at least,
summary characteristics for the reconstruction method described in Section 6.7.
Then conditional simulation of the point process has to be carried out in a large
region with W at the centre. ‘Conditional’ means that the data points in W are
fixed, while new points are generated outside W which form configurations with
the border points in W that are similar to those in the interior of W . This method
was introduced in forestry by P. Biber in 1997 (see Pretzsch, 2002); Section 6.7
presents a variant which differs only in the simulation method.

The following now describes the methods mentioned on p. 182.

Minus sampling or border method

Assume that only the neighbours within a distance r are relevant for each point.
This is exactly the situation in the context of the estimation of Eo�no�r		. It also
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W

Wr r

W  r W  r

Figure 4.4 Rectangular and irregular window W and corresponding reduced
window W�r .

applies when Po�d�o	≤ r	 is estimated, the probability that the nearest-neighbour
distance of the typical point is smaller than r.

Here the window W is reduced to the smaller window W�r . This is the subset
of W the points in which are in the interior of W and have a distance larger than r
from the boundary �W (see Figure 4.4).

Note that W�r is simplified notation for W � b�o� r	, which uses notation from
mathematical morphology, where � denotes Minkowski subtraction and b�o� r	
is the usual symbol for a disc or sphere of radius r centred at o. The symbol
W �b�o� r	 denotes the set of all points x in W with b�x� r	⊆W . If W is a rectangle
with side lengths a and b, then W�r is again a rectangle and its side lengths are
a− 2r and b− 2r. Clearly, W�r is the empty set if r ≥a or r ≥ b. If W is a disc of
radius R, then W�r is a disc of radius R− r. See Appendix B for more information
on aspects of mathematical morphology relevant to this book.

The statistical estimation of Eo�d�o		 and Eo�no�r		 uses only the points in W�r
as reference points x1, x2, � � � , while all points in W are used to determine the di
and ni�r	. The minus-sampling estimators are

d�r =
1
n�r

n�r∑
i=1

di (4.2.4)

and

n�r	= 1
n�r

n�r∑
i=1

ni�r	� (4.2.5)

where n�r is the number of points of N in W�r . Both estimators are ratio-unbiased.
However, much better estimators for Eo�d�o		 and Eo�no�r		 have been devel-

oped, as shown below. This is not surprising as the edge-correction described
above is rather rough and does not refer to individual points. Nevertheless,
it is used in some cases, in particular for location-related summary characte-
ristics such as the spherical contact d.f. and the morphological functions; see
Section 4.2.5.
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Nearest-neighbour edge-correction

The nearest-neighbour edge-correction is a refined version of the border method, an
‘individual’ edge-correction method which is suitable for summary characteristics
related to nearest-neighbour distances (this refers to both first and kth neighbours).
For each individual point x in W a decision is made as to whether it may safely
be used in the estimation, where ‘safely’ means that the point’s nearest-neighbour
distance d�x	 is shorter than its distance e�x	 to the boundary of W .

A point x included in the estimation is assigned the weight 1
/

�W�d�x		 , where

W�d�x	 =W � b�o�d�x		. This weight is large if d�x	 is large. This weight choice
is plausible as points with a large nearest-neighbour distance d�x	 in W are rare.

The nearest-neighbour estimator of Eo�d�o		 is

dnn =
∑

x∈W 1�d�x	≤ e�x		 ·d�x	/
 (W�d�x	
)

∑
x∈W 1�d�x	≤ e�x		/
 (W�d�x	

) � (4.2.6)

The numerator is an unbiased estimator of �Eo�d�o		 and the denominator an
adapted unbiased estimator of �; the simplified notation of p. 26 is used. Despite
its complicated form, the calculation is easy: take the points x in W in turn, and
check whether d�x	≤ e�x	! If this is the case use the point x in the estimation and
divide by the respective weight, i.e. the area 
�W�d�x		. If W is a rectangle with
sides a and b, then


�W�d�x		= �a− 2d�x		�b− 2d�x		 for a> 2d�x	 and b> 2d�x	�

and if W is a disc of radius R, then


�W�d�x		=��R−d�x		2 for R>d�x	�

If the inequalities concerning d�x	 do not hold then the estimation does not make
sense.

The use of the more straightforward estimator which does not use any weights, i.e.

d̃nn =
∑

x∈W 1�d�x	≤ e�x		 ·d�x	∑
x∈W 1�d�x	≤ e�x		 �

cannot be recommended since it is not ratio-unbiased.

Second-order edge-corrections

These are probably the most common edge-correction methods. The estimators
of second-order characteristics typically have a structure similar to (4.2.3). That
is, they contain double sums of pairs of points in W , and operate on inter-point
distances.
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For a given point x1 and inter-point distance r, many partner points x2 will not
be in the window W. In order to construct an unbiased estimator, a large weight is
assigned to pairs of points �x1� x2	 with large inter-point distance and both x1 and
x2 in W .

Two types of weights or corrections are used:

• Stationary or translational edge-correction, applicable to all stationary point
processes, with

weight = 1/
�Wx1
∩Wx2

	�

Here 
�Wx1
∩Wx2

	= 
�W ∩Wx2−x1
	 is the area (volume) of the intersection

of Wx1
and Wx2

, where Wx is the translated window Wx = �z+ x � z∈W�, or
of W and the translated window Wx2−x1

(see Figure 4.5 and Appendix B).

• Isotropic or rotational edge-correction, applicable only to stationary and
isotropic point processes, with

weight = 1/w�x1� x2	�

In the planar case, the quantity w�x1� x2	 is the boundary length in the
window W of the circle of radius �x1 − x2� centred at x1 divided by the
circle perimeter length 2��x1 − x2�,

w�x1� x2	=

1��b�x1��x1 − x2�	∩W	

2��x1 − x2�
(4.2.7)

(see Figure 4.6). In the three-dimensional case, surface area is used instead
of boundary length.

Wx2−x1

W

x2−x1

x1

x2

Figure 4.5 The observation window W , the translated window Wx2−x1
and their

intersection.
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x1

x2

W

Figure 4.6 The observation window W and the relevant part of the circle with
centre x1 and radius �x2 − x1�.

Edge-corrections for location-related characteristics

The standard edge-correction method for location-related characteristics is minus
sampling; see Section 4.2.5 for examples.

4.2.3 The intensity �

The intensity or point density � is the fundamental first-order characteristic for
stationary point processes, as explained in Section 4.1. For many models formulas
for � are known, but usually the initial analysis applies statistically estimated
intensities. Therefore, this section will now discuss a number of estimators of this
characteristic in greater detail. The intensity satisfies

E�N�B		=�
�B	� (4.2.8)

i.e. the mean number of points of N in any set B is equal to � multiplied by the
area (volume) of B. Since the number of points appears in the first power, � is
called a first-order characteristic.

The intensity also admits a local characterisation. Consider an infinitesimally
small disc (sphere) b�x	 of area (volume) dx centred at the arbitrary location x.
Then the probability p1�x	 that there is a point of N in b�x	 is

p1�x	=�dx (4.2.9)

(see p. 28).
A simple stationarity ‘test’ is closely related to the intensity: determine statis-

tically the intensity function ��x	 and verify that a plot of the estimate obtained
shows only local irregularities but no general trend.

The standard estimator of the intensity is

�̂= N�W	


�W	
� (4.2.10)
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This follows directly from the definition of intensity as it is a quotient of number
of points N�W	 in W and area (volume) 
�W	. This estimator is unbiased and, if
N is ergodic, consistent, i.e. as W increases it converges to the true value �. This
holds independent of the specific distribution of N , whereas the variability of the
estimator �̂ is of course distribution-dependent.

The variance of �̂ is given by

var�̂= varN�W	

�W	2

� (4.2.11)

where varN�W	 can be calculated using (4.3.22) with B replaced by W or by the
approximation in (4.3.25). For a Poisson process it is

var�̂= �


�W	
� (4.2.12)

This value is a good approximation even in the non-Poisson case. For more regular
processes it is an upper bound, for more irregular (clustered) processes a lower
bound. Heinrich and Prokešová (2006) discuss a statistical estimator of var�̂, a
statistical estimator for the variance of an estimator of �.

However, the estimator (4.2.10) assumes that it is possible to count all points in
W . This is often difficult or even impossible and therefore other estimation methods
have to be used.

Fractionator counting

Often the number n=N�W	 of points in W is very large; counting them all is too
laborious and cannot be carried out automatically. This is true in tree counting in
forestry or in cell nucleus counting in biology and medicine. In this case fractionator
counting (Gundersen, 1986) may be used, which does not yield the exact value of
n but good estimates. One possibility, called systematic uniform random sampling,
uses m counting fields regularly distributed in W , e.g. in a randomised grid. If the
counting fields are of equal area a, then an unbiased estimator of n is

n̂= 
�W	

a

m∑
i=1

ni�

where the ni are the counts in the counting fields. If the locations of the counting
fields are randomised the following estimator is also unbiased:

n̂= M

m

m∑
i=1

ni�

where W is exhaustively divided into M counting fields (which now can be of
different areas); see Gundersen (2002). The above formula is also valid for inde-
pendent uniform random sampling, where the counting fields are sampled randomly
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and independently with replacement. Clearly, the estimation variance of indepen-
dent uniform random sampling is larger than that of systematic uniform random
sampling. The latter method can even be improved by clever smoothing; see
Gundersen (2002) and Gardi et al. (2006).

The following two methods are examples of estimators that are based on distances.
It suffices here to measure a small number of distances from test points rather than
to count all points.

Voronoi cell weighting

Test locations, for example lattice points, y1, � � � , yk, independent of the points
in N are placed in the window W . For each yi, the nearest point in N and the
area (volume) ai of its Voronoi cell are determined. (This implies that the Voronoi
tessellation with respect to the points in N as introduced in Section 1.8.4 has to be
(at least partly) constructed.) The test locations must be placed in W such that the
information necessary for the determination of the ai is available. Then � can be
estimated without bias using

�̂V = 1
k

k∑
i=1

1
ai
� (4.2.13)

Note that the formula does not contain the inverse of the mean of the ai. This mean
would be an unbiased estimator if all cells of the tessellation were used.

To prove the unbiasedness of �̂V , it suffices to consider the case k=1 with y1 =o.
The points x in N are assigned marks V�x	 that are the corresponding Voronoi cells
(the sets) shifted to the origin together with their generating points. The resulting
mark distribution is denoted by � . The estimator �̂ can be rewritten as

�̂V = ∑
�x�V�x	�

1�o∈V�x	+ x	


�V�x		
�

The Campbell theorem for marked point processes (see p. 302) yields

E�̂V = E

( ∑
�x�V�x	�

1�o∈V�x	+ x	


�V�x		

)
=�

∫ 1


�V	

∫
1�o∈V + x	dx��dV	�

Since 1�o∈V + x	= 1V �−x	, the inner integral is 
�V	 and E�̂V =�.
Note that tessellations are also useful in intensity estimation, when the patterns

of interest are known to be incomplete, i.e. there are missing points. Then the
corresponding Voronoi tessellation and the corresponding cell areas (volumes) can
be constructed and analysed statistically. If there are no missing points, the mean
cell area (volume) is a reasonable estimator of �. If points are missing some of
the cells are extremely large, and then a more robust estimator of mean cell area
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L

a

a

Figure 4.7 Schematic representation of line transect sampling. The observer
moves along a transect of length L which is parallel to the strip of width 2a. The
points in the strip are counted.

(volume) than the mean, e.g. the median, can be used to obtain a more realistic
estimator of mean cell area and intensity; see Berndt and Stoyan (1997).

Line transect sampling

Place a test line � of length L in the window and construct a strip �a of width 2a
parallel to � with � as central line (Figure 4.7). Count all points which lie inside
the strip �a. Denote the resulting number by N��a	. Clearly, (4.2.10) leads to

�̂= N��a	

2aL
�

which is an unbiased estimator of �, since the area of �a is 2aL.
This estimator can be refined if the points have quantitative marks vi. This is

relevant in applications where there is a maximum estimation distance related to
the ‘visibility’ of a point at xi reflected by vi. Assume that point xi is counted if its
vertical distance from � is less than �vi with some positive scaling factor �. Then
an unbiased intensity estimator is

�̂H = 1
2L

n∑
i=1

1
�vi

� (4.2.14)

where n is the number of counted points.
To prove the unbiasedness of �̂H , consider marked points �x� v�x	� and denote

the mark d.f. by F��m	 and the distance from x to � by ��x	. Then �̂H can be
rewritten as

�̂H = 1
2L

∑
�x�v�x	�

1���x	<�v�x		
�v�x	

�
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The Campbell theorem for marked point processes yields

E�̂H = 1
2L

E

( ∑
�x�v�x	�

1���x	<�v�x		
�v�x	

)

= �

2L

∫ 1

�m

∫
1���x	<�m	dxdF��m	�

The inner integral is equal to 2�mL and thus E�̂H =� is obtained.

Adapted intensity estimators∗

For the sake of completeness a series of further intensity estimators are now
presented. These are by no means recommended as estimators of the intensity per
se, but have an important role in the estimation of other summary characteristics.

Suppose one aims to estimate some summary characteristic C which cannot be
estimated without bias. Assume also that it is possible to estimate �C without bias,
which leads to a ratio-unbiased estimator of C given by

Ĉ= �̂C

�̂C
� (4.2.15)

where �̂C is the unbiased estimator of �C and �̂C an unbiased intensity estimator.
Clearly, the behaviour of Ĉ depends on the choice of �̂C . The idea is to choose

an intensity estimator ‘adapted’ to �̂C in order to ensure that numerator and denom-
inator in (4.2.15) have similar fluctuations such that these partly cancel out through
division. It is not a good idea to use a high-precision estimator such as �̂ in (4.2.10)
if it is not related to �̂C, as then fluctuations might not cancel out. (It can be shown
that even the use of the exact � – if it were known – would not be a good idea; see
Stoyan, 2006.)

Many adapted intensity estimators have the form

�̂p =∑
x∈N

p�x	� (4.2.16)

where p�x	 is a function with

∫
�d

p�x	dx= 1� (4.2.17)

It is easy to show that �̂p is unbiased by means of the Campbell theorem.
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Note that the classical intensity estimator �̂ is also of the form (4.2.16), with
p�x	= 1W�x	

/

�W	. In the context of minus sampling with distance r the intensity

estimator �̂�r	 is used (see Section 4.2.5) which corresponds to

p�x	= 1W�r �x	
/

�W�r 	� (4.2.18)

For the estimation of second-order characteristics two further intensity estimators
�̂V �r	 and �̂S�r	 are used which correspond to

pV �x� r	= 
�W ∩ b�x� r		
/⎛
⎝dbd

r∫
0

td−1�W�t	dt

⎞
⎠ (4.2.19)

and

pS�x� r	= 
d−1�W ∩ �b�x� r		/�dbdrd−1�W�r		� (4.2.20)

both for d= 2 or 3 and r ≥ 0.
The function pV �x� r	 is proportional to the area (volume) of the intersection

of the window W and the disc (sphere) b�x� r	 of radius r centred at x. The
normalising constant in the denominator, which ensures that (4.2.17) holds, contains
the isotropised set covariance �W�r	 explained in Appendix B.

The function pS�x� r	 is proportional to the boundary length (surface area)

d−1�W ∩ �b�x� r		 of the circular line (sphere surface) �b�x� r	 of radius r centred
at x in the window W . The normalising constant again contains the isotropised set
covariance �W�r	.

For the cases of a rectangular, parallelepipedal, circular or spherical window
W , formulas for �W�r	 are given in Appendix B. There are also formulas for the
quantities 
�W ∩ b�x� r		 and 
d−1�W ∩ �b�x� r		.

All these adapted estimators are worse than the classical �̂ in the sense that

var�̂p ≥ var�̂�

However, if the distribution of the point process N is completely known, functions
p�x	 can be constructed such that

var�̂p < var�̂�

see Mrkvička and Molchanov (2005).

The following intensity estimator has been used in combination with nearest-
neighbour edge-correction:

�̂nn = ∑
�x�d�x	�

1W�d�x	 �x	



(
W�d�x	

) � (4.2.21)
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where d�x	 is the nearest-neighbour distance of x. �̂nn is the same as the denominator
of (4.2.6), i.e.

�̂nn = ∑
x∈W

1�d�x	≤ e�x		/
 (W�d�x	
)
�

This estimator �̂nn is not of the form (4.2.16); it is part of a more general class of
estimators of the form

�̃=∑
x∈N

p�x�N	

with a function p�x�N	 which depends not only on x but also on the other points
in N . The unbiasedness of �̂nn can be shown in a similar way to that of ��r	 in the
context of the estimation of the nearest-neighbour distance d.f.D�r	 in Section 4.2.6.

4.2.4 Indices as summary characteristics

Probabilistic definition of some indices

The indices introduced in this section are numerical summary characteristics which
describe specific aspects of the distribution of point processes. Some of these were
used early in the history of point process statistics and are based on very simple
measurement methods.

A good summary index is easy to determine and easy to understand. The first of
these properties is probably more interesting and has allowed some of the indices
to survive even into the computer age: since it is often very difficult to collect
mapped data, point patterns in ecology and forestry are characterised by indices.
Two different types of indices are considered: location-related and point-related
indices. Location-related indices are determined with reference to deterministic test
locations or sampling points, which are chosen independently of the points of the
point process, and are usually placed on a lattice. They describe aspects of the point
process distribution. In contrast, point-related indices relate to process points and
yield information on the typical point, and thus the Palm distribution of the point
process.

Location-related indices

Index of dispersion. A classical example of a location-related index is the ratio
of the variance and mean of the number of points, which is known by several
different names, e.g. Clapham’s relative variance, Hoel’s index of dispersion, or
Zwicky’s index of clumpiness, (Clapham, 1936; Hoel, 1943; Zwicky, 1953):

ID= var�N�B		
�
�B	

� (4.2.22)
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where B is some test set, e.g. a disc, quadrat or cube. (The corresponding location
is the centre of the set B.) In other words, ID is the ratio of the variance of counts
in sets congruent to B and the corresponding variance of a Poisson process of the
same intensity �. For a clustered process ID>1, while ID<1 for a regular process.
Ecologists typically use the terms ‘overdispersion’ and ‘underdispersion’ in this
context. If ID is considered for the case where B is a disc of radius r, it can be
considered as a function of r and represents the variance–mean curve. Since the
variance var�N�B		 can be calculated by integration over the product density or
the pair correlation function – see (4.3.22) – ID is basically only a by-product of
this function. Nevertheless it is a valuable index.

Pielou’s index of randomness. Pielou (1959) introduced the index

PI =��Ed2� (4.2.23)

where d is the random distance from a test point to the nearest point in N . In the
CSR case PI=1, while PI is smaller than 1 for regular and larger than 1 for cluster
processes.

Other location-related indices used in practice will be discussed in Chapter 5 in
the context of marked point processes.

Point-related indices

Formally, point related indices are constructed as follows: for each point x a mark
m�x	 is constructed and Eo�m�o		, the mean mark of the typical point, is considered.
The index is either this value itself or some quantity containing it.

Aggregation or Clark-Evans index. A classical index of variability based on
nearest-neighbour distance marks is the aggregation index CE introduced by the
botanists Clark and Evans (1954) in the planar case:

CE= 2
√
� · Eo�d�o		= 2

√
�mD� (4.2.24)

It may be regarded as the mean of the distance from the typical point to its nearest
neighbour divided by the same mean for a Poisson process with the same intensity �.
By (2.3.7) the second mean is 1/�2

√
�	.

Values of CE greater than 1 indicate that the pattern has a tendency towards
regularity, while CE<1 indicates clustering. (The maximum value of CE is 2.1491
for a hexagonal lattice of points.) Section 2.7 discusses how CE may be used in
tests of CSR.

Degree of colocalisation. The proportion of points that have their nearest neigh-
bour within a given distance r ′ is given by

CO�r ′	=D�r ′	� (4.2.25)
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This index plays an important role in the so-called ‘colocalisation analysis’; see
Lachmanovich et al. (2003) for details. Since it is the same as the nearest-neighbour
distance d.f. D�r	 at r = r ′, it is not discussed here; refer to Section 4.2.6 for more
details.

Mean-direction index. This index is based on directions, more specifically on
those of the unit vectors pointing from the typical point to its k nearest neighbours
(k≥ 3). Angles rather than distances have to be measured for each point x. Let
e1�x	, � � � , ek�x	 be these unit vectors. The length of their sum is denoted by
Rk�x	, i.e.

Rk�x	= �e1�x	+ � � � + ek�x	�� (4.2.26)

The corresponding mean Eo�Rk�o		 is the mean-direction index Rk introduced
in Corral-Rivas (2006). In the planar CSR case its values for k= 3, � � � , 6 are
1.575, 1.799, 2.007, 2.193, respectively. Small values of Rk are expected for regular
processes since in this case vectors pointing in opposite directions appear frequently
in the sum and cancel out. (For a rectangular or hexagonal lattice Rk ≡ 0 if k= 4 or
6, respectively.) On the other hand, Rk takes on larger values for cluster processes.
Critical values for testing the CSR hypothesis based on Rk are given in Section 2.7.5.
Angles to nearest neighbours are used also in the uniform angle index introduced
in von Gadow et al. (1998).

Degree of hexagonality. In the context of the analysis of highly regular physical
point patterns one aim is to characterise deviations of planar point processes from
regular hexagonal lattices. For this purpose, Weber et al. (1995) introduced the
degree of hexagonality ��r	. Here, a slightly modified version is presented which
will be denoted by �6. Similar to the approach used to derive Rk, the unit vectors
e1, � � � , e6 of the first six nearest neighbours of the typical point are considered.

Choose the direction of e1 as the reference direction and denote the direction
angles of e2, � � � , e6 by �2, � � � , �6. The index is then obtained by calculating the
number H defined as

H =
∣∣∣∣∣1 +

6∑
j=2

exp�i6�j	

∣∣∣∣∣ �
where i = √−1 and the angles are given in radians. For those unfamiliar with
complex numbers, H may be rewritten as

H =
√√√√( 6∑

j=2

sin 6�j

)2

+
(

1 +
6∑
j=2

cos 6�j

)2

�
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If the �j are integer multiples of 60� then H = 6. The mean of H is the degree of
hexagonality,

�6 = Eo�H	/6� (4.2.27)

In the case of a hexagonal lattice �6 = 1, while for a Poisson process
�6 = 2�193/6 = 0�366. Values close to 1 may also occur for cluster processes. In
the three-dimensional case an index denoted by Q6 replaces H6; see Lochmann
et al. (2006a). It uses spherical harmonics.

The three indices CE, Rk and �6 are scale invariant.

Statistical estimators of the indices

The location-related indices are estimated using a lattice of test points. These points
can be chosen such that edge effects are avoided, i.e. implicit minus sampling is
used by choosing test points far enough from the boundary of the window W .

The estimation of point-related indices is not more complicated. For in situ
measurement, plus sampling is the natural form of edge-correction, while for
mapped data, where no information from outside the window is available, ‘no
edge-correction’ is recommended; see Pommerening and Stoyan (2006).

Plus-sampling estimators. Each point in W is visited and its nearest neigh-
bour(s) and the corresponding distances or angles are determined. If the nearest
neighbour is outside W , it is still used for measurement. In most applications this
is feasible, since the nearest neighbour is typically only a few steps away from the
window’s edge. For example:

• Clark–Evans index

ĈE= 2
√
�̂ ·d (4.2.28)

with the classical intensity estimator

�̂= n


�W	
and d= 1

n

n∑
i=1

di�

where n is the number of points in W and di the nearest neighbour distance
of the ith point.

• Degree of colocalisation

ĈO�r ′	= 1
n

n∑
i=1

1�di < r
′	� (4.2.29)
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• Mean-direction index

R̂k = 1
n

n∑
i=1

Ri�

Again, n is the number of points in W and Ri is the length of the sum of the
corresponding k unit vectors to the nearest neighbours of xi.

Note that Ri can be determined as follows. First, go to point xi and determine
its nearest neighbour z1�xi	 and choose the direction xi → z1�xi	 as the reference
direction. Then determine the 2nd, � � � , kth neighbour of xi and the corresponding
directions and order these with respect to the directions (clockwise). In the next
step measure the angles �i2, � � � , �ik with respect to the reference direction (see
Figure 4.8). Then

R2
i =

(
k∑
j=2

sin�ij

)2

+
(

1 +
k∑
j=2

cos�ij

)2

and the square root yields Ri.

No edge-correction. The same estimators as above are used but the nearest
neighbours are simply nearest neighbours within the observation window W .

4.2.5 Empty-space statistics and other morphological
summaries

Spherical contact d.f.

This section presents the first functional summary characteristics. The most impor-
tant of these is related to the probability that a disc or sphere of radius r does not

z2(xi)
z1(xi)

z3(xi)
z4(xi)

xi

α i4

α i3

α i2

Figure 4.8 Definition of the angles �ij for the determination of Ri for the mean-
direction index.
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contain a point of N , as a function of r. Due to the stationarity assumption, the
centre of the disc or sphere can be any point that is independent of N . Thus the
origin o can also be chosen as a centre. In order to obtain a distribution function, the
complement of the void probability is taken, which yields the spherical contact d.f.

Hs�r	= 1 − P�N�b�o� r		= 0	 for r ≥ 0� (4.2.30)

This makes sense since the spherical contact d.f. Hs�r	 can also be regarded as the
distribution of the distance from an ‘arbitrary’ test location to its nearest neighbour
in the point process N .

By definition, Hs�r	 is a location-related summary characteristic. In some sense
it is an analogue to the nearest-neighbour distance d.f. D�r	, which is point-related.
Both distributions are compared at the end of Section 4.2.6.

The name ‘spherical contact’ or ‘first contact’ d.f. relates to the fact that Hs�r	
describes the distribution of �xmin�, i.e. the smallest radius necessary for a sphere
(disc) centred at the origin o to touch or contact a point in N .

Note that a different ‘geometric shape’ may also be used instead of a sphere,
for example a cube (square), leading to another contact d.f., the cubic (square).
These non-spherical contact d.f.s may be usefully applied to anisotropic point
processes.

Morphological functions

The morphological functions a�r	, l�r	 and n�r	 have only been considered very
recently in the point process statistics literature. For this reason, and also because
they are powerful, they are discussed here in particular detail, for the planar case.

Note first that the spherical contact d.f. can also be defined in a different way,
which facilitates generalisation and statistical estimation. In addition to N , consider
the random set Xr defined as

Xr =N ⊕ b�o� r	�

i.e. the set formed by the union of all discs of radius r centred at the points of N ,
which was introduced in Section 1.8.2; see Figure 1.11 on p. 43. If N is stationary,
the set Xr is stationary as well and it makes sense to consider its area fraction
AA�r	. AA�r	 is the fraction of the whole plane which is covered by Xr . Clearly
AA�0	= 0 and AA��	= 1. By random set theory

AA�r	= P�o∈Xr	� (4.2.31)

i.e. this fraction is equal to the probability that the origin lies in the set Xr . Since
P�o∈Xr	= P��xmin� ≤ r	, it is

Hs�r	=AA�r	 for r ≥ 0� (4.2.32)
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which can be considered an alternative definition of Hs�r	. However, in order to
characterise Xr other geometrical measures than the area may also be considered.
For instance, the boundary length and Euler number of Xr may be used as well, as
described below.

Denote by LA�r	 the boundary length of Xr per unit area. As a result of over-
lapping discs, LA�r	 will be smaller than � · 2�r, in particular for larger r. Clearly,
this function LA�r	 also describes aspects of the distribution of Xr and of N . If the
point process N is regular, the function LA�r	 is close to � · 2�r for small r since
there are no overlappings of the discs of radius r centred at process points. For
increasing r , LA�r	 takes a maximum and then decreases with increasing r, since
more and more disc boundaries vanish due to overlapping. In cluster processes the
discs overlap already at small distances r.

The function LA�r	 may be used in two ways. First, the derivative of AA�r	
(regarded as a function of r) is equal to LA�r	,

A′
A�r	=LA�r	�

see Hansen et al. (1999) for a proof. This means that LA�r	 is equal to the probability
density function hs�r	 of Hs�r	,

H ′
s�r	=hs�r	=LA�r	� (4.2.33)

Second, LA�r	 is related to a triplet of morphological functions. The first of these
is a�r	, defined as

a�r	=AA�r	
/
���r2	 for r ≥ 0� (4.2.34)

This is AA�r	 normalised by the area fraction for non-overlapping discs. The corre-
sponding normalisation for LA�r	 yields the function l�r	:

l�r	=LA�r	/�2��r	� (4.2.35)

This is the ratio of the true specific boundary length LA�r	 to the specific boundary
length of the disc system leading to Xr ignoring the overlappings of discs.

The third function may be defined in terms of the Euler or connectivity number.
Note that the Euler number ��A	 of a planar set A is defined (in simplified form) as
the number of components of the set minus the number of its holes; see Figure 4.9
for an illustration.

For any stationary random set X the specific Euler number NA is defined as

NA = lim
K↑�2

E��X ∩K	

�K	

� (4.2.36)

where K ↑�2 is related to a sequence of growing sets K, for example squares with
increasing side length going to �. This specific Euler number is used for Xr and
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Figure 4.9 A set A consisting of five components with three holes. Its Euler
number is 2.

denoted by NA�r	. As the specific Euler number in the case of non-overlapping
discs is equal to the intensity �, it makes sense to normalise NA�r	 to obtain the
morphological function

n�r	=NA�r	/� for r ≥ 0� (4.2.37)

It is interesting that there is no simple relationship between NA�r	 and LA�r	 or
AA�r	; more specifically, it is not the case that L′

A�r	= 2�NA�r	 as some readers
might perhaps have expected; see the discussion in Last and Schassberger (2001).

By construction, the morphological functions a�r	, l�r	 and n�r	 correspond to
fundamental geometrical characteristics – area, length and Euler number. Their
analogues in the three-dimensional case are volume, surface area, integral of mean
curvature and Euler number and, in the general d-dimensional case, the Minkowski
functionals or intrinsic volumes; see Stoyan et al. (1995).

All of these functions have the value 1 for r = 0, but their behaviour differs for
larger r. While a�r	 and l�r	 decrease monotonically and remain between 0 and 1,
n�r	 is not necessarily monotonic and can even take on negative values, as explained
below.

In order to usefully apply morphological functions as summary characteristics in
practical applications it is necessary to have information on their behaviour for some
point process models which may be used as a reference. For Poisson processes the
following hold:

np�r	= �1 − x	e−x�

lp�r	= e−x�

ap�r	= �1 − e−x	/x
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Figure 4.10 The three morphological functions n�r	 (solid line), l�r	 (dashed line)
and a�r	 (dotted line) for a Poisson process of intensity �= 1.

with x= ��r2. Figure 4.10 shows these functions for �= 1� n�r	 is negative for
r ≥ 1/

√
�= 0�564.

If the points of N are arranged in a square lattice with spacings �, then all
morphological functions are constant for 0 ≤ r ≤ �/2 and vanish for r >

√
2�/2.

Between �/2 and
√

2�/2, a�r	 and l�r	 are decreasing, while n�r	 takes the value
−1. For a hard-core point process the behaviour is similar. For small and medium
r, all morphological functions are close to 1 and larger than their Poisson process
analogues. When, for larger r, the discs touch, the functions decrease rapidly,
in particular n�r	. The functions can then be smaller than their Poisson process
counterparts and approach them from below for increasing r. Negative values
appear since, for large r, Xr is totally connected with a large number of holes,
which contribute negatively to the Euler number �.

The behaviour is different for cluster processes: the discs overlap already at small
r and thus all morphological functions tend to be smaller than their Poisson process
counterparts for these r. The further behaviour depends on the spatial arrangement
of the cluster centres: if these are distributed regularly and there is large empty
space between the clusters, the function n�r	 may be constant in some r-interval
(while a�r	 and l�r	 continue to decrease), since enlarging the size of clusters of
overlapping discs does not immediately lead to overlapping of these clusters. It is
advisable to consider all three functions in parallel, as may be seen from the above
explanation.

The factor 1/2 plays an important role in the interpretation of the morphological
functions. In the case of a regular point process the downward jump of n�r	 takes
place at r ≈ �/2, where � is the lattice spacing (or the mean nearest-neighbour
distance). Similarly, the interval of r-values where n�r	 is constant ends around
r ≈�/2 for a cluster process with regularly distributed cluster centres, where � is
the mean inter-cluster distance.
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Statistical estimation of Hs�r� and the morphological functions

The main issue in the estimation of Hs�r	 and the morphological functions concerns
the determination of the area, boundary length and Euler number of Xr . Some
authors apply the point-count method: a lattice of test points is admitted on the
window and the number of lattice points in Xr =N ⊕ b�o� r	 is counted; see Diggle
(2003, p. 21). However, better estimation approaches are available: due to the simple
structure of Xr as a union of overlapping discs areas, the boundary length and Euler
number can be determined exactly; see Edelsbrunner (1995) and Brodatzki and
Mecke (2002). In the following, 
�B	, L�B	 and ��B	 denote the area, boundary
length and Euler number of a set B, respectively.

As above, edge-correction has to be applied to derive unbiased estimators. In the
given case, minus sampling is the most appropriate method. This means that the
reduced window W�r is used to estimate the morphological functions for the value
r. Furthermore, the adapted intensity estimator �̂�r	 is applied to reduce estimation
variance,

�̂�r	=N�W�r 	
/

�W�r 	�

This leads to the following estimators:

Ĥs�r	= 
�Xr ∩W�r 	
/

�W�r 	� (4.2.38)

â�r	= 
�Xr ∩W�r 	
/
��r2N�W�r 		� (4.2.39)

l̂�r	= l�Xr ∩W�r 	
/
�2�rN�W�r 		� (4.2.40)

n̂�r	=��Xr ∩W�r 	
/
N�W�r 	� (4.2.41)

Estimation software for the morphological functions is available from http://
www.maths.jyu.fi/˜penttine/ppstatistics.

The probability density function hs�r	 of the spherical contact distribution can
be estimated by

ĥs�r	= l�Xr ∩W�r 	
/

�W�r 	� (4.2.42)

and it is not necessary to use a kernel estimator. The estimators Ĥs�r	 and ĥs�r	
are unbiased, while the other estimators are ratio-unbiased. Ĥs�r	 and ĥs�r	 are
discussed in more detail in Chiu and Stoyan (1998).

Example 4.2. Gold particles: spherical contact d.f.
Figure 4.11 shows the estimated spherical contact d.f. for the point pattern formed

by the gold particles. For comparison, the spherical contact d.f. of a Poisson process
of the same intensity is shown as well. The graph for the gold particle pattern is
below that for a Poisson process, i.e. the distances from test locations to the points
tend to be larger than for a Poisson process, indicating clustering in the pattern.
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Figure 4.11 Estimate of Hs�r	 (solid line) for the pattern of gold particles in
comparison to the corresponding function of a Poisson process (dashed line) of
equal intensity.
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Figure 4.12 Estimate of ĥs�r	 (solid line) for the pattern of gold particles in
comparison to the corresponding function of a Poisson process (dashed line).

However, the difference is small in the scale used in Figure 4.11. The estimate
ĥs�r	 of the density function shown in Figure 4.12 is a little more informative.
The mode of the distances is at r = 18 lu (r = 15 lu for the Poisson case) and the
tail of the Hs-distribution is heavier than in the Poisson case at values larger than
r = 40 lu. A comparison with the nearest-neighbour characteristics D̂�r	 and d̂�r	
presented in Section 4.2.6 below shows interesting differences and leads to a deeper
understanding of the distribution of the gold particles.

Finally, Figure 4.13 shows an estimate of the Euler function n�r	 together with
n�r	 for a Poisson process of equal intensity. It is clearly smaller than its Poisson
process equivalent for small r (between 5 and 10) and is a better indicator of
the clustering in the gold pattern than ĥs�r	. Only second-order methods are more
informative (see p. 221).
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Figure 4.13 Estimate of n�r	 (solid line), in comparison to its Poisson process
counterpart (dashed line).

Further applications of the morphological functions in classical point process
statistics are presented in Mecke and Stoyan (2005). Many interesting applications
in physics, for the three-dimensional case, can be found in papers by K. Mecke;
see, for example, Mecke (1998, 2000) and Mecke et al. (1994).

4.2.6 The nearest-neighbour distance distribution function

The nearest-neighbour distance d.f. D�r	 is the d.f. of the random distance from the
typical point to its nearest neighbour. It has already been discussed in Section 4.1
in the context of the Palm distribution. In the notation of that section,

D�r	= Po�N�b�o� r	 \ �o�	> 0	 for r ≥ 0� (4.2.43)

since the distance from the typical point to its nearest neighbour is smaller than r if
and only if there is at least one point in the sphere of radius r centred at the typical
point.

The nearest-neighbour distance d.f.D�r	 can also be defined based on constructed
marks d�x	 for the points x of the process: d�x	 is the distance from x to its nearest
neighbour, which is denoted as z1�x	. The resulting marked point process inherits
the stationarity property from the original point process, and the corresponding mark
d.f. is precisely D�r	. This formulation corresponds to the statistical estimation of
D�r	 with constructed marks. In this notation,

D�r	= Po�0<d�o	≤ r	� (4.2.44)

The nearest-neighbour distance d.f. is a classical tool in point process statistics.
Very often beginners start with D�r	, probably because it is so easy to understand
and ‘so natural’. However, D�r	 is a summary characteristic which is not very
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useful in many cases. It is ‘short-sighted’ as it considers only the nearest neighbour,
and is not suitable for describing any behaviour at large distances. In the case of
a cluster process it usually only describes aspects of the geometry of the clusters.
An extreme example is a point process consisting of isolated pairs of points with
distance �. Here, all nearest-neighbour distances are constant and equal to �. The
same nearest-neigbour distances appear in a regular lattice with grid cells of side
length �. Hence the point process and a lattice cannot be distinguished based on
D�r	. (Of course, considering the intensity in addition to D�r	 may already provide
some insight into the type of the pattern and help distinguishing these two cases.)

Usually, the corresponding probability density function d�r	,

d�r	=D′�r	�

is used in exploratory analysis, while in statistical tests D�r	 is used. The function
D�r	 has found some application in statistical analyses of building material in
the context of mechanical investigations; see Stroeven and Stroeven (2001) and
Hubalková and Stoyan (2003).

The mean mD corresponding to the d.f. D�r	 is also a valuable summary
characteristic.

This book uses D�r	 mainly in combination with other characteristics, more
specifically in the J -function (see Section 4.2.7) and in statistical tests, when model
parameters have been estimated based on second-order characteristics, with the aim
of testing the goodness of fit with a different summary characteristic. However,
Example 4.3 below shows that D�r	 and d�r	 are also valuable in data analysis.

In this context, it is also helpful to use the nearest-neighbour pair hazard rate
��r	. The classical hazard rate used in survival analysis may be reinterpreted in the
current context as the probability that the nearest neighbour of the typical point may
be found at a distance between r and r + dr conditional on the nearest-neighbour
distance being larger than r. The nearest-neighbour pair hazard rate is the classical
hazard rate d�r	

1−D�r	 corresponding to D�r	, suitably normalised. It is thus defined as

��r	= d�r	

1 −D�r	

/
�2�r�	� (4.2.45)

Many point processes have a positive minimum inter-point or hard-core distance
r0, such that

D�r	

{= 0 for r< r0�
> 0 for r ≥ r0�

For example, when the centres of a random system of identical hard spheres of
diameter d are considered, then r0 ≥d. The maximum likelihood estimator r̂0 of r0
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is simply the minimum inter-point distance in the window W . Sometimes r̂0 can be
‘improved’ by

r̂0 = n

n+ 1
· minimum inter-point distance� (4.2.46)

where n=N�W	 is the number of points in the sample.

Differences between D�r� and Hs�r�

D�r	 and Hs�r	 both describe distances from points to points in the process N . For
D�r	 the reference point is the typical point in N , whereas for Hs�r	 it is a test
location, the origin, which is not a point in N . For the three main types of point
processes the following can be said:

• Poisson process. Both functions coincide:

D�r	=Hs�r	 for r ≥ 0�

• Regular process. The inter-point distances tend to be larger than distances
from test locations to process points; as a consequence,

D�r	≤Hs�r	 for r ≥ 0�

• Cluster process. The inter-point distances are mainly distances between
points in the same clusters. Thus, the distances represented by D�r	 will be
short, while the distance from o to the nearest cluster can be large. Thus

D�r	≥Hs�r	 for r ≥ 0�

The d.f. Hs�r	 always has a density function, which is not necessarily true for
D�r	; estimates of Hs�r	 are represented by smooth curves if (4.2.38) is used and

�Xr ∩W�r 	 and 
�W�r 	 are determined exactly, but estimates of D�r	 usually have
discontinuities.

For a Poisson process, D�r	 is a Weibull d.f. with parameters b=�bd and p=d.
This has led foresters to assume that in their applications D�r	 is always a Weibull
d.f., but that the shape parameter of this distribution may be different from p=d=2;
see von Gadow et al. (2003).

Estimation of D(r)

The estimation of D�r	 is a classical example of the use of edge-corrections, and
various estimators have been proposed. Here, only those estimators are considered
which are conceptionally simple and which are not based on heuristic assumptions.
Hence, the estimator in Floresroux and Stein (1996) is excluded.
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Border estimator. The border estimator or minus-samplingDb�r	was introduced
by Ripley (1977). It is defined as

D̂b�r	=
∑

�x�d�x	�

1W�r �x	1�0<d�x	≤ r	
/
N�W�r 	 for r ≥ 0� (4.2.47)

The idea behind the estimator D̂b�r	 is quite simple: when estimating D�r	, only
those points x in W are considered which have a distance larger than r from
the window’s boundary. For these points it is thus clear that there are no points
closer than r outside the window and the nearest-neighbour distance d�x	 can be
determined within W .

These points lie in W�r . Since N�W�r 	 is the number of those points, (4.2.47) is
simply the corresponding ratio estimator. Because numerator and denominator are
random, D̂b�r	 is not unbiased. However, if N is ergodic, D̂b�r	 is asymptotically
unbiased.

Unfortunately, the estimator D̂b�r	 has two disadvantages. It is not necessarily
monotonically increasing in r, and it can exceed 1 in value. (Usually this happens
only for small samples.)

There is a better estimator which can be easily understood if D̂b�r	 is rewritten
as follows. The quantity

�̂b�r	=
∑

�x�d�x	�

1W�r �x	1�0<d�x	≤ r	/
�W�r 	 for r ≥ 0�

is clearly an unbiased estimator of �D�r	, which can easily be shown by the
Campbell theorem. Division by the adapted intensity estimator corresponding to
(4.2.18),

�̂�r	= N�W�r 	
/

�W�r 	�

yields D̂b�r	. The use of �̂�r	 reduces the estimation variance (while the use of the
classical �̂ results in intolerable biases and large mean squared errors), but it leads
to the non-monotonicity mentioned above.

Nearest-neighbour estimator. Hanisch (1984) suggested an unbiased estimator
which outperforms the border estimator. It uses the nearest-neighbour edge-
correction discussed in Section 4.2.2, which leads to the estimator

D̂n�r	= �̂n�r	
/
�̂nn for 0 ≤ r ≤R� (4.2.48)

where

�̂n�r	=
∑

�x�d�x	�

1W�d�x	 �x	1�0<d�x	≤ r	/
�W�d�x		
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with �̂nn in (4.2.21) and

R= sup�r> 0 � 
�W�r 	 > 0��

The indicator 1W�d�x	 �x	 can be rewritten as 1�d�x	<e�x		, where e�x	 is, as before,
the distance of x to the boundary of W .

To prove the unbiasedness of �̂n�r	, the mean E
(
�̂n�r	

)
is calculated by means

of the Campbell–Mecke formula (4.1.8). Here, the function f has the form

f�x�N	= 1W�d�x	 �x	1�0<d�x	≤ r	
/

�W�d�x		�

clearly, d�x	 depends not only on x but also on its neighbours in N . When N is
replaced by N−x, d�x	 has to be replaced by d�o	 since the translation moves x to
o:

f�x�N−x	= 1W�d�o	 �x	1�0<d�o	≤ r	/
�W�d�o		�

Finally, ∫
1W�d�o	 �x	dx= 
�W�d�o		

implies

E�̂n�r	=�Eo�1�0<d�x	≤ r		=�Po�0<d�x	≤ r	=�D�r	�

Hence, D̂n�r	 is derived by simply using precisely those points x which have their
nearest neighbour z1�x	 both within W and at a distance of less than r to x.

Using simulation, Stoyan (2006) compared the mean squared errors of the above
two estimators of D�r	 and other estimators of D�r	 such as the Kaplan–Meier
estimator introduced by Baddeley and Gill (1997) for Poisson, cluster and hard-core
processes and found that Hanisch’s estimator has the smallest mse. Furthermore,
estimation without edge-correction produces comparable results for small r.

Readers who are less familiar with the notation of stochastic geometry should
note that in the special case of a rectangular window W of side lengths a and b,
the area 
�W�r 	 is equal to �a− 2r	�b− 2r	; see Appendix B. For all windows, the
indicator 1W�d�x	 �x	 can be rewritten as 1�d�x	≤ e�x		, where e�x	 is the distance
of x from the window’s boundary.

Analogous estimators can be constructed for the d.f. Dk�r	 of the distance to the
kth nearest neighbour for k= 2, 3, � � � ; here edge-correction ensures that the kth
neighbour can be determined properly.

The mean nearest-neighbour distance mD can be estimated by

m̂D = ∑
�x�d�x	�

1W�d�x	 �x	 ·d�x	
/

�W�d�x		

/
�̂nn�
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The estimation of the density function d�r	 is based on the same principle as that
of D�r	. The use of the following kernel estimator is recommended:

d̂n�r	= �̂n�r	
/
�̂nn for 0 ≤ r ≤R� (4.2.49)

where

�̂n�r	=
∑

�x�d�x	�

k�d�x		1W�d�x	 �x	/
�W�d�x		�

in which k�z	 is the Epanechnikov kernel explained in Appendix A, and �̂nn and R
are as above.

The hazard rate can be estimated using the above estimators for d�r	, D�r	 and �.

Example 4.3. Gold particles: nearest-neighbour distance d.f.
Figure 4.14 shows the nearest-neighbour distance characteristics of the point pattern
of gold particles; the mean nearest-neighbour distance is estimated as 15.2 lu. The
estimated d.f. shows strong deviations from the d.f. for a Poisson process: there is (i)
a hard-core distance of 5.66 lu and (ii) some form of clustering, resulting in a large
number of nearest neighbours at distances around 10 lu. This situation can be shown
even more clearly by the estimate of the density function: there is a large peak at
r=10 lu and, perhaps, two shoulders at 22 lu and 30 lu. Nearly all nearest-neighbour
distances are smaller than 40 lu, since nearest-neighbour distance characteristics are
blind for larger distances. (There is a single point with nearest-neighbour distance
larger than 50 lu, namely with 51.9 lu.)

It is interesting to compare the density estimates d̂�r	 and ĥs�r	; see Figure 4.15.
The estimate for the spherical contact distribution has its mode at r = 15 lu, while
d̂�r	 has its mode at r= 10 lu; and the tail of ĥs�r	 is heavier. Hence, the clustering
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Figure 4.14 Estimates of D�r	 (left, solid line) and d�r	 (right, solid line) for the
gold particle pattern, compared to their Poisson process analogues (dashed lines).
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Figure 4.15 Comparison of the density estimates d̂�r	 (solid line) and ĥs�r	
(dashed line) for the pattern of gold particles.

in the pattern is clearly shown, and the nearest-neighbour distances are ‘smaller’
than the distances from test locations.

Example 4.4. Phlebocarya pattern: nearest-neighbour distance d.f.
Figure 4.16 shows the empirical nearest-neighbour distance p.d.f. d̂�r	 for the

bandwidths h= 0�5 m and 2.0 m. The mean nearest-neighbour distance is 0.66 m.
Clearly, there is a big influence of the bandwidth, especially here where the data
were collected on a 10 × 10 cm grid. There are two modes, at r = 1 m and 3.7 m.
These modes might reflect the fact that Phlebocarya typically grows in larger
clusters consisting of several smaller clumps.
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Figure 4.16 Two estimates of the nearest-neighbour distance d.f. d�r	 for the Phle-
bocarya pattern with bandwidths 0.5 m (dashed line) and 2.0 m (solid line). The latter
seems to be more appropriate given that the data were collected on a grid.



Stationary Point Processes 213

4.2.7 The J-function

The J -function, introduced by Van Lieshout and Baddeley (1996), is a valuable tool
for detecting deviations from a Poisson process and for characterising the interaction
of points in terms of its type, strength and range. It is a clever combination of D�r	
and Hs�r	, defined as

J�r	= 1 −D�r	

1 −Hs�r	
for r ≥ 0�with Hs�r	< 1� (4.2.50)

For a Poisson process, J�r	≡ 1, but this is not unique; non-Poisson processes have
been identified that have the same J -function (see Bedford and Berg, 1997). From
the discussion of D�r	 and Hs�r	 in Section 4.2.6, it is clear that J�r	≥1 for regular
processes and J�r	≤ 1 for cluster processes. For Gibbs point processes with finite
radius of interaction rmax,

J�r	= 1 for r ≥ rmax� (4.2.51)

The estimation of J�r	 is not trivial. First of all, the denominator 1 −Hs�r	 is
small for large r, and large fluctuations of Ĵ �r	 are to be expected for these r. Also,
the nature of numerator and denominator as point- and location-related summary
characteristics is different, which results in estimators of a different nature. As a
consequence, it is difficult to construct an estimator in which the fluctuations in
numerator and denominator cancel out. Probably the choice of the estimator is not
so important for small and moderate r.

Paulo et al. (2002) give a good example of an application of the J -function, in
which the competition of cork oaks in Portuguese forests is considered.

Example 4.5. Gold particles: J-function
Figure 4.17 shows the J -function for the pattern of gold particles. It is greater

than 1 for r ≤ 7 lu and less than 1 at distances beyond 7. The graph indicates
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Figure 4.17 Estimate of the J -function for the pattern of gold particles. Data
courtesy of M.N.M. van Lieshout.
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clustering of the particles combined with short-range repulsion. Since the graph
is almost horizontal for r between 10 lu and 20 lu, it seems that the interaction
between particles is restricted to distances around 10 lu.

4.3 Second-order characteristics
4.3.1 The three functions: K , L and g

Introduction

Ripley’s K-function, Besag’s L-function and the pair correlation function g�r	 have
often been regarded as the functional summary characteristics that are the most
important tools for the analysis of point patterns. They are often called ‘second-
order characteristics’. The reason why this name is used is not important at this
stage, but will be explained in due course. These functions are believed to be more
powerful than the other summary characteristics considered in this chapter, and are
therefore treated in a separate section. Physicists in particular follow a ‘second-order
dogma’ and believe that second-order characteristics, especially the pair correlation
function, offer the best way to present statistically the distributional information
contained in point patterns and all the information that is necessary for describing
the correlations of point locations.

Clearly, the distributional indices in Section 4.2.4 yield only aggregated informa-
tion about the relationship of the typical point to its close neighbourhood but ignore
long-range spatial correlations in point patterns. Furthermore, statistical experience
suggests that the functional summary characteristics such as D�r	, Hs�r	 and the
morphological functions are ‘short-sighted’ as they describe the distances to nearest
neighbours of reference points, but say little or nothing about the points beyond the
nearest neighbour.

The authors of this book also share the opinion that second-order characteristics
play a central role in the analysis of point patterns. However, they also recommend
the use of the other summary characteristics of Sections 4.2 and 4.4, since these
have their own specific strengths and often yield information that cannot be derived
from second-order characteristics. This is demonstrated well by Example 4.19 on
p. 272. Furthermore, the other summary characteristics can be used to support an
analysis based on second-order characteristics, e.g. for testing models that have
been found using second-order methods.

In the following, the three functions are described from an applications standpoint.
The corresponding theoretical background is presented in Section 4.3.2, including
an explanation of why these functions are called second-order characteristics. The
statistical estimation is discussed in detail in Section 4.3.3.

Ripley’s K-function

The idea behind the K-function is the average number of other points found within
the distance r from the typical point. The following provides a motivation for the
construction of the K-function.
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Let �K�r	 denote the mean number of points in a disc (sphere) of radius r
centred at the typical point (which is not counted). Using plus sampling, it can
be estimated as follows. Let n be the number of points in the window W , and let
ni�r	=N�b�xi� r	 \ �xi�	 be the number of points of N within distance r from point
xi, excluding xi itself. Then

n�r	= 1
n

n∑
i=1

ni�r	

is an estimator of �K�r	. Using the notation of Section 4.1 yields

�K�r	= Eo �N�b�o� r	 \ �o�		 �

i.e. �K�r	 is precisely the Palm mean discussed above.
In order to separate out the global point density given by � and local point

density fluctuations, the mean �K�r	 is divided by �; this is why it was denoted as
�K�r	 above. The resulting K�r	 is the popular summary characteristic, which is
thus defined as

K�r	= Eo�N�b�o� r	\�o�		/� for r ≥ 0� (4.3.1)

Clearly, K�r	 depends on the radius r: with increasing r the number of points in
b�o� r	 increases and, as a result, K�r	 increases as well. In general, one can expect
K�r	 to be proportional to rd; only for small r interesting deviations are observed.

The function has a simple form in the Poisson process case; recall from
Section 2.5.2 that

K�r	=�r2 for r ≥ 0 (4.3.2)

in the planar case and

K�r	= bdr
d for r ≥ 0 (4.3.3)

in the general d-dimensional case.
The shape of K�r	 relative to that of the Poisson process provides valuable

information on the point process distribution. Typical non-Poisson cases are cluster
processes (processes with aggregation) and regular processes (processes with repul-
sion). For these, the following behaviour of K�r	 can be expected:

• Cluster process:

K�r	>�r2 or K�r	> bdr
d�
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In this case the typical point is part of a cluster and, as a result of this, has
some very near neighbours. Thus, the local point density around the typical
point is larger than � and

Eo�N�b�o� r	\�o�		>E�N�b�o� r			=�bdr
d�

• Regular process:

K�r	<�r2 or K�r	< bdr
d�

Now the typical point is isolated, i.e. there is a certain distance between the
typical point and its nearest neighbours. Thus, the local point density around
the typical point is smaller than � and

Eo�N�b�o� r	\�o�		<EN�b�o� r		=�bdr
d�

In practice, point patterns often exhibit a combination of these two extreme cases,
e.g. short-range regularity and long-range clustering. In general, the interpretation
of K�r	 is complicated by the fact that it is a cumulative characteristic: increased
numbers of inter-point distances r within an interval �r1� r2� lead to large values
of K�r	 not only for r within the interval r1 ≤ r ≤ r2 but also for r> r2, indicating
spurious clustering at distances larger than r2. A similar situation arises for rare
distances r where the K-function indicates (spurious) regularity. In such a situation
it may be useful to consider the difference ��K�r	−K�r2		, that is, the mean
number of points in a ring or shell of radii r and r2.

Note that there is a simple relationship between K�r	 and the d.f.s Dk�r	 of the
distances to the kth nearest neighbours introduced on p. 210:

�K�r	=
�∑
k=1

Dk�r	 for r ≥ 0� (4.3.4)

Sometimes the points for statistical analysis are given as nodes of a graph, as
discussed in Section 1.8.5. It makes sense to define a graph-adapted K-function via
shells around the typical point, where K�k	 is the mean number of points in the kth
shell, where the kth shell is given by all points connected with the typical point by
k or fewer edges. Note that the graph G�N� r	 introduced in Section 1.8.5 can be
interpreted as a graph counterpart of K�r	.

The L-function

Modern point process statistics rarely uses K�r	, but rather its variant, the L-function
as introduced by Besag (1977). In the planar case the L-function is defined as

L�r	=
√
K�r	

�
for r ≥ 0� (4.3.5)
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and in the general d-dimensional case as

L�r	= d

√
K�r	

bd
for r ≥ 0� (4.3.6)

Clearly, L�r	 represents the same information as K�r	. However, it has both
graphical and statistical advantages:

• K�r	 is proportional to r2 in the planar case, i.e. K�r	∝ r2, and K�r	∼ rd in
�d but L�r	 is always proportional to r,

L�r	∝ r�

and in the Poisson case

L�r	= r for r ≥ 0�

Thus in practice, when a pattern is assessed for complete spatial randomness,
the graph of its L-function is compared to a line, whereas that of the K-
function is compared to a parabolic curve. The second-order behaviour of
a point process can be visualised and interpreted more easily based on the
L-function than based on the K-function.

• Statistical experience shows that the fluctuations of estimated K-functions
increase with increasing r. The root transformation stabilises these fluctua-
tions (both means and variances) and can even make them independent of
the distance r.

In the literature, the L-function is sometimes defined as

L∗�r	=
√
K�r	

�
− r�

which leads to

L∗�r	= 0 for r ≥ 0

in the Poisson case. In general, the graph of L∗�r	 tends to be horizontal, which
has some graphical advantages as deviations from a horizontal line are easier to
detect than deviations from a diagonal line. However, this book prefers the classical
definition in order to emphasise the cumulative nature of the L-function due to
an increase in the number of points with increasing r. A better way of obtaining
horizontal graphs that characterise the second-order behaviour of point processes is
to use the pair correlation function (see below).
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Figure 4.18 The empirical L-function (solid line) for the pattern of gold particles,
minimum and maximum envelopes from 99 simulations of a Poisson process of
intensity 0.000 865 in a 630 × 400 rectangle (dotted lines) and the theoretical
L-function of a Poisson process (dashed line). The curves indicate micro-scale
repulsion and meso-scale clustering.

Example 4.6. Gold particles: L-function
Figure 4.18 shows an estimate of the L-function for the gold particles. This

function deviates clearly from the line L�r	= r for the Poisson case: for r ≤ 8 lu,
L̂�r	≤ r , and for 8 lu< r ≤ 33 lu, L̂�r	 > r , while for larger r there are irregular
fluctuations around the line L�r	= r. Further, L̂�r	= 0 for r ≤ r0 since the smallest
inter-point distance in the pattern is r0 = 5�66 lu.

The vague initial impression from visual inspection of the point pattern can be
confirmed by the graph of L̂�r	: at very short distances there is some tendency
to regularity (reflected in the positive minimum inter-point or hard-core distance
r0 = 5�66 lu). Also, there is strong clustering indicated by a large number of
neigbours at distances slightly larger than r0 resulting in L�r	 > r . Because
of the cumulative nature of the L-function it is difficult to specify the exact
range of clustering. The fact that L�r	≈ r for r ≥ 30 lu shows that there are a
smaller number of neighbours at distances smaller than r = 30 lu. The discus-
sion of the pair correlation function in Example 4.8 on p. 221 will clarify this
point.

The pair correlation function

The authors of this book recommend the pair correlation function g�r	 as the best,
most informative second-order summary characteristic, even though its statistical
estimation is relatively complicated. While it contains the same statistical informa-
tion as the K- or L-function, it offers the information in a way that is easier to
understand, in particular for beginners. Its relationship to K�r	 is similar to that of
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a probability density function f�x	 to its corresponding distribution function F�x	,
with f�x	 being the derivative of F�x	, i.e.

F�x	=
x∫

−�
f�t	dt or f�x	=F ′�x	�

The pair correlation function g�r	 is proportional to the derivative of K�r	 with
respect to r, i.e. in the planar case,

g�r	= K′�r	
2�r

for r ≥ 0� (4.3.7)

and in the general d-dimensional case,

g�r	= K′�r	
dbdr

d−1
for r ≥ 0� (4.3.8)

The following is a heuristic explanation of g�r	. First, recall from (4.2.9) that
the probability of a point of N being in the infinitesimally small disc (sphere)
b�x	 of area (volume) dx centred at x is �dx. Consider now a second point y
at distance r from x and consider the probability p2�x� y	 that there is a point
both in b�x	 and in the small sphere b�y	 of area (volume) dy and centred at
y. This probability can be expressed by the second-order product density ��x� y	
(see Section 1.5) as

p2�x� y	=��x� y	dxdy� (4.3.9)

In the isotropic case, p2�x� y	 and ��x� y	 depend only on the distance r of x and
y, and hence the notation can be simplified to p2�r	 and ��r	. Now,

p2�r	= g�r	 ·�dx ·�dy �

where g�r	 is the pair correlation function, which satisfies

g�r	=��r	/�2 for r ≥ 0� (4.3.10)

If the point distribution is completely random,

p2�r	=�dx ·�dy

by the multiplication theorem of probability theory, and thus g�r	≡ 1. In general
�dx ·�dy has to be multiplied by a correction factor to yield p2�r	 which depends
on r , and this factor is precisely g�r	.
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For large r the function g�r	 always takes the value 1, since the events ‘there is a
point of N in b�x	’ and ‘there is a point of N in b�y	’ are independent for large r:

lim
r→�g�r	= 1� (4.3.11)

To be more precise, in order to satisfy (4.3.11) the point process must have some
distributional property, the so-called mixing property explained in Section 1.6.4.

If there is a finite distance rcorr with

g�r	= 1 for r ≥ rcorr� (4.3.12)

then rcorr is called range of correlation. This means that there are no correlations
between point positions at larger distances.

Another interpretation of g�r	 is of a conditional and predictive nature. Assume
that the typical point of N is at o. What is the probability �2�r	 of another point
being in an infinitesimally small disc (sphere) of area (volume) dx whose centre
has a distance of r from o? This probability is

�2�r	=�g�r	�

By analogy with (4.2.9), �g�r	 is sometimes called the Palm intensity function. In
the literature it has also been termed the O-ring statistic; see Wiegand and Moloney
(2004).

It is clear that in the Poisson process or CSR case

g�r	= 1 for r ≥ 0�

i.e. the pair correlation function is constant and equal to one. This reflects the fact
that the location of any point is entirely independent of the locations of the other
points. Again, in typical non-Poisson cases a characteristic behaviour of g�r	 may
be found:

• For the cluster process,

g�r	≥ 1�

and g�r	 can take large values, in particular for small r, and is decreasing as
r increases further.

• For the regular process,

g�r	≤ 1 for small r�
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and many patterns have a hard-core distance r0 for which

g�r	= 0 for r ≤ r0�

For larger distances r, g�r	 can exceed 1 and g�r	 can have interesting shapes,
which will be discussed in more detail in Section 4.3.4.

Example 4.7. Phlebocarya pattern: pair correlation function
Figure 4.19 shows an estimate of the pair correlation function for the pattern of
Phlebocarya plants. This curve describes the aggregation in the pattern very well.
As the analysis by means of nearest-neighbour distances has already shown, there
are two cluster sizes: there are small clusters of a diameter around 80 cm and
perhaps larger clusters, perhaps with a diameter of roughly 2 m. Note that for this
pattern the CSR hypothesis is clearly rejected by the L-test.

Example 4.8. Gold particles: pair correlation function
Figure 4.20 shows an estimate of the pair correlation function for the pattern
of gold particles. This curve describes the spatial structure of the pattern
very well: the hard-core distance r0 (= minimum inter-point distance) is 5.66
lu, which is also a very frequent nearest-neighbour distance (r1 = r0) and
the gap distance r2 = 20lu, which corresponds to the empty space between
the first and second neighbours of the typical point, are clearly visible. The
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g(r)

6 82

Figure 4.19 Empirical pair correlation functions for the pattern of Phlebocarya
positions, obtained with bandwidths h= 0�5 (dashed line) and 2.0 m (solid line).
The large values for small r obtained with h=2 m indicate strong clustering, while
the values larger than 1 for r around 8 m may indicate larger clusters. For the
smaller h the lattice nature of the pattern becomes apparent. The use of adapted
bandwidths makes sense here.
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Figure 4.20 The empirical pair correlation function of the pattern of gold particles,
obtained with the estimator (4.3.38) and bandwidths h= 3 lu for r ≤ 20 lu and 6 lu
for r > 20 lu and improved with the reflection method. The dashed line shows the
result without this correction. A comparison with Figure 4.18 reveals the advantages
of using g�r	 as opposed to L�r	 as an instructive summary characteristic.

estimated pair correlation function has the typical form of that of a cluster process
with local regularity, i.e. repulsion between the points. The minimum at r2 = 20 lu
indicates perhaps some further regularity, in particular for the distribution of cluster
centres. Of course, the small irregularities of the curve are considered statistical
artifacts that do not provide any further useful distributional information.

The fact that ĝ�r	≥ 1 does not hold for all r shows that the pattern is not a pure
cluster process, but exhibits a combination of clustering and regularity at different
scales. Clearly, there are many points with distances between r = 6 lu and 15 lu,
while the values of ĝ�r	 smaller than 1 for r between 15 lu and 30 lu were reflected
in L�r	≈ r for r ≥ 30 lu as described in Example 4.6.

Note that a statistical trick had to be applied to construct Figure 4.20. The
estimator that was used is based on a kernel function. This smoothes the pair
correlation function but the smoothing also generates positive values for r smaller
than r0. The reflection method explained in Example 4.9 on p. 237 and Appendix A
was applied to construct the function depicted here. The other curve in Figure 4.20
is the estimate without reflection.

In some areas of science, modifications of the pair correlation function g�r	 have
been used. Astronomers, for example, use what they call the ‘correlation function’,

��r	= g�r	− 1�

Some authors call ��x� y	/�2 the pair correlation function and g�r	 the radial
distribution function; see Torquato (2002, p. 63).
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Pair correlation functions can sometimes have poles at r = 0, i.e. g�r	∝ r−� for
small r, but the order � of these can only be smaller than d− 1. For example,
astronomers know that �= 1�8 for the point pattern of galaxies. In these cases it is
reasonable to use the function

��r	= �g�r	− 1	r��

4.3.2 Theoretical foundations of second-order
characteristics∗

This subsection presents the theory of second-order characteristics, including an
explanation as to why K, L and g are called second-order summary characteristics.

The starting point is the second-order factorial moment measure ��2	. As
explained in Section 1.5, ��2	�B1 × B2	 is the mean number of pairs of points
�x1� x2	 with x1 �= x2 and x1 ∈B1 and x2 ∈B2. (Note that the symbols x1 and x2 are
used as a convenient notation. They denote any points, which could also be simply
referred to as x and y.) If B1 ∩B2 = ∅,

��2	�B1 ×B2	= E�N�B1	N�B2		

and if B1 =B2 =B,

��2	�B×B	= E�N�B	�N�B	− 1		= E�N�B	2	− E�N�B		� (4.3.13)

The last equation yields the following expression for the variance of the number of
points in B:

var�N�B		=��2	�B×B	+ E�N�B		− �E�N�B			2

or, using (4.1.1),

var�N�B		=��2	�B×B	+�
�B	− ��
�B		2� (4.3.14)

Similarly, the covariances cov�N�B1	�N�B2		 for arbitrary B1 and B2 can also be
expressed in terms of ��2	 and �. Hence, it is clear that � and ��2	 completely
describe the second-order behaviour of the stationary point process N . Thus it is
reasonable to derive simpler expressions for ��2	�B1 ×B2	, which use the second-
order product density � and the so-called reduced second-order moment measure
� . Note that

��2	�B1 ×B2	=
∫
B1

∫
B2−x

��h	dhdx (4.3.15)

and

��2	�B1 ×B2	=�2
∫
B1

��B2 − x	dx� (4.3.16)
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In (4.3.15) �, which is in general a function ��x1� x2	 of two variables x1 and x2,
appears as a function of h= x1 − x2 since the value of this function depends only
on the difference x1 − x2 in the stationary case.

Note that in the following the simpler symbols ��h	 and ��r	 (for the stationary
and isotropic case, respectively) are often used.

The symbol � in (4.3.16) denotes the reduced second-order moment measure
defined by

���B	= Eo�N�B\�o�		� (4.3.17)

This means that ���B	 is equal to the mean number of points of N in the set B
conditional on the typical point of N being at o. If o ∈ B then o is not counted.
(The adjective ‘reduced’ does not indicate the subtraction of �o� but the reduction
of the number of sets from two [in ��2	�B1 ×B2	] to one [in ��B	].)

Equations (4.3.15) and (4.3.16) yield

�2��B	=
∫
B

��h	dh� (4.3.18)

It is not difficult to prove formulas (4.3.15) and (4.3.16). Assuming that ��2	

has a density � with respect to the Lebesgue measure, called second-order product
density, yields

��2	�B1 ×B2	=
∫
B1

∫
B2

��x1� x2	dx1dx2

=
∫
B1

∫
1B2
�x1	��x1� x2	dx1dx2�

Introducing the new variables h= x1 − x2 and x= x2 results in∫
B1

∫
1B2
�x+h	��h	dhdx�

which is the same as the right-hand side of (4.3.15) since

1B2
�x+h	= 1B2−x�h	�

One may also write

��2	�B1 ×B2	= E

( ∑�=

x1�x2∈N
1B1
�x1	1B2

�x2	

)

= E

(∑
x∈N

1B1
�x	N�B2\�x�	

)
�
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The last mean can be re-expressed by means of the Campbell–Mecke formula as

�
∫

1B1
�x	Eo�N��B2 − x	\�o�		dx�

which yields (4.3.16) by (4.3.17).
Generalising the Campbell theorem, the calculation of means such as

sf = E

( ∑�=

x1�x2∈N
f�x1� x2	

)

can be reduced to integrals with respect to � or � :

sf =
∫ ∫

f�x� x+h	��h	dhdx (4.3.19)

and

sf =�2
∫ ∫

f�x� x+h	��dh	dx� (4.3.20)

This yields for the variance of the number of points in B:

var�N�B		=�2
∫
�B�h	��dh	+�
�B	− ��
�B		2 (4.3.21)

or

var�N�B		=
∫
�B�h	��h	dh+�
�B	− ��
�B		2� (4.3.22)

Here �B�h	=
�B∩Bh	 is the set covariance of B, where �B�h	 is the area (volume)
of the intersection of B and its translate Bh (see Appendix B).

By (4.3.17), � is closely related to Ripley’s K-function:

K�r	=��b�o� r		 for r ≥ 0� (4.3.23)

This equation shows that K�r	 can also be used in the general stationary case.
However, ideally K�r	 is only applied to stationary and isotropic point processes
where � and K�r	 determine completely the second-order behaviour of the point
process.

If K�r	 has a derivative K′�r	 for all r, then the expression for ��2	�B× B	
simplifies to

��2	�B×B	=�2

�∫
0

�B�r	K
′�r	dr�
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where �B�r	 is the isotropised set covariance of B, the rotational average of
�B�h	; see Appendix B. Formula (4.3.8) leads to the final variance formula for the
isotropic case,

var�N�B		=�2dbd

�∫
0

�B�r	g�r	r
d−1dr +�
�B	− ��
�B		2� (4.3.24)

This formula is valuable as it separates out the geometry of B (given by �B�r	)
and the point process variability (given by the pair correlation function g�r	). For
large B, an approximation for �B�r	 can be used which yields

var�N�B		

�B	

��+ dbd�
2

�∫
0

�g�r	− 1	rd−1dr� (4.3.25)

In the planar case this simplifies to

var�N�B		

�B	

��+ 2��2

�∫
0

�g�r	− 1	rdr� (4.3.26)

Historical remark. Like many other statistical concepts, most second-order
summary characteristics of point processes were originally introduced by physi-
cists. The idea of the pair correlation function appeared first in the context of
X-ray scattering experiments of von Laue around 1900. Physicists were not very
much interested in the statistical aspects as they were typically dealing with rather
large samples, but had gained experience in the interpretation of pair correlation
functions. The example on p. 242 is in the spirit of these applications.

The K-function was considered much later, first in Bartlett (1964) and finally
in the modern form in Ripley (1977), who considered small samples and an edge-
corrected estimator. Since then, the K-function has become the main tool of point
process statistics and has also been used in situations where the pair correlation
function would have been more appropriate. The best pair correlation function
estimators have been derived in astronomy, a very important field of applied point
process statistics; see Hamilton (1993) and Landy and Szalay (1993).

Uniqueness of the second-order characteristics

In classical statistics it is well known that mean and variance do not uniquely
determine the distribution of a random variable. Similarly, in point process statistics,
different point processes can have the same intensity � and K-function. Baddeley
and Silverman (1984) identify a planar point process which has the same K-function
as the Poisson process, i.e. K�r	=�r2. Diggle (1983) and Tscheschel and Stoyan
(2006) present families of Neyman–Scott processes with the same � and g�r	;
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see p. 411 below. And clearly, two point processes N1 and N2 can have the same K,
L and g, but different intensities. As a simple example consider N1 and N2 where
N2 is a p-thinning of N1; see Section 6.2, p. 366.

An issue that still has not been resolved completely is the characterisation of
pair correlation functions: which functions can be pair correlation functions? One
necessary condition is

g�r	≥ 0 for r ≥ 0�

which is trivial, and another, more difficult, is

S�k	≥ 0 for k≥ 0�

where S�k	 is the function given by

S�k	= 1 +�

�∫
0

fd�kr	�g�r	− 1	rd−1dr ≥ 0�

see Sakai et al. (2002). Physicists call S�k	 the ‘structure factor’. For d= 2, it is
f2�z	= 2�J0�z	 where J0�z	 is a Bessel function (of the first kind, order 0); for
d= 3, f3�z	= 2� sin z

z
.

Another issue is that of the existence of a point process with specific � and g�r	;
see Uche et al. (2005). It is easy to find examples of � and g�r	 for which no point
process exists. It is clear that the existence of point processes for � and g�r	 implies
the existence for �′ and g�r	 if �′ ≤�.

The following paragraph is addressed to readers from the fields of traditional
mathematical spatial statistics and biostatistics. In these fields, K (or L) has now
become fashionable and popular; people have learnt to estimate K and L (here
the discussion is restricted to K) and can interpret these. Physicists and material
scientists have other traditions; they have never seriously worked with K and have
always used the pair correlation function g. This might be due to the fact that in
physics sample sizes are usually large. Now, this book recommends working with
g rather than with K even if not exclusively as it does recommend the use of
the K-function for very small samples and in the context of goodness-of-fit tests;
see Sections 2.7 and 7.4. This is by analogy with goodness-of-fit tests in classical
statistics, where these are usually not based on density functions. However, this
book does indeed recommend the use of g for exploratory analysis despite the fact
that the estimation of the pair correlation function is more delicate and complicated
than that of K due to the serious issues of bandwidth choice and estimation for
small r .

Note that the problems with unusual window shapes (i.e. non-rectangular, polyg-
onal, � � � ) have now been solved. One solution has been implemented in spatstat
in R, astronomers have developed their own methods (see Hamilton, 1993), and
Fourier methods may also be used (see the remark on p. 233 below).
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At first sight, it seems as if parameter estimation, via the minimum contrast
method, is often based on K; see Diggle (2003) and Section 7.2 below. But in the
modern literature contrast functions are also used which contain the derivative of
K, which is nearly equivalent to the use of g by (4.3.7). The question which of
the two functions, g or K, yields the better minimum contrast estimates remains
unanswered and requires further research; the authors’ experience indicates that it
is the pair correlation function g�r	.

4.3.3 Estimators of the second-order characteristics

This subsection introduces and characterises several estimators and advises on the
appropriate choice of estimators for the second-order charcteristic of interest. The
estimation starts with that of �2� and �. The corresponding estimators are then
combined with intensity estimators, to finally yield estimators of K, L and g.

Estimation of �2� (anisotropic case)

In the general case of a process that is not necessarily isotropic �2��B	 is estimated
by �̂st�B	, where

�̂st�B	=
∑�=

x1�x2∈W

1B�x2 − x1	


�Wx1
∩Wx2

	
(4.3.27)

is defined for any bounded set B such that 
�W ∩Wz	 is positive for all z in B.
If B= b�o� r	 and W is a rectangle or parallelepiped, r must be smaller than the
shortest edge length of W . This r-value is denoted as rst.

To prove the unbiasedness of �̂st�B	, observe that �̂st�B	 has the general form

∑�=

x1�x2∈N
f�x1� x2	

with

f�x1� x2	= 1W�x1	1W�x2	
1B�x2 − x1	


�W ∩Wx2−x1
	

and 
�W ∩Wx2−x1
	= 
�Wx1

∩Wx2
	. Consequently, (4.3.20) can be applied, which

yields

E�̂st�B	=�2
∫ ∫

1W�x	1W�x+h	
1B�h	


�W ∩Wh	
dx��dh	

=�2
∫ 1B�h	

�W ∩Wh	

∫
1W�x	1W�x+h	dx��dh	

=�2
∫

1B�h	��dh	=�2��B	�
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In technical terms the unbiasedness of �̂st�B	 is obtained by a general statistical
technique called Horvitz–Thompson weighting (see Baddeley, 1999). The idea is
to weight the pairs of points �x1� x2	 which contribute to the double sum: ‘rare’
pairs are assigned large and ‘frequent’ ones only small weights in order to obtain
an unbiased estimator. Since the pattern is sampled within the bounded window
W large inter-point distances are relatively rare, and the weights 1/
�W ∩Wh	 are
indeed large for large h.

Note that it is not difficult to determine the term


�W ∩Wx1−x2
	= 
�Wx1

∩Wx2
	

if W is a rectangle, parallelepiped, disc or sphere. The relevant formulas are given
in Appendix B.

Estimation of �2K (isotropic case)

Here �i�r	 is an unbiased estimator of �2K�r	,

�̂i�r	=
∑

x1�x2∈W

1�0< �x1 − x2� ≤ r	w�x1� x2	


�W��x1−x2�		
(4.3.28)

for 0 ≤ r< ri, where

ri = sup
{
r � 


(
W�r	

)
> 0

}
and W�r	 = �x∈W � ��b�x� r		∩W �= ∅��

and, for d= 2, w�x1� x2	= 2�/�x1x2
where �x1x2

is the sum of all angles of the arcs
in W of a circle with centre x1 and radius �x1 −x2�. If �x1x2

= 0 then w�x1� x2	= 0.
In the general d-dimensional case w�x1� x2	 is the ratio {surface area of the sphere
�b�x1�x1 − x2�	 in W } / �dbd�x1 − x2�d−1�. If W is a rectangle or parallelepiped
then ri is the length of the diagonal. Formulas for w�x1� x2	 for windows W of
various shapes are given in Appendix B.

The proof of unbiasedness of �̂i�r	 is similar to that of �̂st�B	, but is based on
polar coordinates.

With B=b�o� r	 the estimator �̂st�B	 can also be used for the estimation of �2K�r	,
but the range of r-values is reduced since rst < ri. Of course, �̂i�r	 has a smaller
estimation variance than �̂st�b�o� r		 for a really isotropic point process. However,
�̂i�r	 is sensitive to deviations from the isotropy assumption, and thus it may be
preferable to always use �̂st�b�o� r		 instead of �̂i�r	. All examples in this book are
computed by means of �̂st.

Both estimators tend to be sensitive to clusters close to the boundary of W
yielding spurious large values, which may overestimate the degree of clustering in
the pattern.

Doguwa and Upton (1989) discuss an estimator of �K�r	 in the spirit of ni�r	
on p. 215 above with weights proportional to the area of b�xi� r	∩W , which is
unbiased in the Poisson process case.
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Estimation of ��r�

A useful general kernel estimator of �̂�r	 is

�̂st�r	=
∑�=

x1�x2∈W

k��x1 − x2� − r	

dbdr
d−1
�Wx1

∩Wx2
	

for 0 ≤ r ≤ rst� (4.3.29)

which is analoguous to �̂st�b�o� r		.
In the isotropic case the analogue to Ripley’s estimator �̂i�r	 is

�̂i�r	=
1

dbdr
d−1

∑
x1�x2∈W

k�r − �x1 − x2�	w�x1� x2	 for 0 ≤ r ≤ ri� (4.3.30)

Ohser and Mücklich (2000, p. 279) present a version of �̂st�r	 adapted to the
isotropic case,

�̂O�r	=
1

dbdr
d−1�W�r	

∑ �=

x1�x2∈W
k�r − �x1 − x2�	 for 0 ≤ r ≤ ri� (4.3.31)

Here, the term 
�Wx1
∩Wx2

	 is replaced by the isotropised set covariance �W�r	.
This is computationally much simpler than (4.3.30).

All product density estimators use a kernel function k, i.e. a non-negative func-
tion k�z	 that satisfies

∫ �
−� k�z	dz= 1; see Appendix A. There are several kernel

functions to choose from, but the recommended choice for k�z	 is the simple box
kernel,

k�z	=
{ 1

2h
for −h≤ z≤h�

0 otherwise�

After (4.3.42) below, an explanation is given as to why this simple kernel (usually
used by physicists and astronomers) should be used for product density estimation
rather than the Epanechnikov kernel, which was recommended in older publications.
The parameter h, termed the bandwidth, plays a very important role; its choice is
crucial to the quality of the product density estimators and heavily influences their
variance. It is also discussed below.

As in the proof of the unbiasedness of �̂st�B	 one can show that, for the box
kernel,

E�̂st�r	=
1

2h

h∫
−min�h�r�

��r + s	ds� (4.3.32)

thus, as h→ 0, E�̂st�r	→��r	. For small r (r<h) there is clearly some bias. For
example, the mean is h+r

2h �
2 for a Poisson process, instead of �2. There are two ways
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to handle the case of r < h: one can either apply the reflection method explained
in Example 4.9 and Appendix A or, following Guan (2007), change �̂st�r	 at two
points:

• replace r in the denominator of (4.3.29) by �xi − xj�;

• multiply the estimator by the factor

fh�r	=
⎧⎨
⎩

2h
h+ r

for r ≤h�
1 otherwise�

(4.3.33)

Note that this is only recommended for r<h.

Estimation of K�r�

Estimators of K�r	 are obtained by dividing the estimators of �2K�r	 described
above by estimators of �2. Ripley (1976) originally used the standard estimator �̂
and simply squared it. Later some authors used

�̂2 = n�n− 1	/
�W	2� (4.3.34)

where n is the number of points in the window W . This is reasonable since �̂2 is
unbiased for �2 in the Poisson case. Thus in this case the resulting estimator is
ratio-unbiased. However, ��̂	2 is not unbiased for �2 and hence Ripley’s estimator
is not ratio-unbiased. Heinrich (1988, 1991) show its asymptotic normality and
constructed a corresponding CSR test.

Both estimators, �̂2 and ��̂	2, are not adapted to �̂st�b�o� r		 and �̂i�r	. Their
precision may be much higher than that of �̂st�b�o� r		 and �̂i�r	, in particular for
large r, and so there is little chance that their fluctuations cancel out.

Thus, there is some potential to improve the estimation. Indeed, Stoyan and
Stoyan (2000) introduce the estimator �̂V �r	 of �, which is adapted and indeed
improves the quality of estimation of K�r	. This intensity estimator was discussed
in Section 4.2.3. The estimators of K�r	 are

K̂st�r	=
�̂st�b�o� r		

�̂V �r	
2

for 0 ≤ r ≤ rst (4.3.35)

and

K̂i�r	=
�̂i�r	

�̂V �r	
2

for 0 ≤ r ≤ ri� (4.3.36)

Whether different intensity estimators should be used for ‘i’ and ‘st’, replacing the
general �̂V �r	

2, is still an open question. Note that the estimation of K�r	 would not
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be improved if the exact value of � were known. Even then the adapted intensity
estimator yields a smaller mse.

Estimation of L�r�

So far, L�r	 has been always estimated based on estimators of K�r	, via

L̂�r	=
√
K̂�r	/bd� (4.3.37)

where K̂�r	 is one of the estimators of K�r	 above. It is not known whether there
is an efficient way to estimate L�r	 directly.

Estimation of g�r�

This book strongly recommends the use of kernel estimators for the product density
�̂�r	 which are then divided by the squared adapted intensity estimator �̂S�r	 to yield
an estimate of g�r	. Thus, the estimation of the intensity also plays an important role
in the estimation of the pair correlation function. Statisticians used �̂ (as in (4.2.10))
squared or �̂2 (as in (4.3.34)). The astronomers Hamilton (1993) and Landy and
Szalay (1993) revealed that it is better to use the estimator �̂S�r	 introduced in
Section 4.2.3. This leads to the estimators

ĝst�r	=
�̂st�r	

�̂S�r	
2

for 0 ≤ r ≤ rst (4.3.38)

and

ĝi�r	=
�̂i�r	

�̂S�r	
2

for 0 ≤ r ≤ ri (4.3.39)

with �̂st�r	 and �̂i�r	 or �̂O�r	 as defined in (4.3.29) and (4.3.30) or (4.3.31),
respectively.

The intensity estimators �̂V �r	 and �̂S�r	 are adapted to the estimation of K�r	 and
g�r	. The sphere b�x� r	 and the sphere surface �b�x� r	 are relevant for every point
x of N in W . The weighting considers the volume and surface content of b�x� r	
and �b�x� r	 in W and thus the importance of x: if x is close to the boundary it is
assigned a small weight since it contributes only little to �̂�r	 and ĝ�r	, respectively.
The main effect of the use of �̂V �r	 and �̂S�s	 is that the mse is smaller than for �̂.

This book does not recommend methods exploiting the relationship (4.3.7)
between K�r	 and g�r	, which involves the estimation of K�r	 and subsequent
numerical differentiation of K�r	. Kernels can be handled better than smoothers
(such as splines) of K�r	. Furthermore, the analogy between the estimation of g�r	
and the estimation of probability density functions provides an argument in favour
of kernel estimators as these are the preferred estimators of probability density
functions.
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For large samples with a low degree of clustering, edge-correction loses its
importance and numerical problems become more important. In these cases the
Fourier approach is recommended; see Ohser and Schladitz (2008), Szapudi et al.
(2005) and Vio et al. (2007). The idea is to transform the point process into a
shot-noise random field (by transforming the original image into a pixel image),
to estimate the covariance function k�r	 of this field and to use the relationship
between k�r	 and g�r	 given by (6.9.4). Strong numerical methods such as the
fast Fourier transform make this approach efficient, even for irregular windows W .
The first step is quite natural when the data result from image analysis, e.g. in
materials science studies. The smoothing effect of the shot-noise transformation is
comparable to that resulting from kernel estimation.

Biases and mean squared errors

In applications, one strives to choose both the right size of the observation window
W and an appropriate bandwidth h. This decision is typically based on practical
limitations as well as on the performance of the estimators. Thus, it is important
to be able to obtain approximations of the bias and the mean squared error or the
estimation variance.

Theoretical calculations (see Hamilton, 1993; Landy and Szalay, 1993; Ripley,
1988) and simulations have shown that the biases of the estimators introduced
above are negligible under normal conditions. For this reason, this section focuses
on mse and estimation variance.

An approximate analytical expression for the variance of K̂i�r	 with �̂2 in the
planar case was given by Ripley (1988):

�2
K�r	=

2
�2

(
�r2


�W	
+ 0�96

U�W	


�W	2
r3 + 0�13�

U�W	


�W	2
r5

)
� (4.3.40)

where U�W	 is the perimeter length of W . Note, however, that it was derived for
the case of a Poisson process.

Simulations by Stoyan and Stoyan (unpublished) have shown that (4.3.40) is very
precise and close to the mse of K̂st�r	 with �̂V �r	. This leads to the recommendation
to use this estimator, i.e. K̂st�r	 as in (4.3.35), since it is robust against deviations
from isotropy and shows the same precision as Ripley’s estimator.

Little is known of the statistical properties of the estimators of the L-function.
Simulations for Poisson processes have shown that, as expected, L�r	 estimated via
�̂st�b�o� r		 combined with �̂V �r	 yields an mse which is practically independent of
r for small and medium sized r (see Figure 4.21).

Hamilton (1993) and Landy and Szalay (1993) show that, for the Poisson case,
ĝi�r	 (with �̂S�r	) has a small bias and estimation variance, but they do not present
simple formulas for the calculation of these quantities that may be used in practical
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Figure 4.21 Square root of mean squared error for several estimators of L�r	 for
a planar Poisson process of intensity �= 100 for W = 1 : (dashed line) estimator
(4.3.35); (solid line) estimator (4.3.36) with standard estimator �̂; (dotted line)
estimator (4.3.36) with known intensity �= 100.

applications of point process statistics. The formula

�2
g �r	=

g�r	
∫ h

−h k
2�z	dz

1
2dbdr

d−1�W�r	�
2

for 0 ≤ r ≤ rst (4.3.41)

serves this purpose for the variance of ĝst�r	 in the general d-dimensional case. In
the planar case this simplifies to

�2
g �r	=

g�r	
∫ h

−h k
2�z	dz

�r�W�r	�
2

for 0 ≤ r ≤ rst� (4.3.42)

The term
∫ h

−h k
2�z	dz with the integral over the squared kernel function is 0�6/h for

the Epanechnikov kernel and 0�5/h for the box kernel (which is the minimum over
all kernel functions). It is mainly for this reason that this book recommends the box
kernel for pair correlation function estimation rather than the Epanechnikov kernel.

Equation (4.3.41) was derived for general stationary and isotropic point processes
using a Poisson approximation based on the idea of rare events. It was recommended
in Stoyan et al. (1993) for the estimator ĝst�r	 with the classical intensity estimator
�̂. However, later simulations showed that it is an excellent approximation for the
mse of ĝst�r	 with �̂S�r	. Figure 4.22 shows �2

g �r	 and the mse of ĝst�r	 for a
Poisson process and confirms this statement.

The mse and the estimation variance have frequently been found to behave
similarly to what is depicted in Figure 4.22: the mse is (nearly) independent of
r for medium distances r, but larger for small and large r (not shown here). The
variance �2

g �r	 as given by (4.3.41) and (4.3.42) has very large values for r → 0
and for large r (since �W�r	→ 0 for large r). This is not surprising as here the
number of contributing pairs of points �x1� x2	 with an inter-point distance close to
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Figure 4.22 Comparison of square roots of mse of ĝst�r	 obtained by simulation
for a planar Poisson process of intensity �= 100 in 1 : (solid line) box kernel,
h= 0�05; (dash-dotted line) Epanechnikov kernel, h= 0�05; (dash-dot-dotted line)
�g�r	 as in (4.3.42), h= 0�10; (dashed line) box kernel, h= 0�01; (dotted line) box
kernel, h= 0�05, known � used.

r is small for large r, but their individual contributions are large as a result of the
Horvitz–Thompson weighting mentioned on p. 229.

For small r a technical problem may occur: the estimators of ��r	 contain the
term 1/r (planar case) or 1/rd−1 (d-dimensional case) in the denominator. Thus,
for very small r , if the numerator is positive, ĝst�r	 or ĝi�r	 will become very large,
even though small values of g�r	 would have been correct. This problem occurs
in particular when a large bandwidth is used as pairs of points with inter-point
distances (much) larger than r can contribute. In general this effect appears for
values of r smaller than h, see p. 230.

Formula (4.3.42) can be used to tackle the following statistical problems:

1. What size of window ensures a specified precision of estimation of the pair
correlation function?

2. What is the appropriate bandwidth h?

The first question is addressed in Section 4.8.2 below in the context of other window
issues, while the second is discussed here.

Choice of bandwidth h

Since the choice of h ‘is an art’ (Martínez et al., 2005) the following section
attempts to offer detailed advice to the beginner. Large values of h produce smooth
estimates of g�r	, but important details may be lost. Conversely, small values of h
yield noisy estimates with probably spurious and meaningless spikes. Since there
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is no strict mathematical theory for the optimal choice of h, the following advice
is offered:

• Estimate g�r	 for several values of h and compare the results. This may yield
an appropriate and interpretable curve for ĝ�r	. In some cases, two different
values of h might be found in this way, one of which is suitable for small and
the other one for large r. Such adapted bandwidths are highly recommended.

• Start the search for h with a value of the order of

h≈ 0�1
/√

� (4.3.43)

for the planar case, and

h≈ 0�05
/ 3

√
� (4.3.44)

for the spatial case. The one-dimensional case is discussed in Vio et al.
(2007). The relation (4.3.43) has been derived from practical experience with
point patterns of 50 to 300 points. Large bandwidths may also be useful
since �2

g �r	 as given by (4.3.41) decreases with increasing h for fixed r;
this is true in particular for processes that are ‘almost’ Poisson processes
with a slowly varying pair correlation function, whereas smaller details, e.g.
connected with hard-core distances, may be smoothed away (see Figure 4.24).
Guan (2007) recommends values of h smaller than (4.3.43) for cluster and
hard-core processes.

The following uses the above formulas to identify the value of �2
g �r	 that results

from h=0�1/
√
� for a planar Poisson process with intensity �=80 for W = 1 . The

numerator of (4.3.42) is equal to 0�5/h if the box kernel is used. The denominator
is

�r

(
1 − 4

�
r + r2

�

)
�2 for r ≤ 1�

For r = 0�5, this leads to

�2
g �r	= 0�01 or �g�r	= 0�1�

Thus Equation (4.3.42) yields a standard deviation of 0.1 for a theoretical value of
1 in this example, which may be acceptable.

Consider now the three-dimensional case and try to find an a in

h= a/
3
√
��
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which yields the same value as above, i.e. �g�0�5	=0�1, for 1 , r=0�5 and �=80.
Now the numerator of (4.3.42) is 0�5/�a 3

√
�	 and the denominator

2�r2

(
1 − 1�5r + 2

�
r2 − 1

4�
r3

)
802

and a= 0�0536, i.e. a value as suggested in (4.3.44).

Example 4.9. Choosing bandwidths
In the following, two planar point process samples of 200 points in 1 are consid-
ered. These are the results of (conditional) simulation (with a fixed number of 200
points) and the aim is to re-estimate the pair correlation functions. Thus we are in
the comfortable situation of knowing the theoretical pair correlation functions and
can observe the influence of the bandwidth h and make comparisons. The simu-
lations are based on spatial point process models which are described in greater
detail in Chapter 6.

The first model is the Matérn cluster process (see Section 6.3.2) with parameters
�=200, R=0�05 and  =10. (The range of correlation rcorr is 2R=0�1.) Figure 6.3
on p. 379 shows a simulated sample. The theoretical pair correlation function g�r	
is given by (6.3.6), in particular g�0	= 7�37 and g�r	= 1 for r ≥ 0�1. Formula
(4.3.43) suggests the value h= 0�007 for the bandwidth. Figure 4.23 shows the
result: ĝ�0�001	= 22�0 and ĝ�r	≈ 1 for r ≥ 0�135 i.e. r̂corr = 0�135.
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Figure 4.23 The theoretical pair correlation function g�r	 of a Matérn cluster
process as described in the text (solid line) and its estimates ĝ�r	 with h= 0�007
(dashed line) and 0.001 (dotted line). The irregular fluctuations of the estimates
for r larger than 0.1 do not provide any interpretable information.
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If information on the process had not been available one might now have
concluded that the pattern exhibits clustering with cluster diameters of about 0.135
and that the fluctuations of ĝ�r	 for large r represent only statistical noise. Thus
the estimation is repeated for the smaller r with h0 = 0�001 and the expected effect
occurs: ĝ�0	 is now smaller, 8.0, but still larger than the theoretical value. The
value rcorr also appears to be 0.135 for the smaller r, i.e. still different from the
theoretical value of 0.1. (This kind of deviation is typical of samples from cluster
processes that are as small as this considered here.) Again, adapted bandwidths turn
out to yield good results.

The second model is the Matérn hard-core process (see Section 6.5.2) with param-
eters � = 200 and r0 = 0�039. Figure 6.7 on p. 392 shows a simulated sample.
The pair correlation function g�r	 can be derived from (6.5.1) and (6.5.2) and satisfies

g�r	= 0 for 0 ≤ r ≤ r0

and

g�r	= 1 for r ≥ 2r0�

while g�r	 is a little larger than 1 for r0 ≤ r ≤ 2r0. Formula (4.3.43) suggests
h = 0�007. Figure 4.24 shows the result of the experiment: the simulated pair
correlation function does not look like that of a typical hard-core process. It rather
resembles the pair correlation function of a process that could be called a soft-
core process, since it has values significantly smaller than 1 for r ≤ 0�044, and
random fluctuations around 1 occur for r ≥ 0�07. These random fluctuations are
not meaningful and should be ignored. If a suitable adapted bandwidth approach
were used these would disappear. However, even without the process information
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Figure 4.24 The theoretical pair correlation function g�r	 of a Matérn hard-core
process as described in the text (solid line) and its estimate ĝ�r	 with bandwidth
h= 0�002 (dashed line). The dotted line is ĝ�r	 for r < 0�039. The result of the
reflection method for h= 0�007 is shown as a dot-dashed line.
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the minimum inter-point distance would have been estimated to be close to 0.039
and one would have concluded that the values of ĝ�r	 for r < 0�039 are statistical
artefacts. Using a smaller bandwidth, for example h= 0�002, clearly improves the
result for r around 0.04.

The estimate can be improved by the reflection method as introduced in Stoyan
and Stoyan (1992) for point process statistics, an approach that is commonly used
in the context of density estimation (Silverman, 1986); see Appendix A. ‘Reflect’
the pair correlation function mass below r̂0 = 0�039 on r-values larger than r̂0 by
setting:

ĝ�r	← 0 for r< r̂0�

ĝ�r	← ĝ�r	+ ĝ�r̂0 − �r − r̂0		 for r ≥ r̂0�

Figure 4.24 shows the resulting further improvement. A suitable approach would
be to combine the curves with bandwidths h= 0�007 and h= 0�002 for r ≥ 0�045
and r ≤ 0�045 respectively, and set ĝ�r	= 1 for r ≥ 0�06.

Note, in conclusion, that issues such as choosing the bandwidth h are common
in classical statistics such as in density estimation with kernel functions and even
appear in the context of histogram construction, where bin size or class interval
length heavily influence the result.

4.3.4 Interpretation of pair correlation functions

The interpretation of statistically estimated pair correlation functions requires expe-
rience, skill and imagination, and the beginner usually needs assistance.

Figure 4.25 shows a schematic description of the shapes of pair correlation
functions for the three main classes of point processes: Poisson, cluster (aggregative)
and regular (repulsive) processes. In many cases, the pair correlation function helps
to identify an appropriate model class for given data or may be applied to verify
a priori assumptions. However, point processes are often more complex; regularity
and clustering might occur simultaneously but at different spatial scales, and it is
useful to be able to detect this type of behaviour.

In the non-trivial cases of clustering (aggregation) and regularity (repulsion)
one may consider specific characteristic distances r0, r1, � � � to quantify the vari-
ability of the point distribution as described by the pair correlation function. This
section concludes by providing examples outlining this process of interpreting pair
correlation functions by referring to a few characteristic distances.

For a cluster process with little structure inside the clusters (e.g. Neyman–Scott
processes; see Section 6.3.2) the pair correlation function has the form given in
Figure 4.23. The most interesting feature here is the range of correlation rcorr. It
describes the size of the clusters. Indeed, if it is finite (and not infinite as in the case
of a Thomas process; see Section 6.3.2) and the clusters are circular (spherical),
rcorr is the cluster diameter.
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Figure 4.25 Schematic shapes of pair correlation functions for a Poisson process
(solid line), a cluster process (dashed line) and a regular process (dotted line).
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Figure 4.26 Typical form of the pair correlation function of a point process with
repulsion. The ri are explained in the text.

More interesting distances, r0, r1, � � � , rcorr, may be considered for processes
with repulsion (see Figure 4.26). These are listed below:

r0 = minimum inter-point distance, hard-core distance;
r1 = distance at which g�r	 has its first maximum, range of most frequent short

inter-point distance, distance from typical point to near neighbours;
r2 = distance at which g�r	 has its first minimum after r1 with g�r1	≤1, distance

from typical point to regions with a small number of points beyond the nearest
neighbours;

r3 = distance at which g�r	 attains its second maximum, range of most frequent
longer inter-point distance, distance from typical point to regions with further
neighbours.
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Many processes only show the first maximum. These processes are informally
termed soft-core processes, if 0 ≤ r0 < r1. The existence of a minimum after r1

is already an indicator of short-range order in the point process. By contrast,
Figure 4.27 shows a pair correlation function for a pattern with long-range order.

The distances r1 and r2 and the values g�r1	 and g�r2	 can be used to calculate
numerical parameters for the characterisation of the degree of short-range disorder,
which are useful for the comparison of patterns of different degrees of disorder.
Examples are

M = g�r1	− g�r2	

r2 − r1

(4.3.45)

(see Stoyan and Schnabel, 1990) and

O= g�r1	

r1 − r0

(4.3.46)

(see Hubalková and Stoyan, 2003). Small values of M and O indicate a high degree
of short-range disorder.

The beginner may find it helpful to consider a number of different examples of
graphs of pair correlation functions and the corresponding interpretation. Here is a
list of figures in this book that provide further examples:

• cluster processes: 4.19, 5.6 (g22�r	), 6.22, 6.25;

• soft-core processes: 4.52, 5.5 (g11�r	, g22�r	), 5.6 (g11�r	), 6.11 (solid line);

• hard-core processes: 4.24, 4.27, 4.28, 5.20(a), 6.11 (dashed line).
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Figure 4.27 Pair correlation functions of random packings of identical hard
spheres with diameter 1 and volume fraction VV = 0�637 (solid line), VV = 0�668
(dashed line). With kind permission of Springer Science and Business Media.
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Finally, some pair correlation functions for systems of hard spheres are shown
and discussed, which represent extreme cases of repulsive processes.

Figure 4.27 shows the estimated pair correlation functions of two three-
dimensional systems of random packings of identical hard (non-interpenetrable)
spheres (diameter = 1) of volume fractions 0.637 and 0.668. Packings of this
type play an important role in physics and materials science, but the centres
of cells in biological tissue also follow this or similar models. Each of these
packings consists of 10 000 spheres and was obtained by the force-biased algo-
rithm described in Section 6.5.5. The case with 0.637 corresponds to the
classical random dense packing of spheres, which is usually assumed to be
stationary and isotropic. The case with 0.668 shows tendencies to crystallisation
(which is complete for 0.74), i.e. local anisotropies. The pair correlation func-
tion for 0.637 has a very typical form which is frequently observed in nature.
However, a formula or analytical approach to describe this form has not yet
been found.

Since the spheres are hard, there is a hard-core distance r0, which is of course
r0 = 1. Thus here r0 = r1: the location of the first maximum coincides with the
hard-core distance. The nature of this maximum is difficult: since many spheres
are in direct contact (as a ‘packing’ is being discussed), g�r	 has a Dirac-measure
component at r = 1 (the reduced second-moment measure � gives positive mass
to the surface of the unit sphere). Thus the graph presents only a smoothed version
of the true behaviour at r = 1. Furthermore, there are many spheres close together
but not in direct contact. Thus it may be (but this is theoretically not quite clear)
that the pair correlation function has a pole at r = 1 for r ↓ 1. Moving on, the
next feature can be found at the location r2 of the first minimum. It appears
at a characteristic distance of r2, namely,

√
3. All other minima and maxima

also appear at characteristic distances in all well-simulated random dense sphere
packings.

The curve for 0.668 is similar and reflects the reduced degree of disorder in the
sharper minima and maxima. If the pair correlation function had been determined for
a crystalline packing of hard spheres (of so-called fcc or hcp type), one would have
observed only peaks (which correspond to Dirac-measure/function components) at
the characteristic inter-point distances in the crystal lattices.

Example 4.10. Application of the pair correlation function in the analysis of the
structure of metallic glasses
Metallic glasses are amorphous materials resulting from fast cooling of melted
metallic alloys. An example is Pd40Cu30Ni10P20, a material which consists of 40 %
palladium, etc. Mattern et al. (2003) report on structural investigations of this
metallic glass at different temperatures. The physical measurement method used is
high-temperature X-ray synchrotron diffraction. This yields the so-called structure
factor S�k	, which leads to the pair correlation function g�r	 of the point process
of atom centres by Fourier transform.
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Figure 4.28 Atomic pair correlation function g�r	 of Pd40Cu30Ni10P20 at different
temperatures (maximum positions Ri for T = 296 K: R1 = 0�277, R2 = 0�455, R3 =
0�520, R4 = 0�692, R5 = 0�921, R6 = 1�136, R7 = 1�355 nm). Note that the Ri are
positions of maxima, in contrast to the notation on p. 240, and that r1 =R1. Data
courtesy of N. Mattern.

Figure 4.28 shows 12 pair correlation functions for different temperatures.
Mattern et al. (2003) discuss the curves as follows:

The position of the first maximum in g�r	 of Pd40Cu30Ni10P20, r1 = 0�277 nm,
corresponds to the atomic diameter of palladium. The estimated g�r	 curves
represent in the four-component alloy the weighted sum of the 10 partial
functions, the gij�r	 as in Section 5.3.2 below for i, j = 1, � � � , 4 with 1 =
Pd, � � � , 4 = P. The peaks of the pair correlation functions of Pd40Cu30Ni10P20

at elevated temperature become broader with increasing temperature. The
nearest-neighbour number N1, which is obtained by integration from 0.20 to
0.35 nm over the first maximum in g�r	, is constant within the error limits.
The value of N1 = 14�2 is calculated for the glass at room temperature,
and is 13.8 for the liquid at T = 973 K. The split second maximum
in g�r	 is also present in the melt with a reduced height of the first
component. � � �

The broadening of the first maximum is asymmetric with increasing atomic
pair fractions at the larger distance site. In the supercooled liquid state, addi-
tional changes occur in g�r	 with temperature. The asymmetry becomes much
more extended, and the height of first component of the second maximum at
r2 decreases more distinctively. � � �

The distances of the second split maximum at r2 and r3 stay nearly constant
in the whole temperature range. The distances of the higher coordination
shells r4 − r7 increase with a thermal expansion coefficient comparable to the
macroscopic dilatometer measurements.
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Another thorough discussion of pair correlation functions and the structural
information they give can be found in Shepilov et al. (2007), also in the context
of materials science. Interesting medical applications are discussed in Mattfeldt
(2005).

4.4 Higher-order and topological characteristics
4.4.1 Introduction

In most analyses of non-marked stationary point processes, the summary charac-
teristics discussed above are sufficient for characterisation, parameter estimation
or model testing. The nature of second-order characteristics on the one hand and
nearest-neighbour and morphological characteristics on the other hand is so different
that results obtained with summary characteristics from one class can very well be
checked by means of summary characteristics from the other class. Nevertheless,
this section presents further characteristics, which have specific applications and
scope beyond the possibilities of the characteristics that have been considered so far.
The main aim pursued with these additional characteristics is to find finer structural
differences among samples which look rather similar at first sight.

The characteristics considered here comprise two groups of approaches. The
exposition starts with third-order characteristics as a natural follow-on from second-
order characteristics. These characteristics can reveal distributional differences in
point patterns more easily, more clearly and in a qualitatively different way.

The second group of characteristics is based on Voronoi tessellations as intro-
duced in Section 1.8.4, constructed with respect to the points of the pattern. The
corresponding cells and even more the corresponding dual Delaunay simplices may
be used to draw valuable conclusions on the point distribution, in particular on fine
formations within local clustering or regularity such as points forming lines.

These properties can also be revealed using topological characteristics of the
secondary structures as introduced in Section 1.8. As an example the random set
Xr is considered which consists of the union of discs (spheres) of (fixed) radius r
centred at the points of N (see Sections 1.8.2 and 4.2.5).

4.4.2 Third-order characteristics

Product densities

Theoretically, bearing in mind the success of second-order product densities and pair
correlation functions, the most natural third-order characteristic of a point process
N is its third-order product density ��3	�x1� x2� x3	. However this implies dealing
with functions of three d-dimensional variables, which are difficult to interpret and
estimate.

In the case of stationarity the description simplifies slightly, similar to �, such that
��3	 depends only on two d-dimensional vectors k2 and k3, defined as k2 = x2 − x1
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and k3 =x3 −x1. In the planar isotropic case the function still depends on three real
variables, the lengths of k2 and k3 and the angle between them. As a result ��3	 is
usually not applied in point process statistics because it is considered too complex.
Aggregated or integrated characteristics are used instead, see e.g. Stillinger et al.
(2000).

Number of r -close triplets

Schladitz and Baddeley (2000) introduced the summary characteristic T�r	 given by

T�r	= 1
2�2

Eo

( ∑�=

x1�x2∈N∩b�o�r	
1��x1 − x2� ≤ r	

)
for r ≥ 0 (4.4.1)

and investigated its properties. It considers triplets of points with inter-point
distances smaller than r consisting of pairs of points along with the typical point.
The Palm mean Eo�·	 can be interpreted as the mean number of pairs of points of
an inter-point distance larger than 0 and smaller than r in the sphere (disc) b�o� r	
provided that the typical point of N is at the origin o, while x1 �= o and x2 �= o.

By means of the Campbell–Mecke formula one can show that T�r	 is indeed a
third-order characteristic having the form of a mean similar to the mean in (1.5.16)
with k= 3.

For a Poisson process, T�r	 can be calculated analytically as

T�r	= �

2

(
�− 3

4

√
3
)
r4 for r ≥ 0

in the planar case, and

T�r	= 5
12
�2r6 for r ≥ 0

in the three-dimensional case An unbiased estimator of �3T�r	, which resembles
�st�b�o� r		 in (4.3.27) and was given in Schladitz and Baddeley (2000), is

!̂st�r	=
1
2

∑�=

x1�x2�x3∈W
1��x1 − x2� ≤ r	1��x1 − x3� ≤ r	

× 1��x2 − x3� ≤ r	 1�x1� x2� x3	


�Wx1
∩Wx2

∩Wx3
	
� (4.4.2)

where 1�x1� x2� x3	= 1 if Wx1
∩Wx2

∩Wx3
�= ∅, summing over all triples of different

points �x1 �= x2� x2 �= x3� x1 �= x3	. The admissible r-values are those for which
1�x1� x2� x3	= 1 for all x1, x2 and x3 with 1��x1 − x2� ≤ r	, 1��x1 − x3� ≤ r	 and
1��x2 − x3�≤ r	, r ≤ r! . Note that Wxi

=W + xi = �y � y=w+ xi with w∈W�. The
condition r ≤ r! is satisfied for a rectangular/parallelepipedal W if r is smaller than
the side lengths.
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Then T�r	 can be estimated by

T̂ �r	= !̂st�r	

/(
n�n− 1	�n− 2	


�W	3

)
for 0 ≤ r ≤ r!� (4.4.3)

where n=N�W	 is the number of points of N in W . Clearly, the denominator in
(4.4.3) is an estimator of �3. Just like L�r	, T�r	 is monotonically increasing and
takes larger values with increasing variability.

Schladitz and Baddeley (2000) report that T�r	 is highly suitable for detecting
clustering and Lochmann et al. (2006a) show that T�r	 is a powerful characteristic
for indicating fine structural differences in regular patterns, particularly the sphere
centres in random dense sphere packings. The following example shows that T�r	
may also be used to detect slight deviations of irregular patterns from the Poisson
process with the same intensity.

Example 4.11. Comparing a tree pattern with a Poisson process
This example discusses the pattern shown in Figure 5.4, ignoring the marks. It was
discussed in this way in Mecke and Stoyan (2005) and the CSR hypothesis was
rejected; the p-value for the L-test is between 0.01 and 0.05.

Figure 4.29 shows the corresponding T̂ �r	 compared to T�r	 for a Poisson process.
One may safely regard the pattern as non-CSR as T�r	 is partly outside the envelopes
obtained by 99 simulations of binomial processes. This example suggests the idea
of constructing a CSR test based on T�r	.

0 1 2 3 4
r

T(r)

200

100

0

Figure 4.29 T̂ �r	 for the tree pattern of Figure 5.4 (solid line) compared to the
theoretical T�r	 for a Poisson process (dashed line) and envelopes from 99 binomial
process simulations (dotted lines).
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4.4.3 Delaunay tessellation characteristics

Tessellation methods have turned out to be very successful in the statistical char-
acterisation of point processes. This is true both for highly clustered patterns such
as systems of galaxies (see Weygaert, 1994; Weygaert and Schaap, 2008) and for
patterns of a high degree of regularity. An important application concerning the
latter case are systems of centres of spheres in random dense packings of iden-
tical hard spheres. For this case, Medvedev and Naberukhin (1987), Naberukhin
et al. (1991) and Medvedev (2000) develop the tessellation method, which, in
essence, characterises a point pattern based on the shapes of the simplices within a
tessellation.

This method initially finds the Voronoi tessellation for the point pattern of
interest. Then the corresponding Delaunay tessellation is constructed, i.e. a system
of simplices (tetrahedra; triangles in the planar case) with vertices at the points of
the pattern including each one of the vertices of the Voronoi tessellation. The shapes
of these simplices are the main concern here and, in particular, their deviation
from regular tetrahedra and regular quartoctahedra. (A regular quartoctahedron is a
tetrahedron which forms a regular octahedron together with three other congruent
quartoctahedra. It has five edges of equal length and a further edge which is

√
2

times as long. These tetrahedra appear in so-called fcc and hcp lattice systems.)
Suitable shape characteristics for single simplices in the three-dimensional case

are Medvedev’s shape parameters

T =∑
i<j

�li − lj	
2
/(

15l
2
)

(4.4.4)

and

Q=
(
�m	∑
i<j

�li − lj	
2 +

�m	∑
i

(
li − lm

/√
2
)2
)/(

15l
2
)
� (4.4.5)

where the li and lj are the lengths of the edges of the simplex, m is the index of
the longest edge and l the mean edge length. The ‘�m	’ on the summation symbols
means that the summation is only over those indices that are different from m.
Finally, 15 is the number of pairs of edges in the simplex.

The parameter T characterises deviations from regular tetrahedra, for which T =
0, and Q deviations from regular quartoctahedra, for which Q= 0. In this way, the
tetrahedra are assigned numerical values which can be used as constructed marks for
the vertices of the Voronoi tessellation. As it turns out, this vertice-related approach
may be used to find more subtle structural differences than methods which mark
the original points with characteristics of the corresponding Voronoi cells, as for
example in Stillinger et al. (2000). Indeed, the shape of Voronoi cells is influenced
by many points (around 40 in the three-dimensional case as discussed here) and
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it is clearly difficult to describe their shape since the numbers of faces and edges
vary.

Delaunay simplices are determined by only four points and are thus very sensitive
to small local fluctuations.

The resulting marked point process can be analysed statistically; in particular,
the mark distribution may be estimated and the neighbourhoods of tetrahedra with
extreme shapes may be considered; see Lochmann et al. (2006a, 2006b). Anikeenko
et al. (2006) extend this approach using methods from statistical shape analysis.

Example 4.12. Characterisation of two sphere packings
Two random packings of identical spheres, with volume fractions 0.637 and 0.668,
were analysed using Delaunay simplices. While the first system can be considered a
random dense packing, the second is slightly more regular and shows the beginnings
of crystallisation. This is well expressed by T and Q, as demonstrated by the
corresponding mark distributions shown in Figure 4.30. In the 0.668 system the
indices are more similar to the values corresponding to octahedra.

4.4.4 The connectivity function

The connectivity function c�r	 may be considered an example of a topological
characteristic which is related to the Euler function n�r	 introduced in Section 4.2.5.
Like the Euler function, it is based on the set XR that was used in Section 1.8.2
as an example of a random set associated with a point process N as follows: a
disc (sphere) of radius R is assigned to each point x in N ; the union of all these
discs (spheres) is XR. (Note that, in order to avoid confusing notation, the radius is
denoted here by R, while r, the argument of c�r	, denotes distance.)

If the radius R is not too large (below the so-called percolation threshold; see
Stoyan et al., 1995, p. 74), the set XR consists of bounded disjoint components.
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Figure 4.30 Distributions of the T - and Q-marks for the 0.637 (dashed lines)
and 0.668 (solid lines) packings. With kind permission of Springer Science and
Business Media.
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A ‘component’ is defined as a subset A of XR such that there is a curve that lies
completely within A and connects x1 and x2 for any two points x1 and x2 in A.

The connectivity function c�r	 is defined by

c�r	= Por�o and r are in the same component of XR	� (4.4.6)

for r ≥ 0. Here Por�·	 denotes a two-point Palm probability, namely a probability
provided that o is the typical point of N and r another point of N with �r� = r.

A ratio-unbiased estimator of c�r	 is

ĉ�r	= �̂�o∼ r	
�̂st�r	

� (4.4.7)

Here �̂st�r	 is the estimator of the second-order product density (4.3.29), while
�̂�o∼ r	 is the following quantity in the planar case:

�̂�o∼ r	= 1
2�r

∑ �=

x1�x2∈W

k�r − �x1 − x2�	

�Wx1

∩Wx2
	

1�x1 ∼ x2	� (4.4.8)

The indicator 1�x1 ∼ x2	 is equal to one if x1 and x2 are in the same component
of XR and zero otherwise. It is not a trivial matter to determine this indicator but
the Hoshen–Kopelman algorithm may be used for this purpose. Since XR is closely
related to the sphere graph G�N�2R	, methods from graph theory may also be used;
see Babalievski (1998).

The window W and the number of points in N should be large since there are
edge effects which cannot be corrected for by the term 
�Wx1

∩Wx2
	, i.e. those

resulting from the construction of XR using only information from the interior of
the window W .

Example 4.13. Gold particles: connectivity function
Figure 4.31 shows the empirical connectivity function c�r	 for the pattern of gold
particles. The radius R was chosen as 7.5 lu, half the mean nearest-neighbour
distance m̂D of the point pattern. The function has the value 1 for small r since
pairs of points of such distances are always in the same component. For larger
r, c�r	 decreases more slowly than c�r	 for a Poisson process of equal intensity,
providing an alternative indication of the short-range order of the pattern. However,
the clustering of the pattern is not reflected by c�r	. Note that for systems of
packed hard discs (with mutual contacts), c�r	= 1 for all r if R is larger than the
disc radii.

Similar connectivity relationships may be studied in forestry or ecology, where
the points may be tree positions and the discs of radius R and XR correspond to
crowns of trees and the canopy of the forest, respectively. In this case, x1 ∼ x2

means that the crowns of tree i and j are in contact.
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Figure 4.31 The connectivity function ĉ�r	 for the pattern of gold particles (solid
line) in comparison with envelopes from 99 simulations of a Poisson process with
the same intensity (dashed lines).

4.5 Orientation analysis for stationary point
processes

4.5.1 Introduction

Anisotropy is a relevant issue in the analysis of point patterns since the spatial
behaviour in a pattern often varies with direction. This type of behaviour is often
closely related to and a result of the process that has led to the formation of a
pattern and determines properties of the structure represented by the points, for
example in applications in materials science. Figures 4.32 and 4.33 show typical
anisotropic point patterns.

Figure 4.32 shows the centres of 573 carbide (Fe3C) particles in rolled steel in
planar section. Here, the anisotropy is the result of the cold rolling process, which
leads to the formation of bands of particles in the direction of rolling. In other
samples of this material the band structure is often even more pronounced; the
sample discussed here was selected in order to make the statistical analysis more
interesting. Wiencek (2000) and Wiencek and Satora (1999) systematically studied
patterns of this type and analysed them by point process and stereological methods,
assuming that the carbide particles are spherical.

As a further example, Figure 4.33 shows the results from a biochemical study.
Lachmanovich et al. (2003) studied the distribution of proteins on the surface of
cells. The figure shows the distribution of the positions of two mutants of influenza
haemagglutinin protein that do or do not associate into mutual oligomers via binding
to adaptor complexes. The two protein types differ in their fluorescence intensity
and appear in electron microscopic images in green and red.

Visual inspection clearly indicates an anisotropy in the point pattern, mainly in
the north-east direction. (Not all patterns of this type show such a clear anisotropy.)
Below, an orientation analysis of the pattern is carried out ignoring the marks, i.e.
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Figure 4.32 A planar section of a sample of rolled steel with 573 centres of
carbide particles in a 100 × 100"m square. Data courtesy of K. Wiencek.

Figure 4.33 Positions of proteins on the surface of a cell in a 107 × 119"m
rectangle. The colours discussed in Lachmanovich et al. (2003) are shown as •
(green) and � (red). Data courtesy of A. Weiss.
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the interaction between the proteins, which was the main objective in Lachmanovich
et al. (2003) who used the methods of Section 5.2.5 for qualitative marks.

The following section presents non-parametric methods for the statistical analysis
of anisotropy in stationary point processes, as introduced in Ohser and Stoyan
(1981), Hanisch and Stoyan (1984), Penttinen and Stoyan (1989) and Stoyan and
Beneš (1991). This means that anisotropy is not considered in the most general case,
but only for ‘tame’ (stationary) patterns similar to those presented in Figures 4.32
and 4.33. These patterns are regarded here as pieces of larger, translation-invariant
structures.

It might seem rather strange that anisotropic processes play only a minor role
in this book and in current point process statistics in general. One might perhaps
expect that stationary point patterns are typically anisotropic, and isotropic patterns
are exceptional cases. However, statisticians prefer to sample in situations where
isotropy can be reasonably assumed:

• plants in regions of homogeneous growth conditions,

• cells in the interior of tissues,

• material structures far away from specimen boundaries.

The reason for this is that studies of these ‘isotropic’ samples typically aim to
investigate small-scale relationships and local interactions between the points (trees,
plants, cells, particles) rather than a trend or more global irregularities.

4.5.2 Nearest-neighbour orientation distribution

The methods introduced here explore the distribution of the orientation of the
undirected line connecting the typical point with its nearest neighbour. Essentially,
constructed marks are considered here, and the following describes the estimation of
the mark distribution. The discussion focuses on the planar case, where the angle #
with respect to the horizontal direction, i.e. the direction of the x-axis, is considered
and measured in radians. Thus 0 ≤ #≤ �, which corresponds to 0� ≤ #≤ 180�.
Because # is an orientation, values of # close to 0 and � are considered similar.
Therefore, a distribution function such as

Po�#≤ t	 for 0 ≤ t≤�

is not very natural. Thus, this book prefers to consider the corresponding probability
density function ��t	, which satisfies

Po�#≤ t	=
t∫

0

��u	du
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and

Po�t1 ≤#≤ t2	=
t2∫

t1

��u	du� (4.5.1)

The quantity Po�t1 ≤#≤ t2	 is the proportion of the connecting lines with angles
of orientation between t1 and t2. In the isotropic case ��t	 is constant,

��t	≡ 1

�
� (4.5.2)

Figure 4.34 shows the nearest-neighbour orientation density functions � for the
patterns in Figures 4.32 and 4.33. The ‘north-east’ anisotropy of the protein pattern
is clearly expressed by the curve with maximum at t= 45�. Perhaps surprisingly,
there is no indication of a similar anisotropy for the carbide pattern. Apparently, in
this pattern anisotropy is a global property which cannot be sufficiently visualised
by the nearest-neighbour orientations, which are rather ‘short-sighted’. By the way,
R4 also fails to indicate global anisotropy: the empirical values are 1.81 for the
carbides and 1.80 for the proteins. The figure also shows �̂�t	 for the oak and beech
pattern of Figure 5.4. It may be regarded as an isotropic pattern, but there is some
mysterious preference for orientations around 1�92 rad = 110�.

Statistical estimation of ��t�

The density function ��t	 is estimated by a kernel estimator, and ratio-unbiasedness
is obtained by nearest-neighbour edge-correction:

�̂�t	=
n∑
i=1

1�di ≤ ei	k�t−#i	


�W�di 	

/
�̂nn� (4.5.3)
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Figure 4.34 Nearest-neighbour orientation density functions for proteins (solid
line), carbides (dashed line), and trees (dotted line). The bandwidth in each case is
h= 0�35 rad = 20�.
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The estimator is analogous to the estimators in Section 4.2.6, where ei, di and

�W�di 	 are explained. Here, #i is the orientation of the line from the ith point to
its nearest neighbour and k is the Epanechnikov kernel function with bandwidth h.
Subtraction of angles is done modulo 180�, i.e. if t−#i <0� the value 180� − t+#i
is used.

Section 5.4.2 discusses the application of constructed orientation marks for the
detection of inner orientations in isotropic patterns.

4.5.3 Second-order orientation analysis

The second-order orientation analysis is based on the reduced second-order moment
measure � . This might sound rather theoretical, but the idea of the main estimator
is quite natural. Consider the sample of the orientations of all lines which connect
pairs of points of an inter-point distance between r1 and r2 and determine the
corresponding orientation distribution. The corresponding probability density is
denoted by �r1r2�t	.

Before looking at the theoretical derivation and the estimator below, consider
Figure 4.35 by way of an example. This shows the estimated density functions
�r1r2�t	 for the carbides, proteins and trees considered above. In all three cases the
values of r1 and r2 were found by experimentation, with the aim of finding a way
to detect anisotropies as clearly as possible:

r1 r2

carbides 0 m 50 m
proteins 0�5 m 7�5 m
trees 1.0 m 5.0 m

For the carbides, the second-order characteristic �̂r1r2�t	 detects the anisotropy,
with the maximum of �̂0�0�05�t	 around t= 0 and �. For the proteins, the result is
similar to that of nearest-neighbour orientation, and for the oak and beech pattern
the strange anisotropy found on p. 253 is again evident, again with some preference
for directions around 1�92 = 110�.

The estimator �̂r1r2�t	 can be derived theoretically as follows. The reduced
second-order moment measure � can be described by the function K�r��	,

K�r��	=��S�r��		�

where S�r��	 is the sector of radius r, centred at the origin and given by the angle
� with respect to the x-axis (see Figure 4.36). For fixed r the ratio K�r��	/K�r��	
is a distribution function that is similar to Po�#≤ t	 above. Again, rather than the
distribution function, the corresponding density function �r�t	 is considered. Such
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Figure 4.35 Second-order orientation density functions �̂r1r2�t	 for the proteins
(solid line), carbides (dashed line), and trees (dotted line). The bandwidth in each
case is 0�35 rad = 20�.
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Figure 4.36 The sector S�r1��	 and the sector ring S�r1� r2��	.

a density function was used for the carbide pattern, with r1 =0. By the way, the case
of the four quadrant sectors, where the first (north-east) is the same as S�r�90�	, is
applied in Haase (2001) in an ecological context.

If the case with r1> 0 is of interest, as for the proteins and trees, the description
may be refined by introducing two distances r1 and r2 �0 ≤ r1<r2	 and considering
the sector ring S�r1� r2��	 given by

S�r1� r2��	= S�r2��	\S�r1��	�

The corresponding analogue to �r�x	 is denoted by �r1r2�x	. This density function
describes the distribution of the random orientations of the lines connecting the
typical point and other points at distances between r1 and r2.
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The corresponding edge-corrected unbiased estimator is

�̂r1r2�t	=
∑�=

x1�x2∈W

1�r1 ≤ �x1 − x2� ≤ r2	k�t−#x1x2
	


�Wx1
∩Wx2

	
� (4.5.4)

This estimator is related to (4.3.29); k is the Epanechnikov kernel function and
#x1x2

the orientation angle of the line through the points x1 and x2.
Note that the estimator �̂r1r2�t	 (and �̂�t	 in (4.5.3)) deviate from correct density

estimators by a constant factor of proportionality, which is irrelevant for directional
analysis.

4.6 Outliers, gaps and residuals
4.6.1 Introduction

An important step in the statistical analysis of point patterns is the search for unusual
points or unusual point configurations. This includes the issue of outliers, i.e. points
appearing at locations where they are not expected according to the construction
principles of the pattern. Similarly, it is possible that there are unusual gaps or
missing points in the pattern, i.e. areas where, according to the general structure
of the pattern, points would have been expected. Such outliers and missing values
have to be detected. Both issues are addressed in the following two subsections
using simple data-analytic methods, based on constructed marks.

In a more formal but also more powerful approach, both problems may be treated
using point process models, more specifically Gibbs processes. Based on these
processes it is possible to predict point positions or gaps given the point positions
in the neighbourhood. By analogy with classical regression theory (which, in some
sense, also predicts points) the term residual is used when differences between
prediction and reality are considered.

Note that this section assumes that the reader is familiar with the general ideas of
the theory of marked point processes; in particular, constructed marks (Section 5.1.3)
are relevant in Section 4.6.2, and Gibbs processes (Section 6.6) in Section 4.6.4.

4.6.2 Simple outlier detection

The basic statistical idea for outlier detection is quite simple: assign numerical or
functional marks to all points in the pattern, analyse these marks statistically and
regard points with extreme marks as outliers. Examples of constructed marks for
point x are: d�x	, the distance from x to its nearest neighbour; v�x	, the volume or
area of the Voronoi cell with generating point x; and E�x	, the energy needed to
add the point x to the pattern N\�x� if N is a Gibbs process. Functions may also
serve as constructed marks: Kx�r	, the individual K-function for point x, given by

Kx�r	=N�b�x� r		− 1 for r ≥ 0 and x∈N� (4.6.1)
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and Lx�r	, the individual L-function for point x, given by

Lx�r	=
√
Kx�r	

bd
for r ≥ 0 and x∈N� (4.6.2)

The corresponding variability and extremality analysis can be based on bundles of
Kx- or Lx-functions, for all points in the pattern. These ideas go back to Getis and
Franklin (1987), Doguwa (1989), Wartenberg (1990) and Stoyan and Grabarnik
(1991b) and serve as ‘local indicators of spatial association’ (LISA); see Cressie
and Collins (2001) and Dale et al. (2002).

4.6.3 Simple gap detection

The determination of gaps is more difficult than the detection of outliers. Tessella-
tions and graphs may be successfully applied in this context.

A natural tessellation-related procedure, which can be carried out with existing
software, is the procedure introduced by Medvedev (2000) in a different context.
Construct the Voronoi tessellation for the point pattern and take its vertices as
centres of discs (spheres). Determine the largest radius such that the corresponding
disc (sphere) only touches points in the pattern for each centre. Discs (spheres)
with very large radii may be interpreted as having resulted from gap areas perhaps
containing missing points.

A procedure based on graphs uses k-neighbour graphs as introduced in
Section 1.8.5. The edges of these graphs connect points that are close together
and do not cross larger regions without points, thus indicating gaps. In this way
polygonal (polyhedral) gap regions are constructed. The appropriate order of k may
be determined by experimentation.

Example 4.14. Gaps in a forest of Sitka spruce
Figure 4.37 shows a stand of 294 Sitka spruce trees (Picea sitchensis) from
Clocaenog (Wales) in November 2003 in a 101 × 100 m rectangle. The pattern
looks homogeneous, but there are some gaps and the question is whether or not
these can be explained by normal fluctuations of tree density. It is known that in
the stand there are small roads that are used to transport the timber and that some
trees have fallen in a storm.

Figure 4.38 shows the 4-neighbour graph which indicates some large gaps,
in particular that around the point (25, 65). This observation led to an in situ
investigation, which did indeed find the remains of two fallen trees around this point.

4.6.4 Model-based outliers

This section assumes that an estimator �̂�u	N	 of the conditional intensity is avail-
able. This is usually a parametric estimator, based on a Gibbs process model as
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Figure 4.37 The positions of 294 Sitka spruce trees in the Clocaenog 4 stand,
which is a Sitka spruce research plot, part of a larger forestry experiment at
Clocaenog Forest in North Wales (UK). Data courtesy of University of Wales,
Bangor (Arne Pommerening), and Forest Research (Forestry Commission). The
authors are grateful to both organisations for permission to use these data.

Figure 4.38 The 4-neighbour graph for the stand of Sitka spruce trees indicates
some large gaps, one of which was caused by a past storm.
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described in Sections 3.6 and 6.6, which is characterised by a parameter $. The
corresponding theoretical conditional intensity depends on $ and is denoted by
�$�u	N	. The estimator has the form

�̂�u	N	=�$̂�u	N	�
where the estimator $̂ has been plugged in.

The estimator �$̂�u	N	 can be used to construct marks suitable for outlier detec-
tion. Two possibilities are:

m1�x	=�$̂�x	N\�x�	 (4.6.3)

and

m2�x	= 1/ ��$̂�x	N\�x�		 � (4.6.4)

Note that, as explained in p. 28, ��x	N\�x�	 is proportional to the probability that
the point process N has a point at x given all other points in N . Thus, large marks
m1�x	 confirm existing points, while small marks indicate uncertain, suspicious
points. The meaning of ‘large’ and ‘small’ can be determined with reference to the
corresponding mark distribution.

Mark m2�x	 may be preferable since the fact that for a stationary point process
the mean mark  2 corresponding to m2�x	 is equal to 1 facilitates comparison; see
Stoyan and Grabarnik (1991b) and Baddeley et al. (2005). The mark m2�x	 can be
interpreted as an ‘exponential energy mark’; see p. 400 below.

4.6.5 Residuals

Two different types of residuals can be considered: residuals for the points of the
process (point-related) and for all locations u in the window W (location-related).

Baddeley et al. (2005) introduce a series of residuals of the latter type. Here,
only the simplest of these is covered, the so-called raw residuals; refer to Baddeley
et al. (2005, 2007) for details on the other residuals.

Raw residuals describe the difference between the observed local point density
and the expected point density using the conditional intensity ��x	N	. The first term
is discrete since it is based directly on the points of N , while the second term is
continuous and given by an integral over ��x	N	. For visualisation purposes it is
better to smooth the first term, which leads to the function

s�x	=
∫
W

��u	k�x− u	du− E

⎛
⎝∫
W

��u	N	k�x− u	du

⎞
⎠ for x∈W�

where ��u	 is the intensity function and k�z	 some kernel function, e.g. a rotation-
symmetric Gauss kernel (a probability density). The theoretical value of s�x	 is



260 Stationary Point Processes

close to 0, but its statistical analogue ŝ�x	 is a valuable indicator of unusual point
configurations:

ŝ�x	= ∑
y∈W

k�x− y	−
∫
W

k�x− y	�$̂�y	N	dy for x∈W� (4.6.5)

Positive values of ŝ�x	 suggest that the model, which is accounted for by �$̂�y	N	,
underestimates the local intensity and negative values indicate overestimation.

One may also consider point-related residuals. Similar to classical residuals in
regression theory, these characterise the difference between the observed points and
points expected according to the model. The residual ri of point xi is defined as

ri = x̂i − xi�

where x̂i is constructed as follows. Consider the disc (sphere) of radius � centred at
xi. Determine the location u in b�xi��	 where the conditional intensity ��u	N\�x�	
has its maximum; this is the most likely position of a point of N in b�xi��	, given all
points of N other than xi. If this definition does not determine x̂i uniquely, the point
closest to xi is chosen. The radius � is a control parameter, which could be called
the ‘residual radius’. If the fitted model is appropriate, the length of the residual ri
is expected to be small, i.e. either x̂i = xi or x̂i is close to xi. Clearly, the residuals
depend on the residual radius �, the choice of which is often rather crucial. These
residuals make sense for non-trivial soft-core processes with or without a hard core.

4.7 Replicated patterns
4.7.1 Introduction

Frequently, in particular in medical, histological or materials science studies, not
only a single sample of a point process is available, but several patterns are consid-
ered at the same time with the aim of eventually analysing them all together to
obtain information on some spatial behaviour that is reflected in them. Examples
of this are series of micrographs of tissue sections or of planar sections through
steel samples taken at different positions in some organ or block at large distances,
or in organs of different animals or different blocks. Hence, the patterns can be
considered independent samples. The aim is to determine general summary char-
acteristics by aggregating the statistical results for the single samples. This section
presents methods for performing this aggregation.

Assume that m observation windows W1, � � � , Wm are given, which may be
congruent, but which might also differ in shape and size. The patterns in the Wi are
regarded as samples of i.i.d. stationary and isotropic point processes. The aim is to
find estimates of their joint summary characteristics such as �, K, g, D and Hs.

The usual approach is to estimate these characteristics separately for each of the
windows Wi and to then aggregate the estimates. If the windows are congruent,
simply forming arithmetic means is a good strategy. Those readers who do not wish
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to consider this issue any further might want to stop reading here and apply this
simple method. For the interested reader the rest of this section presents refined
methods, which also include the case of windows with different size and shape,
and some theoretical justification.

4.7.2 Aggregation recipes

In the case of non-congruent windows no unique aggregation method that may
be applied to all characteristics is available. The appropriate method depends on
the specific summary characteristic and edge-correction method. This subsection
details rules for the aggregation of some important summary characteristics.

Intensity

Let �̂1, � � � , �̂m be the estimators of � for the windows W1, � � � , Wm obtained by
(4.2.10). Then the natural aggregated estimator is

�̂=
m∑
i=1

�̂i

i


� (4.7.1)

where 
i = 
�Wi	 is the area (volume) of Wi and


=
m∑
i=1


i� (4.7.2)

Nearest-neighbour distance d.f. D�r�

Let D̂1�r	, � � � , D̂m�r	 be estimators of D�r	 for the windows W1, � � � , Wm obtained
by the border estimator (4.2.47) or the nearest-neighbour estimator (4.2.48). Then
the aggregated estimator is

D̂�r	=
m∑
i=1

D̂i�r	
nr�i
nr

(4.7.3)

with nr�i =N�Wi�r 	, i.e. nr�i is the number of points in the reduced i-th window,
and nr =

∑m
i=1 nr�i.

Spherical contact d.f. Hs�r�

Let Ĥs�1�r	, � � � , Ĥs�m�r	 be estimators of Hs�r	 for the windows W1, � � � , Wm

obtained by (4.2.38). Then the aggregated estimator is

Ĥs�r	=
m∑
i=1

Ĥs�i�r	

i


� (4.7.4)

where 
i = 
�Wi�r 	 for i= 1, � � � , m and 
 is defined by (4.7.2).
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Ripley’s K-function

Let K̂�r	, � � � , K̂m�r	 be estimators of K�r	 for the windows W1, � � � , Wm obtained
by (4.3.35) and (4.3.36). Then the aggregated estimator is

K̂�r	=
m∑
i=1

K̂i�r	
ni
n
� (4.7.5)

where ni =N�Wi	 and n=∑m
i=1 ni.

Note that Baddeley et al. (1993) recommend the use of other weights, in particular
n2
i

/∑m
i=1 n

2
i .

Pair correlation function g�r�

Let ĝ1�r	, � � � , ĝm�r	 be estimators of g�r	 for the windows W1, � � � , Wm obtained
by (4.3.38) or (4.3.39). Then the aggregated estimator is

g�r	=
m∑
i=1

gi�r	
�i�r	

��r	
� (4.7.6)

with �i�r	= �Wi�r	 for i= 1, � � � , m and ��r	=∑m
i=1 �i�r	. Here �Wi�r	 is the

isotropised set covariance of Wi.

Theoretical justification of the aggregation formulas

One theoretical approach to the aggregation formulas above is based on the
following consideration: all windows Wi are regarded as subsets of �2 (or �3), and
their set-theoretic union

W =
m⋃
i=1

Wi

is regarded as the sampling window for the entire analysis (‘between images within
cases’). The distances between the Wi are assumed to be very large, such that the
statistical results in the Wi may be considered mutually independent. Under this
assumption, the general formulas in Section 4.2 and 4.3 are used to derive estimators
for the union window W yielding (4.7.1), (4.7.3) and (4.7.4). This results in the
following:

Intensity For the union window W ,

n=N�W	=
m∑
i=1

ni =
m∑
i=1

N�Wi	
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and

�̂= N�W	


�W	
=
∑m

i=1 ni∑m
i=1 
i

=
m∑
i=1

�̂i

i∑m
i=1 
i

�

Nearest-neighbour distance d.f. D�r	 The border estimator in (4.2.47)
becomes, for the union window,

D̂�r	=
m∑
i=1

∑
�x�d�x	�

1Wi�r �x	1�0<d�x	≤ r	
/

m∑
i=1

N�Wi�r 	�

using (
m⋃
i=1

Wi

)
� b�o� r	=

m⋃
i=1

Wi � b�o� r	�

since for disjoint Wi,

N

(
m⋃
i=1

Wi�r

)
=

m∑
i=1

N�Wi�r 	�

yielding (4.7.3).
It is difficult to study analytically the behaviour of the nearest-neighbour

estimator (4.2.48). Simulations reported in Stoyan (2006) and further simulations
performed by Tscheschel (unpublished) confirm that (4.7.3) may also be applied in
this case; the pooling method does not seem to have a substantial influence on the mse.

Spherical contact d.f. Hs�r	 Equation (4.2.38) yields, for the union estimator,

Ĥs�r	=


(
Xr ∩

⋃m
i=1Wi�r

)


(⋃m

i=1Wi�r
) =

∑m
i=1 
�Xr ∩Wi�r 	∑m

i=1 
�Wi�r 	
�

which leads directly to (4.7.4).

Ripley’s K-function Diggle (2003, p. 123) recommends (4.7.5) based on simu-
lations in Diggle et al. (1991). Simulations run by the present authors have also
shown that (4.7.5) is suitable.

Pair correlation function For the case of Ohser’s estimator of the second-order
product density ��r	 calculations similar to those for Ĥs�r	 can be done, exploiting
the fact that here

�W�r	=
m∑
i=1

�Wi�r	�
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This leads to the weights �i�r	/��r	 as in (4.7.6); see also Ohser and Mücklich
(2000). This argument probably also applies to the other pair correlation function
estimators. It is important to use the local intensity estimators �̂i rather than �̂.

4.8 Choosing appropriate observation windows
4.8.1 General ideas

This section discusses an issue which is highly relevant in applications since the
choice of the appropriate size of the observation window W has, of course, a funda-
mental role in point process statistics. In general, the rule ‘the larger the window
the better the statistical results’ clearly holds. However, in practical applications
only a limited amount of financial resources for data collection and time are avail-
able and not every potential window may be accessible. Nevertheless, to arrive
at any useful conclusion in an analysis of a stationary spatial point process, the
window size should be chosen large enough to ensure that all essential information
is contained in the window. For instance, observing a pattern consisting of only
two clusters makes little sense in the stationary process approach. Windows that
are too small may result in misleading information. In some cases the measurement
conditions determine the window’s shape, i.e. windows have to be chosen which
deviate from the standard rectangular and circular shapes or their three-dimensional
analogues. This is the case in ecology (see Lancaster and Downes, 2004; Wiegand
and Moloney, 2004) and astronomy (see Hamilton, 1993), where, for example,
polygonal and complicated three-dimensional windows are used.

If the shape of the window can be chosen freely and there is no restriction on
resources for collecting data, circular or square windows are recommended in the
planar case. Data collected within long rectangular windows are less informative:
they enable the observation of (some) very long inter-point distances, which might
be of interest in specific applications, but there are serious problems with edge
effects.

If there are restrictions on the choice ofW , the issue of identifying ‘representative’
windows arises. In this context ‘representative’ means ‘large enough to satisfy
predefined precision requirements’. This section reduces the issue of determining
a window to that of determining its area or volume 
�W	 and discusses it in some
detail below.

Finally, another tricky problem may arise, which is particularly relevant in
geological and ecological studies. Patterns investigated in these fields are commonly
not stationary at all (in truth, they are samples of finite point processes). However,
it still makes sense to apply methods for stationary processes if the analysis mainly
focuses on short-range interactions. As an example, consider the pattern formed
by the locations of mammals in a meadow. Assume the aim of a study is to gain
knowledge about the short-range interaction among the individuals, assuming that
this interaction would be the same in a larger, stationary pattern. (A similar situation
arises in a system of volcanos in some region, which is finite and controlled by
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some interesting geological interaction.) In these cases, it is useful to adapt the
window’s size and shape to the pattern in some appropriate way, in order to avoid a
potentially large empty boundary zone around the pattern. An example of window
adaption is discussed towards the end of this section.

4.8.2 Representative windows

This section discusses the issue of choosing an appropriate window size by ensuring
that predefined precision requirements are satisfied or that the window is large
enough to ensure that the summary characteristics of interest achieve their asymp-
totic values in the window. The terminology refers to the three-dimensional case
but the methodology, of course, applies equally to two-dimensional data. In this
context the term representative volume element (RVE) for three-dimensional data
is commonly used for the representative window; in the 2D case the word ‘volume’
may simply be replaced by ‘area’ and thus representative area elements would be
considered.

It is well known that the RVE depends both on the variability of the point process
of interest and on the summary characteristic considered (see Freudenthal, 1950,
for the case of applications in materials science). If the same summary statistic is
considered, larger RVEs are necessary when cluster point processes are analysed, as
opposed to regular processes were smaller RVEs are sufficient. On the other hand,
for a precise estimation of the pair correlation function a larger RVE is necessary
than for intensity estimation, say.

In classical statistics, sample size calculations require some prior knowledge of
the nature of the data that are analysed, such as their variation. In the context of
spatial point processes this is similar. It is impossible to determine the RVE without
any a priori knowledge of the distribution of the point process investigated. A
straightforward approach to acquiring a priori knowledge is a pilot study consisting
of a preliminary statistical analysis of a small window, or a small number of
windows if a series of windows has to be analysed. The expectation is that the
pilot study yields a useful yet rough estimate of the intensity � and fundamental
information on the point process type, i.e. whether it is a regular or a clustered
pattern. Based on this, the methods sketched below can be used to obtain rough
estimates of RVEs corresponding to the intensity � and the pair correlation function
g�r	. For the other summary characteristics similar methods can be used.

Alternative approaches use (a) statistical experiments or (b) reconstruction simu-
lations for the determination of RVEs. Method (a) assumes that it is possible to
generate a series of nested windows of increasing size. The summary characteristics
of interest are estimated for these in order to identify the minimum window size that
can be considered representative, such that any further increase in the window size
will essentially not change the statistical results further. Method (b) generates point
patterns larger than the original pattern by the reconstruction simulation method
described in Section 6.7, assuming that the pattern given in the single original
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observation window shows the typical process behaviour. Subsequently, method
(a) can be applied to the simulated patterns.

Determination of RVE for intensity �

The aim is to determine a window size 
�W	 which ensures that the estimation
variance var��̂	 of the standard intensity estimator �̂ is smaller than a predefined
fixed value. In the isotropic case this variance is given by (4.2.11) and (4.3.24) as

var��̂	=
⎛
⎝dbd�2

�∫
0

�W�r	g�r	r
d−1dr +�
�W	− ��
�W		2

⎞
⎠
/
�
�W		2� (4.8.1)

It depends on the intensity �, the pair correlation function g�r	, the volume (area) of
window 
�W	 and the window’s isotropised set covariance �W�r	, i.e. in some way
on the window’s shape. However, in most applications g�r	 is unknown, therefore
it is not very realistic to predict var��̂	 in this way. Also, the integral may be too
complicated (but see the approximations given on p. 226). A simpler approach is
to determine an upper bound on var��̂	, i.e. to accept a window W that is slightly
too large. If the point process is more regular than a Poisson process, the Poisson
process variance var��̂P	 can be used as such a bound. Equation (4.2.12) yields

var��̂P	=
�


�W	
� (4.8.2)

This approximation requires only a priori knowledge of �.

Example 4.15. Gold particles: intensity RVE
Consider again the point pattern of gold particles and regard the sample as coming
from a pilot study. In the window with an area of 
�W	= 252 000 lu2 the estimated
� is 0�000 865 lu−2. It is difficult to classify this pattern: there is a positive hard-core
distance, but at a larger spatial scale the points form clusters. The pair correlation
function in Figure 4.20 is already close to one for r ≥ 30 lu, while the maximum at
r = 10 lu may be compensated for by the zero values for r ≤ 5 lu and the smaller
values for 12 lu ≤ r ≤ 30 lu in the integral in (4.8.1). Hence it may be an acceptable
approximation to use the Poisson process formula (4.8.2).

Assume that a relative error of 10 % in intensity estimation is deemed acceptable,
i.e. √

var��̂P	

E�̂
≤ 0�1�

Applying (4.8.2) for var��̂P	 leads to the approximation

√

�W	≥ 1

0�1 ·��
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and the estimate �̂= 0�000 865 yields


�W	≥ 115 606 lu2�

Hence, in order to satisfy the intended target precision of the intensity estimation
a window with an area of 115 606 lu2 would have been sufficient, i.e. a square
window with side length 340 lu, less than half the size of the original 680 × 400
window, which was, of course, used to obtain more than just only �.

Determination of RVE for the pair correlation function g�r�

Here, the aim is to determine a window size which ensures that the estimation
variance of the estimator ĝS�r	 (equation (4.3.41)) is smaller than a predefined target
value. For the box kernel estimator with bandwidth h, the variance is approximately
given by

var�ĝS�r		=
g�r	

dbdr
d−1�W�r	h�

2
� (4.8.3)

see p. 234. The isotropised set covariance of W , �W�r	, accounts for window size
and shape.

Since the variance depends on r, several values of r can be used to determine the
RVE. The authors recommend choosing an r close to rcorr, the range of correlation,
where g�r	= 1 for r ≥ rcorr.

Example 4.16. Gold particles: pair correlation function RVE
Consider again the pattern of gold particles. Based on the recommendations on
p. 236, the bandwidth h is chosen to be 3 lu. The value 60 lu is identified as rcorr.

Assume a target standard deviation of
√

var�ĝS�r		= 0�1 and aim to determine
the side length a of a square window W . Then

�W�r	= a2

(
1 − 4

�

r

a
+ 1
�

( r
a

)2
)

for r ≤ a�

By (4.8.3) with d= 2 and r= 60 lu, this yields the value a= 282 lu, i.e. the RVE
is a square of side length 282 lu. Note that a is clearly larger than rcorr.

Finding the appropriate RVE is also relevant in the context of marked point
processes. This concerns, for example, the minimum area which guarantees that
with high probability all (discrete) marks are observed in W . A simple solution
to this problem is given in Pfeifer et al. (1996) with an ecological interpretation,
where the marks represent species.
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Adapting windows to data

As mentioned above, in practical applications the window often has to be adapted
to the data. The following example uses simulated data to explain the procedure
and to show that it is not a good idea to use a ‘naive stationarity approach’, i.e. to
not adapt the window to the pattern.

Example 4.17. Circular cluster
Consider the pattern in Figure 4.39. In a practical application, the points may perhaps
be animals and the whole pattern a herd. Assume that one wishes to analyse the
pattern using methods for stationary point processes in order to obtain information
on the short-range repulsion or attraction between the points (or animals). Tech-
nically, Figure 4.39 shows a simulated pattern of 78 points which form a circular
sample of a Matérn hard-core process with r0 =0�04 as introduced in Section 6.5.2.

Using the ‘naive stationarity approach’, one might now simply take the data
as they are as points in a square window and use standard software to estimate
the pair correlation function. The result is displayed in Figure 4.40. Based on the
recommendation in Section 4.3.4 this would result in the following interpretation:
there is a hard-core distance of r0 = 0�04 and some short-range regularity with
clustering at a larger scale. This is not a very satisfying result as the estimate of
the pair correlation function apparently exhibits strange behaviour. It seems not to
reach the limit of 1 for large r, but ĝ�r	 even approaches values larger than 1 for
r> 0�5.

Figure 4.39 A cluster of 78 points in 1 . The statistical analysis of the pattern as
a sample from a stationary point process in a square window produces misleading
results.
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Figure 4.40 Pair correlation functions for the points in Figure 4.39. The first
function (solid line) which was obtained for the square window, looks like a pair
correlation function of a combination of a hard-core and a cluster process; the
second (dashed line), which corresponds to an adapted circular window, looks like
the pair correlation function of a hard-core process.

Clearly, both the spurious clustering information and the behaviour of the pair
correlation function for large r are a result of a bad choice of window. If one is
really interested in information on short-range behaviour, it is recommended to use
a smaller, adapted window. The pattern in Figure 4.39 suggests the use of a circular
subwindow. For simplicity the disc of radius 0.4 that was used in the simulation is
chosen as W in this example. The pair correlation function estimate for the circular
window is much better: it does not indicate clustering and tends to 1 for large r.

Note, by the way, that the nearest-neighbour distance d.f. behaves differently
and is not affected as much by an inappropriate window choice, such that it is not
necessary to adapt the window size. Compare this with the analysis of centres of
herds of herbivores in Kenya in Stein and Georgiadis (2006).

One large window or several smaller ones?

Another question is relevant in the context of this section: is it better to use one
(or a small number of) large window(s) or some (many) smaller windows, with the
same total area (volume) in both cases? Note that the answer to this question still
assumes that the point process considered is stationary and isotropic and that the
observations in different windows are independent. When a large natural pattern is
sampled with strong fluctuations and possible deviations from stationarity it may
be preferable a priori to use some smaller windows in order to balance out these
fluctuations.

Of course, the point process distribution itself has an impact on the choice of the
number and size of the windows. For instance, if it exhibits extreme fluctuations
(such as large clusters) large windows are necessary. The following example may
indicate a tendency in a simple case.
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Example 4.18. Estimation of standard deviations for K̂i�r	 and ĝst�r	 for a Poisson
process
Consider a Poisson process with intensity � = 100 and compare the estimated
standard deviations of K̂i�r	 and ĝst�r	 (using a bandwidth of h= 0�01) for r= 0�25
for three cases:

• two unit squares,

• one square with side length
√

2,

• one rectangle with side lengths 1 and 2.

Equations (4.3.40) and (4.3.42) may be used to calculate the estimated variances
�2
K�0�25	 and �2

g �0�25	. In the case of two unit squares the resulting value is divided
by 2, corresponding to the averaging of the estimates.

The results are presented in Table 4.1. The theoretical values of K�0�25	
and g�0�25	 are K�0�25	 = 0�196 and g�0�25	 = 1. In all cases the

√
2 × √

2
square is the best solution, probably since problems with edge effects are less
pronounced here. It is typical that the accuracy of estimation of K�r	 is better than
that of g�r	.

Table 4.1 Estimated standard deviations
�K�0�25	 and �g�0�25	 for Example 4.18.

Window(s) �K�0�25	 �g�0�25	

two 1 × 1 0.00554 0.06735√
2 × √

2 0.00524 0.06368
1 × 2 0.00529 0.06424

4.9 Multivariate analysis of series of point patterns
In applications of point process statistics, one sometimes wishes to analyse several
point patterns of a similar nature or origin simultaneously. These patterns are
usually given in the same or in congruent windows. This yields a situation with an
objective similar to applications of multivariate statistics in classical statistics. That
is, a classification of the patterns is sought which identifies groups (or clusters3) of
similar patterns. In addition, one may relate the grouping structure to characteristics
of the objects that form the patterns.

3 Note that in this section, in accordance with conventions in classical statistics the term ‘cluster’ exclusively refers to
a group of similar patterns whereas what has been called a ‘clustered’ pattern elsewhere in the book will be referred
to as ‘aggregated’ and a point cluster as a ‘clump’ in order to avoid confusion in terminology.
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As an illustration, think of an example in materials science, where a number of
point patterns derived from different materials are analysed. One may then wish
to form groups of similar point patterns with the intention of revealing that the
patterns originate from similar (potentially unknown) material structure groups.
This may lead to further research. In this situation each sample has been collected
in a separate window and all windows are congruent.

In ecological applications, in particular in the context of studies of species
diversity in ecosystems, the point patterns formed by the locations of several species
have often been collected in the same window. This includes data sets detailing the
positions of individuals from different plant species in the same observation area.
In this situation the correlation analysis for multivariate patterns may of course be
applied to study the associations between individuals from different species (see
Section 5.3).

However, in this section the primary interest is in classifying the species by their
spatial behaviour rather than considering the inter-species interactions. That is to
say, the aim is to find groups of ‘similar’ point patterns, where ‘similar’ refers to
similarity in the variability of the point distribution.

For example, one might find that one group consists of patterns that are CSR
(or close to), another one of patterns with aggregation at small distances, and yet
another one of patterns with aggregation at large distances, etc. Further inspection
of these groups may then lead to conclusions that these patterns have a similar
interaction structure, probably as a result of similar ecological processes, and may
facilitate or deepen further ecological research.

There are two approaches to solving the problem:

(a) Classical multivariate analysis based on numerical characteristics. This
approach is based on a number of suitable numerical characteristics (such as
those discussed in Section 4.2.4) and applies standard multivariate methods,
such as cluster analysis and principal component analysis, to these character-
istics. To be more specific, one calculates k numerical summary characteris-
tics c1, � � � , ck for each pattern. In other words, the patterns are regarded as
objects or observation units and the summary characteristics ci as variables.
Classical methods of multivariate statistics may then be applied to these
variables; see Manly (2004) and Mardia et al. (1989) for a general treatment
of multivariate methods.

(b) Functional data analysis methods based on functional summary character-
istics. This approach may be applied to functional summary characteristics
S�r	 as introduced in Sections 4.2–4.4. Since these summary statistics are
functions rather than individual values, classical multivariate methods cannot
be applied to them. However, specific statistical methods that operate on
functional data have been developed outside spatial statistics. These methods
may be suitably adapted to be applied to summary function characteristics
of point patterns. Ramsay and Silverman (2002, 2005) provide a general
introduction to functional data analysis.
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Technically, approach (a) is by far the easier of the two. It is described below
in detail for an ecological example. Readers who are familiar with classical multi-
variate statistical methods will have no difficulties in understanding the text.
The functional data analysis approach is methodologically more complicated and
requires a thorough understanding of functional data analysis methodology. It is
beyond the scope of this book to provide an introduction to this; readers are referred
to Illian (2006) and Illian et al. (2006) for more detail. There, a systematic approach
uses a feasibility study to show that the method is indeed capable of detecting
(known) groups if based exclusively on second-order characteristics. Groups of
simulated point patterns with different spatial behaviour were simulated based on
point process models that describe different types of spatial behaviour. The method
classifies the patterns as expected. A further study assesses the suitability of the
method in the context of (realistically) noisy data, i.e. the influence of inaccurately
recorded locations and misclassified points on the performance of the method.
The results show that the pair correlation function g�r	 is the recommended func-
tional summary characteristic for this approach as the classification results based
on the pair correlation function were better than those based on the L-function.
However, this approach can only be successfully applied with sufficient experience
and detailed knowledge of functional data analysis methods. These require that the
estimated pair correlation functions are transformed into functional data based on an
appropriate smoothing method where the degree of smoothing has to be determined
carefully. For instance, since empirical pair correlation functions can be rather irreg-
ular, cubic B-splines were applied to yield a smooth representation of the estimated
functions.

Example 4.19. Multivariate analysis of 31 point patterns in a plant community of
Western Australia
The data set is a multi-type point pattern formed by a natural plant community
in the heathlands of Western Australia described in detail in Armstrong (1991),
Illian (2006) and Illian et al. (2006). The point locations were recorded on a fine
grid with 10 cm by 10 cm cells in a 22 × 22 m plot. While 67 species were orig-
inally observed, only the most frequent 31 species are considered here. Species
no. 57 (Phlebocarya filifolia) with 207 points has already been discussed in
Section 1.2.3. (In order to facilitate comparison with the papers mentioned above,
the original species numbers are used here; see Armstrong, 1991, for a list of the
species names.)

The first step in the data analysis based on classic statistical methods for multi-
variate data (which cannot be presented here due to limitations of space) consists
of a visual inspection of the point patterns and the corresponding empirical pair
correlation functions. All patterns are clustered, with degrees of clustering ranging
from ‘close to CSR’ to ‘stronger clustering’. Four of the patterns (6, 23, 42, 61) do
not look homogeneous. This might be due to the fact that the 22 × 22 m window
is perhaps too small for these species. Consequently, the statistical methods for
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stationary point processes interpret them as patterns with large clusters. Further-
more, 11 patterns have pair correlation functions that indicate that these may be
considered as ‘good cluster processes’, such as no. 57 (see Example 4.7): specifi-
cally, nos. 13, 15, 18, 19, 20, 32, 34, 38, 49, 54 and 57. These may be expected to
form a group of similar patterns in an analysis.

In the next step, the following numerical summary characteristics were used: n,
the number of points in the 22 × 22 m window W ; CE, the Clark–Evans index;
R4, the mean-direction index;  = m̂D/m̃D, the ratio of mean nearest-neighbour
distance and median nearest-neighbour distance; r�1	, the minimum r with ĝ�r	=1;
and ĝ�2	, the estimate of g�r	 for r = 2 m.

The Clark–Evans index CE was chosen as a scale-invariant measure of aggrega-
tion (see (4.2.24)), and R4 as an alternative scale-invariant measure of aggregation,
(see p. 197). These two indices both measure clustering but highlight different
nuances, such that it makes sense to include both of them in an analysis. Typically,
large values of CE correspond to small values of R4, and vice versa. They also
provide information that is different from that derived from second-order summary
statistics.

The characteristic  is also scale-invariant and has large values for very irregular
patterns. It provides detailed information on the nearest-neighbour behaviour in a
pattern, in particular the skewness of D�r	.

The characteristics r�1	 and ĝ�2	 were determined using the estimator ĝst�r	 given
by (4.3.38) with a bandwidth of h= 1 m and were chosen in an attempt to describe
the shape of the pair correlation function by two numerical values. Due to the high
degree of irregularity in the patterns and the high variability of their pair correlation
functions the finer measures considered on p. 241 cannot be applied here.

Table 4.2 contains the values of the six summary characteristics for the 31
plant species. Before considering the results of the multivariate analysis note, the
following three interesting features in the table:

• CE and R4 behave contrarily; large values of CE correspond to small values
of R4 and vice versa, as expected, where theoretically CE= 1�0 corresponds
to R4 = 1�8.

• ‘Good cluster patterns’ have large r�1	.

• There are some patterns (e.g. species 3, 33 and 47) with CE≈ 1�0, R4 ≈ 1�8,
which are clearly close to CSR.

The initial multivariate analysis was based on all six variables, including n. This
did not yield informative and clear results, as n varies a lot between the species
and thus has a large influence on the results, but is mainly a scale parameter.
However, as in the context of indices, scale-invariant results are preferable as the
analysis is mainly focused on the difference in spatial behaviour, independent of
the total number of points. Therefore, the analysis was repeated without n, in order
to produce appropriate and interpretable results.
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Table 4.2 Numerical summary characteristics for 31 plant patterns.

Species no. n CE R4  r�1	 ĝ�2	

3 977 1�00 1�89 1�11 0�2 1�00
5 689 0�86 1�93 1�13 0�3 1�17
6 91 0�78 2�07 1�23 0�4 1�74
8 26 0�85 2�23 0�99 3�9 0�97

12 26 0�85 2�09 1�07 2�0 0�79
13 176 0�80 1�93 1�29 5�5 0�95
14 30 0�79 2�62 2�48 8�8 2�40
15 108 0�85 1�97 0�97 5�2 1�24
18 266 0�88 2�02 1�09 8�1 1�20
19 61 0�65 2�28 1�50 6�4 1�43
20 28 0�94 2�27 0�95 11�8 1�38
23 167 0�43 2�48 1�14 16�3 1�04
25 207 0�94 2�03 1�18 0�7 0�95
26 65 0�87 2�06 0�94 0�4 1�08
32 96 1�01 1�95 1�12 3�4 0�92
33 148 0�97 1�81 1�02 1�7 1�05
34 134 1�00 2�13 1�11 4�6 1�14
36 96 1�00 2�20 1�23 1�2 1�14
37 69 1�01 1�93 1�10 1�0 1�07
38 124 0�79 2�28 1�25 12�7 1�30
42 154 0�84 2�01 1�22 0�7 1�63
45 61 0�94 2�07 1�16 1�0 1�07
47 657 1�00 1�85 1�06 0�2 1�02
48 251 0�89 1�95 1�12 0�6 1�32
49 304 1�00 2�03 1�04 0�7 1�05
50 299 0�79 2�06 1�20 24�4 1�29
51 377 0�81 2�08 1�14 0�4 0�99
54 79 0�86 2�19 1�13 4�2 0�99
57 207 0�87 2�03 1�06 3�2 1�08
61 171 0�98 1�99 1�13 19�5 1�45
64 27 1�01 2�18 1�18 2�5 0�59

Figure 4.41 shows the result of a cluster analysis based on Ward’s method in the
form of a dendrogram. This method is an agglomerative clustering algorithm that
tries to minimise the increase in total within-cluster error at each agglomeration
step (for Ward’s methods and other alternative hierarchical clustering algorithms
see, for example, Everitt et al., 2001). Four main clusters can be identified from
the plot:
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(1) 23, 50, 61;

(2) 3, 5, 6, 12, 25, 26, 33, 36, 37, 38, 42, 45, 47, 48, 49, 64;

(3) 8, 13, 15, 19, 32, 34, 54, 57;

(4) 14, 18, 20, 38.

A detailed inspection of the four clusters yields the following, where initially only
the geometry of the patterns is considered. Cluster 1 contains a strange mixtures
of different patterns. The patterns have small CE values and large R4 values but
are not the only patterns in the data set that have this property (such as 6 or 14).
However, as opposed to these, they have very large r�1	 values, the three largest
in the data set. This indicates that the patterns in this cluster are aggregated with
relatively large and clear clumps.

Cluster 2 is the largest cluster and consists of a mixture of patterns with different
structures, including the patterns close to CSR. They have mainly medium-sized
values of CE, R4 and  , and medium to small values of r�1	. Apparently, this cluster
mainly contains weakly aggregated patterns.

Finally, clusters 3 and 4 both consist of aggregated patterns, among them nearly
all the ‘good cluster patterns’ mentioned above. They all have large CE and R4

values. In addition, the patterns in cluster 4 have relatively large r�1	 values. Further-
more, the dendrogram reveals that of the four clusters clusters 3 and 4 are the most
closely related. Apparently, they mainly differ in their r�1	 values, i.e. in the size of
their clumps. Note that patterns of high intensity may be found in similar frequen-
cies in all clusters, indicating that the analysis has definitely been scale-invariant,
as intended.
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Figure 4.41 Dendrogram for the Western Australian data set from a hierarchical
agglomerative cluster analysis (Ward’s method).
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A thorough biological interpretation of the results of the cluster analysis requires
expert knowledge on the properties of each of the species. A detailed description of
these properties is of course beyond the scope of this book. However, note that the
species in the data set grow in an area that is highly susceptible to reoccurring natural
fires. The species have adapted to this by developing specific fire regeneration
strategies. These strategies fall into two main types. Plants either store their seeds
over long time periods only to release them on the onset of a fire and die in the
fire (‘seeder plants’) or survive the fire under ground and grow back after the fire
(‘resprouter plants’). Plants of the latter type develop very slowly but are often
hundreds of years old. It is interesting to note that clusters 1 and 3 exclusively
contain resprouting species, whereas clusters 2 and 4 are mixtures of resprouting
and seeder plants. This may be the result of growth habits specific to these types
of species. Thus the character of the point pattern formed by the different species
is closely related to the species’ specific adaption to the environment.

A further analysis that may be applied to the data in Table 4.2 is principal
component analysis. It identifies linear combinations (‘principal components’, PCs)
of the numerical summary statistics that explain the largest amount of variation
between the different patterns. The principal component analysis (without using the
variable n) reveals here that the first two principal components explain 74.3 % of
the variance.

Table 4.3 lists the loadings of the five summary characteristics on the first two
principal components, i.e. the contribution of each of the summary characteristics
to the PCs, and Figure 4.42 shows a biplot of the results of the principal component
analysis.

The summary characteristic  is most strongly associated with the first principal
component, followed by R4, r�1	 and CE, where  , R4, r�1	 are negatively associated
with it and CE positively. However, none of the characteristics is so strongly
associated with the first PC that it dominates the PC so that one could interpret
the component primarily in terms of this characteristic. In an interpretation of the
results of the scores of the different patterns on the first PC all variables have

Table 4.3 Loadings of the five summary
characteristics on the first two principal
components.

Summary
characteristic

1st PC 2nd PC

CE 0�411 0�480
R4 −0�485 0�497
 −0�512 −0�102
r�1	 −0�463 0�439
ĝ�2	 −0�344 −0�565
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Figure 4.42 Biplot of the principal component analysis of the 31 patterns on the
first two principal components.

to be taken into account. This is certainly a result of the fact that the summary
characteristics have been chosen to be as informative as possible and to explain
aspects of the spatial behaviour that are as relevant as possible to the specific data
set. A different choice of characteristics is very likely to have resulted in different
scores for the different species on the PCs in the principal component analysis.

It is clear that patterns that have large negative values on the first PC are somewhat
aggregated (such as pattern number 23 and 19), while patterns with high positive
values on the first PC exhibit as behaviour close to CSR (such as 33 and 47).

The summary characteristic ĝ�2	 is most strongly (negatively) associated with the
second principal component, followed by R4, CE and r�1	, which are all positively
associated with the second PC. Whereas these statistics are relatively similar in their
loadings, the loading for  (which was most strongly associated with the first PC)
is rather low and may be ignored in the interpretation. Again, the loadings for R4,
CE and r�1	 on the second principal component show similarly strong associations
with this PC. Hence, patterns with high positive scores on the second PC show high
values in these characteristics and low values in ĝ�2	. It is difficult to find a joint
interpretation of R4, CE and r�1	, together with aspects of ĝ�2	.

The pattern of species 14 stands out as having the lowest value on the first and
the highest value on the second PC. A closer inspection of the pattern itself reveals
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that it is a highly inhomogeneous and clustered pattern where the clusters are all
located close to the edge of the observation window. This might indicate that the
window is actually too small for this pattern. The inhomogeneity is likely to have
exaggerated the clustering and thus led to the extreme values.

When considering the scores of the patterns on the first two PCs in Figure 4.42 as
such, little structure can be identified among them, i.e. it is difficult to distinguish
separate groups of patterns on the basis of this and hence it is probably not useful
to force a structure onto it by applying a clustering algorithm.

For comparison with the analysis described so far, Figure 4.43 shows the dendro-
gram as obtained in Illian et al. (2006) based on functional data analysis method-
ology using the second-order characteristic g�r	. A comparison of this figure with
Figure 4.41 shows that the two methods did not yield the same groupings. However,
some similarities may be detected. Most of the species in the second group in
Figure 4.41 were classified into groups 1 and 2 in Figure 4.43, and most of the
species in the third group in Figure 4.41 were classified into groups 3 and 4 in
Figure 4.43. Apparently, there is a strong correspondence between these groups.

Note that the differences between the results from the analysis based on classical
multivariate statistical methodology and the results obtained in Illian et al. (2006)
are due to fundamental differences in the two statistical approaches and the different
information used, as well as showing the complicated character of the distribution
of the plants considered.

The functional data analysis method yielded a description of the most distinctive
features in the spatial behaviour within the community, i.e. presence or absence of
clustering at close distances. The second most distinctive feature was the presence
or absence of clustering at larger distances. This may indicate that multi-species
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Figure 4.43 Dendrogram for the same point patterns which led to Figure 4.41,
but now resulting from functional data analysis; see Figure 8 in Illian et al. (2006).
With kind permission of Springer Science and Business Media.
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coexistence is facilitated through a strong variation in strength of intra-specific
attraction in an environment as poor in nutrients as the heathlands of Western
Australia.

The grouping of the species into groups of similar spatial behaviour does not
coincide with other classifications such as regeneration method, genus or growth
habit. This phenomenon might be due to the fact that the system studied is a very
ancient community where the variation in spatial behaviour has been adapted across
families to enable coexistence over millions of years.

4.10 Summary characteristics for the non-stationary
case

In many applications the point patterns cannot be considered stationary, and hence
methods which assume stationarity are not suitable. Therefore, modern point process
statistics has developed approaches which may be used to analyse inhomogeneous
point patterns. Given replicated patterns, i.e. data sets that consist of several samples
of (small) inhomogeneous patterns in the same (small) window, the methods for
finite point processes covered in Chapter 3 can be applied. This section discusses
methods that may be applied to a single sample in a large window W . These
methods are suitable in a situation where one wishes to study short-range interaction
among the points in the presence of larger-scale inhomogeneity.

First, there are two simple alternative approaches, which can be employed by
means of the methods for stationary processes. In one of these approaches the
main focus is on the large-scale behaviour such that only long-range point density
fluctuations (which might be perhaps correlated with smoothly variable covariates)
are relevant and individual points are of little interest. A useful approach in this
context is the application of geostatistical methods rather than point process statis-
tics, applied to a regionalised (i.e. smoothed) point pattern data as briefly discussed
in Section 6.11. The other approach focuses on short-range interactions that may
vary within the observation window W . For this purpose, a number of (nearly)
homogeneous subplots W1, W2, � � � of W are considered; see Franklin et al. (1985)
and Pélissier and Goreaud (2001). Methods for stationary patterns may then be
applied to each of these. The resulting estimated summary characteristics will tend
to vary among the subpatterns (e.g. controlled by point density) and may be consid-
ered in relation to relevant covariates if these are relatively constant within the Wi.
This approach may in some sense resemble research plots of foresters, which often
are located in ‘quasi-homogeneous’ regions of forests.

However, this section does not follow either of these approaches but discusses
point process methods applied to the whole window W in order to study short-range
interaction among the points in the presence of larger-scale inhomogeneity. For
this purpose, summary characteristics for inhomogeneous patterns are introduced
which are of a similar nature to the stationary summary characteristics and are not
location-dependent. The underlying theory is based on Baddeley et al. (2000), Hahn



280 Stationary Point Processes

et al. (2003) and Prokešová et al. (2006) and uses intensity reweighting and local
scaling. Note that in the non-stationary case there is no typical point and that there
is a family of Palm distributions Px rather than one Palm distribution Po, where Px
describes the distribution of N under the condition that there is a point of N at the
deterministic location x.

Towards the end of this section, examples illustrate the application of the
methods. Since the underlying mechanisms that generated the pattern are usually
unknown in applications and errors resulting from inappropriate statistical methods
are difficult to detect, two simulated patterns are used to provide examples
where the true underlying mechanisms that generated the patterns are known.
This will help the reader to gain some understanding of the potential of these
methods. The practical relevance of the approach is illustrated with the real-life
Example 4.22.

A first approach to the analysis of inhomogeneous point patterns is the following.

4.10.1 Formal application of stationary characteristics and
estimators

The classical summary characteristics that were developed for stationary patterns
may still be determined even if the pattern is a sample from an inhomogeneous
process. This may yield interesting information about the degree of inhomogeneity
and about short-range behaviour. This subsection discusses briefly the results of
this approach, which requires experience and a careful interpretation of the results.

Application of the intensity estimator in (4.2.10) leads to an estimate of the
quantity

�W =
∫
W

��x	dx/
�W	� (4.10.1)

which may be called the mean point density. It depends on the window W and may
serve as a benchmark value for ��x	 in W , to distinguish between regions of high
and of low point density.

Formal application of estimators of the distance characteristics D�r	 and Hs�r	
will lead to complex results, such as bi- or multimodal distributions. For example,
regions of high point density may lead to a mode due to a large number of small
nearest neighbours. Second-order characteristics g�r	 and L�r	 estimated in this
way resemble those for cluster processes indicating (spurious) large clusters; refer
to Examples 4.20–4.22 at the end of this section. As these examples show, the
application of methods for stationary patterns to inhomogeneous data yields results
that have to be interpreted carefully and are useful only to experienced statisticians.

Nevertheless, there are examples of summary characteristics where the applica-
tion of stationary methods to inhomogeneous data does not cause great problems.
This is the case, for example, for mark correlation functions such as kf �r	 and
pij�r	 as explained in Section 5.3. These quantities are estimated by ratio estimators,
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i.e. as quotients of other summary characteristics (namely ��r	��f �r	 and �ij�r	),
and statistical experience shows that errors resulting from inhomogeneity cancel
out. In fact, Capobianco and Renshaw (1998) and Lancaster (2006) showed that
these estimators are robust and may be applied even without edge-correction, and
they may also safely be used in the non-stationary case. The estimation of the
nearest-neighbour distance d.f.s Dij�r	 may also make sense.

The other two approaches require that enough points have been collected so that it
seems reasonable to estimate the intensity function ��x	. As discussed in Baddeley
et al. (2000), smooth estimates of ��x	 should be used; otherwise large- and meso-
scale variation cannot be distinguished from small-scale variation resulting from
point interaction. If the kernel estimators introduced in Section 3.3.2 are used, the
bandwidth for �̂�x	 should be chosen larger than that for the summary characteristics
such as g�r	. Parametric models for the intensity function are recommended, which
may be fitted using standard software for generalised linear models (Berman and
Turner, 1992) as implemented in the spatstat library in R; see Baddeley and
Turner (2000, 2005, 2006). In the examples below ��x	 is piecewise constant or
linear. Diggle et al. (2007) provide an example where ��x	 is estimated based on
a covariate using additional information, the elevation in a tropical rainforest.

Both approaches assume that the local inhomogeneity due to short-range inter-
actions is of a uniform nature across the observation window. They cannot be
applied to patterns which are, for example, regular in some subareas and clustered
for others. Experience shows that they produce better results for regular than for
cluster patterns.

4.10.2 Intensity reweighting

This approach is based on the idea of replacing the classical (constant) intensity
estimator by variable intensity function estimators in the estimation of stationary
summary characteristics. This means that the estimation is adapted to the variable
point density. The results are global, averaged estimates which should be used and
interpreted jointly with the intensity function.

The method was introduced in Baddeley et al. (2000) for both K�r	 and g�r	.
The following focuses on the pair correlation function g�r	.

Consider first the function

g�x� y	= ��x� y	

��x	��y	
for x� y ∈�d� (4.10.2)

where ��x� y	 is the second-order product density of N . (If ��x	��y	= 0, then set
g�x� y	= 0.) In the case of an inhomogeneous Poisson process, g�x� y	 is constant
and equal to 1, an indication of the usefulness of the function.

Assume now that g�x� y	 is independent of the locations x and y and depends only
on the distance r = �x− y� between x and y. Denote the corresponding ‘master’
function by ginhom�r	. Together with the intensity function ��x	, it completely
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describes the second-order behaviour of a point pattern. Processes for which such
a ginhom�r	 exists are called second-order intensity-reweighted stationary, following
Baddeley et al. (2000). In addition to the inhomogeneous Poisson processes, all
non-stationary point processes which result from a p�x	-thinning of a stationary
point process (see Section 6.2.1 for explanation) have this property. If the pair
correlation function of the original stationary process is gb�r	, then ginhom�r	=gb�r	.

However, the assumption of second-order intensity-reweighted stationarity is
rather restrictive. Many processes are not in this class, including hard-core processes
with different hard-core distances that vary within the observation window (see
Example 4.22 for an illustration) and processes in which the range of correlation
varies.

A simple test of second-order intensity-reweighted stationarity is as follows.
Select several subwindowsW1, � � � ,Wk ofW in which the point distribution appears
homogeneous. Estimate the pair correlation function for each of these. For a second-
order intensity-reweighted stationary process the estimates ĝ1�r	, � � � , ĝk�r	 should
be similar.

The master function ginhom�r	 can be estimated by a simple modification of the
estimators that are used for stationary patterns, (4.3.38) or (4.3.29), given by

ĝinhom�r	=
∑�=

x1�x2∈W

k��x1 − x2� − r	

dbdr
−1
�Wx1

∩Wx2
	��x1	��x2	

� (4.10.3)

The values ��x1	 and ��x2	 cause problems if kernel estimators are used for the
intensity function ��x	. This is because x1 and x2 are data points, which leads to
overestimation; see Baddeley et al. (2000) for a detailed discussion.

The estimator ĝinhom�r	 should be used carefully. If the process underlying the
observed pattern is really second-order intensity-reweighted stationary, ĝinhom�r	
does indeed estimate ginhom�r	. If not, then a master function ginhom�r	 does not exist
and the estimate is not much better than that resulting from the application of a
stationary estimator, as illustrated in Example 4.21.

An inhomogeneous K-function can be estimated by analogy with the
stationary estimator in (4.10.3), where k��x1 − x2� − r	 is replaced by 1��x1 −
x2� ≤ r	. However, the problems resulting from inappropriately applying a
reweighted summary statistic may even be aggravated when the K-function
rather than the pair-correlation function is used, due to the cumulative nature of
the K-function.

4.10.3 Local rescaling

The aim of this approach, explained here for the planar case, is to find global
summary characteristics which are adapted to variable point density by a mechanism
that rescales distances relative to local point density. This may be of particular value
for a point pattern where the hard-core distance varies with point density. Hahn
et al. (2003) introduce a class of so-called locally scaled point process models that
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have this property. In the particular case of a hard-core pattern it is expected that
a successful application of the local rescaling approach yields a master summary
characteristic with a unique hard-core distance.

More specifically, the approach of defining master summary characteristics for
inhomogeneous patterns rescales the distance according to location. This means
that it defines a ‘metric’ which varies within W . It has small values (‘distances
become shorter’) in regions of high point density and large values (‘distance become
longer’) in regions of high point density. The local point densities are considered
relative to the mean point density �W . The local metric around any point x is
characterised by the definition of distance in the neighbourhood of x: the distance
r in the case of a homogeneous pattern of intensity �W corresponds to the distance
�x�r	 in the neighbourhood of x for the inhomogeneous pattern. In the planar case,
�x�r	 is chosen such that

�W�r
2 =

∫
b�x��x�r		

��u	du� (4.10.4)

i.e. that the mean number of points in a disc of radius r under homogeneity equals
the mean number of points in a disc of radius �x�r	 centred at x. If ��x	 is only
weakly variable and may thus be considered constant within a circle of radius r
around x, the right-hand side of (4.10.4) simplifies to ��x	��x�r	

2 and yields

�x�r	= r

√
�W
��x	

�

Nearest-neighbour distances

A local analogue of D�r	, denoted by Dx�r	, can be defined for every x in W .
Here, the nearest-neighbour distance d.f. is not independent of the deterministic
observation location x. Dx�r	 is formally defined as

Dx�r	= Px�d�x	≤ r	 for r ≥ 0�

where d�x	 is the nearest-neighbour distance of the point at x. The probability, as
before for D�r	, is of a Palm distribution nature, i.e. it is a conditional probability
given that there is a point of N at x.

The definition of the analogous quantity Hs�x�r	 is more straightforward. Here

Hs�x�r	= 1 − N�b�x� r		= 0	 for r ≥ 0�

i.e. it is not necessary to consider a conditional probability for the definition.
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In contrast, in the rescaling approach it is assumed that there are master nearest-
neighbour distance d.f.s D∗�r	 and H∗

s �r	 such that

Dx�r	=D∗
(
r

√
��x	

�W

)
(4.10.5)

and

Hs�x�r	=H∗
s

(
r

√
��x	

�W

)
(4.10.6)

for all r ≥ 0. There is no guarantee that these functions do indeed exist, even for
inhomogeneous Poisson processes, but this may be the case in an approximate
sense. Thus this method provides an elegant way of analysing the nearest-neighbour
distances in inhomogeneous point processes.

The function D∗�r	 is estimated in the same way as D�r	 (see Section 4.2.6), but
the original distances d�xi	 are multiplied by the factor

d

√
��xi	

�W
�

which is larger than 1 if ��xi	>�W and smaller than 1 otherwise.

Pair correlation function

The master pair correlation function g∗�r	 is defined similarly based on local
rescaling of interpoint distances. The original distance �x1 −x2� between two points
x1 and x2 is multiplied by the factor

1
2

(
d

√
��x1	

�W
+ d

√
��x2	

�W

)
�

The factor is larger than 1 if ��x1	>�W and ��x2	>�W and smaller if the converse
inequalities hold. In the estimator ĝinhom�r	 in (4.10.3), the term �x1 −x2� is simply
replaced by

1
2

(
d

√
��x1	

�W
+ d

√
��x2	

�W

)
�x1 − x2��

Prokešová et al. (2006) present a similar estimator for the K-function.
The following examples illustrate the application of the techniques in the statis-

tical analysis of inhomogeneous patterns. The first two consider synthetic patterns
constructed to illustrate the potential of these methods.
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Example 4.20. Stationary estimates for an inhomogeneous Poisson process
Consider a point pattern that consists of 400 points in a 400 × 200 window; 200
points are uniformly distributed in the left 100 × 200 rectangle and 200 points are
uniformly distributed in the right 300×200 rectangle, as shown in Figure 4.44. This
pattern may be regarded as a sample from an inhomogeneous Poisson process with
��x	= 0�01 for locations x on the left-hand side and ��x	= 0�0033 for locations x
on the right-hand side of the window.

Admittedly, this pattern is rather contrived and unlikely to be observed in reality,
but in the ecological literature similar patterns have been used for demonstra-
tion purposes; see Pélissier and Goreaud (2001). If a pattern like this were to be
analysed in an application the window would probably be divided into two subwin-
dows which would be analysed separately. However, it is used here as an extreme
example to illustrate the usefulness of applying appropriate summary characteristics
to inhomogeneous patterns. If stationary summary characteristics were applied to
this pattern the summary characteristic would indicate (spurious) clustering with a
large 100 × 200 cluster. Intensity reweighting, however, should detect the Poisson
process nature of the pattern and not indicate clustering.

Figure 4.45 shows the estimated nearest-neighbour distance and spherical contact
probability density functions d�r	 and hs�r	 using estimators for stationary patterns.
The first function is bimodal due to the two different point densities in the pattern;
due to statistical fluctuation the maxima are not at r=4 and r=6�9 as expected. The
second indicates large distances between test points and points in the process since
the low intensity on the left-hand side has a strong influence. Figure 4.46 shows a
formal estimate of the pair correlation function g�r	, again using an estimator for
stationary patterns. At r= 0 its value is 1.33 and the function decreases from there,
taking the value 1 at r = 100.

These results are basically not interpretable on their own, without a visual inspec-
tion of the pattern (or knowledge of the underlying model). The distance of r=100
corresponds to the size of the subwindow of high point intensity, i.e. the subpattern
with higher point density may be (mis)interpreted as a large cluster.

Figure 4.44 A simulated inhomogeneous Poisson process with high intensity on
the left-hand side and low intensity on right-hand side.
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Figure 4.45 Estimated densities d̂�r	(solid line) and ĥs�r	 (dashed line) for the
inhomogeneous data obtained by misuse of stationary estimators.
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Figure 4.46 Estimated pair correlation function obtained by application of the
stationary estimator to inhomogeneous data (dashed line); the values larger than
1 for small r result from the high local point density in the left-hand 100 × 200
subwindow. ĝinhom�r	 for the same data (solid line). It fluctuates irregularly around
1. For both estimates the bandwidth was h= 4 for r ≤ 4 and h= 8 otherwise.

As expected, the intensity-reweighted estimate ĝinhom�r	 is close to 1, as shown
in Figure 4.46. (The fluctuations of ĝinhom�r	 for small r are statistical artefacts
resulting from the kernel estimation method and the small number of points.) Hence
(4.10.3) has been successfully applied to the inhomogeneous pattern. The master
ĝinhom�r	 looks like the pair correlation function for a homogeneous Poisson process
and does not (spuriously) indicate that the pattern has been derived from a cluster
process.

Figure 4.47 shows the estimated probability density function corresponding to
the master D∗�r	 for the inhomogeneous data. As expected, it is similar to the
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Figure 4.47 Estimated probability density function d∗�r	 corresponding to D∗�r	
for the inhomogeneous data (solid line), compared to d�r	 for a Poisson process of
intensity �W (dashed line).

corresponding density function for the Poisson process with intensity �W . The root
transform in (4.10.5) was successful.

Example 4.21. Estimates of master second-order characteristics for an inhomo-
geneous hard-core pattern
This example illustrates the usefulness of local rescaling based on a simulated point
pattern which is known not to be second-order intensity-reweighted stationary. The
pattern was generated in the same window as the points in Example 4.20. It consists
of 200 simulated points from a Matérn hard-core process with intensity 0.01 with
hard-core distance r0 = 5 in the left-hand rectangle and 200 points simulated in the
same way but with intensity 0.0033 and r0 = 9 in the right-hand rectangle. Since
the hard-core distance is different in areas with different densities, this pattern is
definitely not a sample from a second-order intensity-reweighted stationary point
process. Therefore, analysing this pattern by applying intensity reweighting for
short distances is not a good idea. However, the local rescaling approach may yield
master summary characteristics corresponding to a unified hard-core distance. This
should be around 7 as

9

√
0�0033
0�005

= 7�3 and 5

√
0�01
0�005

= 7�1� with �W = 0�005�

Figure 4.48 shows a formal estimate of the pair correlation function g�r	 using the
stationary estimator. As expected, the smaller hard-core distance 5 in the left-hand
rectangle dominates, while the right hard-core distance 9 leaves only a thin trace.
The estimate has values that are above 1 for r≥10 because the stationary estimator
interprets the point pattern in the left-hand rectangle as a large cluster. ĝinhom�r	 for
intensity reweighting shows clearly two hard-core distances and has values around
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Figure 4.48 Result of pair correlation function estimation obtained by application
of the stationary estimator for the inhomogeneous hard-core process data (solid
line). Two estimates of master pair correlation functions are also shown, one based
on intensity reweighting (dashed line) and the other based on local rescaling (dotted
line). The bandwidth was h= 1 for r ≤ 12 and h= 4 for larger r.

1 for r > 10, as expected for this pattern. Given its limitations, it was successful,
but local rescaling yields a better result.

As an improvement of the simple stationary estimate, Figure 4.48 also shows
the estimated master function g∗�r	 resulting from local rescaling. For small r,
it looks like the pair correlation function of a point process with a hard-core
distance around 7. Obviously, the local rescaling was successful. The pair correlation
function is now quite similar to that of a Matérn hard-core process with r0 between
5 and 9.

Example 4.22. A gradient pattern of bronze particles
Figure 4.49 shows a cross-section through a bronze sinter filter, which was also
analysed in Hahn et al. (1999). The filter consists of almost spherical bronze

Figure 4.49 A cross-section through a bronze sinter filter. The points are centres
of circular section profiles. The length of the longer side of the window is 18 mm.
Data courtesy of R. Bernhardt and H. Wendrock.



Stationary Point Processes 289

particles with diameters (not shown) that decrease along the x-axis marking the
filtering direction, 0 ≤ x≤ l= 18 mm. Since the particles are densely packed, the
number of particles per unit volume increases as the diameters decrease. This is
also observable on sections parallel to the directions of inhomogeneity: the centres
of the particle section profiles form an inhomogeneous point pattern.

This point pattern seems to be a good example of a pattern that the methods
discussed in this section may be applied to since the character of the distribution
of the points is the same throughout the pattern: it is a packing of hard spheres
in which only the sphere radii vary. Although the sample is only a planar section,
some statistical analysis is useful; the information that local scaling yields plausible
results may also be valid in the spatial case, i.e. for the three-dimensional filter.

The estimated intensity function of the pattern is shown in Figure 4.50. Since a
gradient structure is given, it suffices to consider ��x	, the intensity function in the
direction of x-axis. This function is used in the further analysis of the pattern.

Visual inspection already indicates that the inter-point distances behave quite
differently in the left- and right-hand parts of the sample. Thus, the idea that
the gradient results from an independent thinning operation must be rejected; the
physical process of packing contradicts this idea as well. The estimated pair corre-
lation functions for the left 5 mm and for the right 5 mm shown in Figure 4.51
are therefore quite different, and intensity-reweigthing is clearly not suitable for
this data set. See also ĝinhom�r	 in the same figure, which deviates from both
estimates.

Local rescaling yields a plausible master pair correlation function, the solid line
in Figure 4.52.

The following describes a rather natural way to derive a master function for cases
with gradient structures like those depicted in Figure 4.49. The idea is simply to
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Figure 4.50 The estimated intensity function �̂�x	 for the pattern in Figure 4.49.
Here x varies along the longer side of the rectangular 18 × 7 mm window. Data
courtesy of U. Hahn.
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Figure 4.51 Three empirical pair correlation functions for the bronze pattern. Two
of these were obtained using the estimator for the stationary case: ĝ�r	 for the left
5 mm region of Figure 4.49 (dashed line) and for the right 5 mm region (dotted
line). ĝinhom�r	 for the whole window is also shown (solid line).

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
r (in mm)

g(r)

Figure 4.52 Three empirical master pair correlation functions for the bronze
pattern: estimates obtained via local rescaling for the whole pattern (solid line), esti-
mates assuming stationarity for the pattern with x≤ 5 (dashed line) and an estimate
obtained by vertical homogenisation (dotted line). Data courtesy of U. Hahn.

transform the data along the gradient axis, to apply vertical homogenisation as in
Fleischer et al. (2006), where the gradient was in vertical direction; in Figure 4.49
the gradient is in horizontal direction. In areas where the estimated intensity function
�̂�x	 is high, the vertical distances are dilated and in areas where �̂�x	 is low the
distances are compressed such that the point density is �W in the entire window.
Figure 4.53 shows the result of this transformation for the pattern in Figure 4.49
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Figure 4.53 The pattern of Figure 4.49 after horizontal homogenisation.

using the intensity function in Figure 4.50. The pattern looks globally isotropic,
even though it has only been transformed in horizontal direction. Figure 4.52 shows
the corresponding estimated pair correlation function, which is quite similar to the
result of local scaling.

In other cases and many applications the patterns have to be transformed more
carefully and a theory of homogenisation by transformation has been developed;
see Jensen and Nielsen (2000), Nielsen (2000) and Prokešová et al. (2006).

The formula for vertical homogenisation is as follows. Set

�x	=
x∫

0

�̂�t	dt for 0 ≤ x≤ l�

For the �̂�x	 in Figure 4.50 the formula is, for example for 0 ≤ x≤ 5,

�x	= 12x− 0�6x2�

as obtained by integration. The pattern is transformed horizontally as

x→ �x	

�l	
l for 0 ≤ x≤ l�

This method is used in Fleischer et al. (2006) where the root distribution in pure
stands of beeches and spruces was analysed and modelled. Vertical sections yield
planar gradient point patterns, where the points correspond to cross-sections of roots
of diameter between 2 mm and 5 mm. In this specific application

�̂�x	= a exp�−ax	�

i.e. the root density decreases exponentially.
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5

Stationary marked point
processes

The previous chapters have treated patterns of unmarked points. This
chapter now discusses marked patterns, the analysis and modelling of
which is complex, yet challenging and interesting. Marked point pattern
analysis also studies ensembles of objects scattered in space, but the
objects are characterised not only by their positions but also by marks,
i.e. additional data on each individual object, which may be either
quantitative (continuous) or qualitative (discrete or categorial).

This chapter concentrates on the stationary case and presents a
definition of stationarity which also includes the marks. It discusses
in detail the fundamental first-order characteristics, intensity and
mark distribution, and a large number of second-order characteristics.
The latter depend on the character of the marks, i.e. on whether the
marks are quantitative or qualitative. In the same way, the issues and
ideas addressed in analyses of marked point patterns are different
for patterns with qualitative and quantitative marks. Hence, several
different approaches have to be discussed, and the choice depends on
what kind of statistical information contained in a marked point pattern

Statistical Analysis and Modelling of Spatial Point Patterns J. Illian, A. Penttinen, H. Stoyan and D. Stoyan
© 2008 John Wiley & Sons, Ltd
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is of interest in a particular application. For instance, the analysis of
patterns with qualitative marks may study the relative positions of the
different types of points, i.e. whether there is within-type aggregation or
repulsion as well as between-type aggregation or repulsion. In contrast,
in the context of quantitative marks the analysis assesses whether the
marks vary continuously and to what extent interaction among the
points has an influence on the marks. A general fundamental question
concerns independence among the marks.

The structure of this chapter is similar to that of Chapter 4. The
presentation commences with some basic definitions and theoretical
concepts which might appear technical at first but which will turn out
to be relevant throughout this chapter and the rest of the book.

5.1 Basic definitions and notation
5.1.1 Introduction

Marked point process statistics is a key method in spatial statistics as it analyses
data consisting of observations of variables given at irregularly distributed points.
These processes are models for random point patterns where marks that describe
properties of the objects represented by the points are attached to the points. In
other words, a marked point process M is a sequence of random marked points,
M = ��xn�m�xn���, where m�xn� is the mark of the point xn. A number of practical
examples of these processes are discussed in detail throughout this chapter.

Note that marked point pattern data appear to be in some sense similar to
geostatistical data, which also consist of both information on locations and asso-
ciated Z-values. However, the aim of geostatistics is to estimate spatially contin-
uous phenomena (regionalised variables) based on discrete measurements at points
chosen for this purpose. In point process statistics, however, the points represent not
the locations that have been chosen for measurement purposes but the locations of
the objects that are analysed. Hence the analysis of geostatistical data and marked
point process data pursues entirely different aims and applies different methods; the
misuse of geostatistical methods in point processes may produce incorrect results
(see p. 344).

The points and marks in a marked pattern are often correlated. Consider, for
example, data from a plant community where the points are plant locations and
the marks plant size characteristics. In areas of high point density the marks may
tend to be smaller than in areas with low point density resulting from stronger
competition for limited resources. In contrast, the absolute values of velocities
of galaxies are high in regions of high galaxy density. A marked point process
model with [point; mark] = [galaxy centre; velocity] may take this correlation into
account. Furthermore, in biological point patterns qualitative marks may characterise
different species. Inter-species cooperation may lead to attraction among species,
while inter-species competition may lead to repulsion.
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5.1.2 Marks and their properties

The marks in a marked point processes may be either quantitative (continuous) or
qualitative (categorial, discrete). Quantitative marks are real-valued and describe,
for example, the size or extent of the objects represented by the points or any
other physical property, such as tree height, particle diameter, or galaxy velocity.
Qualitative marks are discrete or integer-valued categorial variables describing
different types of points, such as plant species or shape types. If only two types
of points are considered, coded as 1 and 2, say, the point process is called
bivariate, otherwise it is multivariate. Clearly, quantitative marks can be reduced
to qualitative marks by binning the marks into discrete classes such as ‘small’,
‘medium’ and ‘large’. Also qualitative marks can be aggregated, e.g. ‘deciduos’ or
‘coniferous’ trees may be considered instead of tree species.

A marked point process may be considered as consisting of several sub-point
processes (in each of which all points have the same qualitative marks) with
interesting correlations and structures. More complex marks describe, for example,
the shape of particles or crowns of trees if the points are particle centres or tree
locations, respectively. However, these marks, represented by high-dimensional
vectors, are beyond the scope of this book.

The aim of the analysis of bivariate point patterns is often to reveal relationships
between points of type 1 and 2. In an attempt to systematically characterise such
relationships one could classify them along two axes, dependence and relative
degree of dominance (see Table 5.1).

In many point patterns the two types of points have a similar ‘relative degree of
dominance’, i.e. neither type dominates the other; this is often described by words
such as ‘equality’ or ‘symmetry’. In forestry, these might for example be trees of
similar sizes and similar age but from different species, or trees either damaged or
not damaged by wind, frost, insects or disease. As another example, tissue cells of
comparable but different function might not dominate each other.

In bivariate patterns with equal degree of dominance the two subpatterns N1 and
N2 can either be (a) independent (irrespective of any within-type interactions) or
(b) dependent, where dependence can either mean attraction or repulsion among
the point types.

Table 5.1 Classification of relations between the points of
bivariate point processes.

Dependence

equal independent (a) dependent (b)
Relative
degree of
dominance

different separation (c) functional/
controlled (d)
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In other cases (‘asymmetry’) one type has a dominating role while the points of
the other type are suppressed or even controlled by points of the first type or appear
only once the first-class points have taken up their locations. The two subpatterns
have different degrees of dominance, and the relationship between the two point
patterns of points of different degree of dominance may vary. They may be (c)
simply separated as a result of the domination, or there might also be (d) some
form of control or even of a functional relationship, such as between parent and
daughter points in cluster processes or adults and seedlings.

All in all, four typical cases corresponding to four different combinations of
(equal/different) degree of dominance and dependence can be distinguished, as
summarised in Table 5.1. Some of the examples below correspond to one of these
cases. This is indicated by the coding letter used in this table.

The description in Table 5.1 does certainly simplify reality. In many applications
patterns cannot be grouped into either of the four types as easily and in such a
clear-cut way.

Note that quantitative marks lead to different types of conclusions and do not
imply dichotomous classifications.

5.1.3 Marking models

Marking models describe how the marks in a pattern might have been ‘formed’
given the points (‘marking a posteriori’) or how the marked points have been
‘generated’ (‘marking a priori’). Only once a suitable model has been identified
for a marked point pattern can it be properly interpreted and simulated. A number
of models and modelling approaches have been discussed in the literature. This
section provides a short introduction to three different types of marking models
which are discussed in detail in Section 6.8.

The independently marked or randomly labelled point process is the simplest
model for a stationary marked point process. In these patterns the point positions
may be regarded as given a priori but the characteristics of the objects in these
locations are determined independently at random, based on some probability distri-
bution or frequencies of different types of points. In other words, the marks are
i.i.d. random variables.

More formally, M =��xn�m�xn��� is constructed as follows. Consider a stationary
point process N =�xn� and an independent sequence of i.i.d. random variables �mn�.
Both are combined to yield ��xn�m�xn��� with m�xn� = mn. In the construction the
numbering is arbitrary. This type of process may be simulated by first simulating N
and then generating the marks based on the mark distribution in an arbitrary order.

In many applications, this simple process with independent marks is a realistic
model. It is used in the very useful random set model called the ‘Boolean model’
(see Stoyan et al., 1995) and has often been observed for the marks of trees in forests,
in particular in managed forests, where typically trees with extreme properties
caused by competition are removed such that the remaining trees show only small
‘independent’ fluctuations. In other applications, such as in natural ecosystems, the
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processes are more complicated, but independently marked processes may serve as
useful and important null models.

Another model whose components have a high degree of independence is the
random superposition model. This model is relevant for those point processes with
qualitative marks for which it is justified to separately consider the subprocesses Ni

consisting of points with mark i. These processes are assumed to be independent
and the whole point process results from a superposition or set-theoretic union of
these Ni. In other words, the points in each of the subprocesses are distributed
according to the interaction structure among points of the same type, but points
of different types are ‘ignored’. In an ecological context this is termed ‘population
independence’ (Goreaud and Pélissier, 2003).

Correlated marks are obtained by what is called ‘geostatistical marking’, i.e.
from the random field model, which was probably first used by Mase (1996). Its
construction is based on a (non-marked) point process N = �xn� and a stationary
random field �Z�x��, which is independent of N . The points of the marked point
process M are the xn of N , while the marks are derived from the random field:

m�xn� = Z�xn�	 (5.1.1)

Here the spatial correlations in the random field are reflected in M . If �Z�x�� has
positive correlations then points that are close together tend to have similar marks.

The random field model is appropriate in many applications and can be a good
approximation in other applications. However, patterns will often deviate from the
model at short inter-point distances since it does not model interaction among
points, i.e. situations where the mark of a point is dependent on the existence of
other points in close vicinity and their marks. Hence, the random field model is
rather unsuitable as a model of a pattern resulting from biological competition.

Even more complicated marking models have been discussed in the literature.
One of these is the model with intensity-weighted marks, a model in which point
density and mark sizes are closely coupled – both are controlled by a basic random
field, as explained in Section 6.8.

A very important type of marks, already mentioned on p. 196, are constructed
marks. Constructed marks reflect the geometry of the point configuration of the
neighbourhood of the points. Simple examples are d�x�, the distance from the point
x ∈ N to its nearest neighbour z1�x� in N , and nr�x� = N�b�x
 r�� − 1, the number
of further points within distance r from x. The behaviour of constructed marks may
be compared to that of natural marks and thus reveals information on a suitable
marking model. For example, consider constructed marks that describe the intensity
of the pattern around the points, such as d�x� and nr�x�. In a pattern where high
local point density corresponds to large (natural) marks, constructed marks and
natural marks are positively correlated, whereas in a pattern where high local point
density corresponds to small (natural) marks, they are negatively correlated.

A more realistic approach to constructing marks may be to use a statistical mark
construction model, i.e. to model the marks by means of a (linear) function of the
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location plus random error. Let c�x� be a mark constructed as discussed above. The
mark m�x� of point x may then be given by

m�x� = c�x� + ��x� 
 (5.1.2)

where ��x� is a random fluctuation. For instance, the constructed mark defined by

m�x� = a + bd�x� + ��x� 


where a and b are parameters and d�x� is as above, follows this pattern. This
yields marked patterns with small marks in areas of high point density if b > 0.
A stimulation effect operating in the opposite direction results from b < 0, where
in areas of high point density the marks tend to be large.

Example 5.1. Gold particles: mark models
Consider again the gold particle example introduced in Section 1.2.2 but now take
the marks of the gold particles into account, i.e. include the particles’ diameters in
the analysis. Here, two simple models based on the constructed marks d�x� and
nr�x� are considered. Figure 5.1 shows scatterplots for the natural marks m�xn�, i.e.
the diameters, as well as the two neighbourhood-related constructed marks d�xn�
and nr�xn�, based on the distance r = 30 �m. Since there is no apparent structure
in the plot one cannot assume that there is a relationship between the natural and
constructed marks. Apparently, the relationship between the pattern and its marks is
more complicated such that a different marking model would have to be considered
to describe this relationship, see p. 469.

Other, more sophisticated constructed marks are the areas or volumes of Dirichlet
or Voronoi cells around the points or exponential energy marks as used in the
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Figure 5.1 Scatterplots of natural and constructed marks for the gold particles:
(left) m�x� and d�x�; (right) m�x� and nr�x� for r = 30 �m.
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residual analysis in Section 4.6.4. Furthermore, many of the indices discussed in
Section 4.2.4 are related to suitable constructed marks.

Another form of close coupling of point positions and marks is realised by marked
Gibbs processes; see the references on p. 158. Finally, ecological and forestry
models may be mentioned which describe the evolution of plant communities and
forests controlled by growth and competition, in which point density decreases
over time, and marks, which describe plant size, increase; see, for example, Adler
(1996), Berger and Hildenbrand (2000), Bugmann (2001), Canham et al. (2003),
Chave (1999), Comas and Mateu (2007), Dubé et al. (2001), Pacala et al. (1993),
Pretzsch (2002), Pretzsch et al. (2002), Renshaw et al. (2007), Särkkä and Renshaw
(2006) and Uriarte et al. (2004).

5.1.4 Stationarity

The stationarity or homogeneity assumption considerably simplified the statistics
of non-marked point processes (see Chapter 4), and this is similar for marked
point patterns. Of course, stationarity of a marked point process M = ��xn�m�xn���
automatically implies that the point process N of the points xn without the marks
is stationary as defined in Sections 1.6 and 4.1.

However, the formal definition of a stationary marked point process also involves
the marks. It is analogous to the definition in the non-marked case, i.e. it considers
the process M along with a translated process, denoted by Mx and defined as
follows. If M = ��x1�m�x1��
 �x2
m�x2��
    � then

Mx = ��x1 + x�m�x1��
 �x2 + x�m�x2��
    � 	 (5.1.3)

This means that in the translated marked point process the marks stay the same but
the points are translated.

This yields the following definition: a marked point process M is stationary if
and only if

M
d= Mx for all x ∈�d 
 (5.1.4)

i.e. if the marked point process M and the marked point process translated by x
have the same distribution. The definition of isotropy is analogous.

This invariance property has important consequences, which will become clear
below, for example in (5.1.9). The property also determines which marks may be
suitably used in a marked point pattern analysis. Quantities which are closely related
to the objects that are represented by the points (such as size, diameter, height) are
reasonable marks, as are constructed marks such as the distance of a point in the
process to its nearest neighbour. However, the methods described in this book may
not be applied to patterns with marks such as the distance from a point in the process
to a fixed origin o of the coordinate system, since translations change these marks.
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5.1.5 First-order characteristics

As indicated above, a larger number of first- as well as higher-order summary
characteristics have to be considered for marked point patterns than for non-marked
patterns. This is because the characteristics describe both the points and the marks.
In addition, different characteristics are used for qualitative and quantitative marks.

In the stationary case two different types of first-order characteristics are used,
one that concerns the points, i.e. the intensity �, and another one that describes the
marks, i.e. the mark probabilities pi for qualitative marks or the mark d.f. F��m�
for quantitative marks.

The intensity � is the same as the intensity introduced in Section 4.2.3 for the non-
marked case: the mean number of points per unit area or volume, or, in other words,
the intensity of the point process N which results from M by removing the marks.

With qualitative marks, the mark probability pi may be interpreted as the proba-
bility that the typical marked point has mark i. If the random variable � describes
the mark of the typical point, then

pi = P�� = i� for i = 1
 2
    	

The quantity pi is simply the relative intensity

pi = �i/� 


where �i is the intensity of the sub-point process Ni of points with mark i. The
mean number of points of M in the set B with mark i is equal to

E�M�B × �i��� = �pi��B� 	 (5.1.5)

With quantitative marks, the mark distribution function F��m� describes the distri-
bution of the marks irrespective of the point positions. A more technical mathemat-
ical definition of F��m� is given below. However, it may be easier to understand
the notion of a mark distribution function by initially considering the following two
heuristic interpretations.

(a) Frequentist interpretation. One heuristic explanation may consider the
empirical analogue of the mark d.f. This means considering a (large) obser-
vation window W and collecting the marks m�x1�,    
 m�xn� for the points
x1,    
 xn in W . As in classical statistics, the corresponding empirical d.f.
F̂n is

F̂n�m� = 1
n

n∑
i=1

1�m�xi� ≤ m�
 (5.1.6)

i.e. F̂n�m� is the relative frequency of points with marks smaller than m. The
statistical estimation of mark d.f.s follows this pattern (see Section 5.2.3).
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(b) Typical-point interpretation. Assume that it is possible to select a marked
point from the infinitely many marked points in M such that each of these
has the same chance of being selected. The corresponding mark is a random
variable, which is denoted here by � . Then

F��m� = P�� ≤ m� 	 (5.1.7)

This means that the mark d.f. is the classical d.f. of � , i.e. F��m� is the
probability that � is smaller than m.

The following provides a rigorous mathematical derivation of the mark d.f.
defined in (5.1.9) below. Consider for an arbitrary set B in �d the mean number of
points of M in B with marks smaller than m. Denote this mean by

E�M�B × �−�
m��� 	

Due to the translation invariance of marks

E�M�B × �−�
m��� = E�M�Bx × �−�
m��� for all B and all x ∈�d 	

Consequently, similar to the explanation of the intensity in Chapter 4 on p. 175,
the quantity

E�M�· × �−�
m���

is a multiple of the area or volume (or the Lebesgue measure), i.e.

E�M�B × �−�
m��� = �m��B� 


with a non-negative factor �m depending on m. Choosing B = 1 clearly shows that
the above may be interpreted as the intensity of the sub-point process of M of points
with marks smaller than m. Note that its complement, i.e. the same expression for
marks larger than m, is sometimes called an m-at-risk point process.

If m = �, the marks do not need to be considered since all marks are smaller
than � and

M�B × �−�
��� = N�B� 


which yields E�M�B × �−�
���� = ���B�. Hence �� = �, whereas of course

�−� = 0


since there cannot be a point with mark smaller than −�. Finally, m1 ≤m2 implies
�m1

≤ �m2
.
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Due to these properties, the ratio �m/� is a distribution function which depends
on the variable m and is termed the mark d.f.,

F��m� = �m/� for − � < m < � 	 (5.1.8)

The mark d.f. satisfies

E�M�B × �−�
m��� = �F��m���B� 	 (5.1.9)

Often a mark probability density function f��m� exists with

F��m� =
m∫

−�
f��x�dx or f��m� = F ′

��m� 	

The mean mark � is the expectation of � and is given by

� =
�∫

−�
mf��m�dm =

�∫
−�

mdF��m� 	 (5.1.10)

The mark variance �2
� is the variance of � and is given by

�2
� =

�∫
−�

�m − ��2f��m�dm =
�∫

−�
�m − ��2dF��m� 	 (5.1.11)

The intensity function ��x
m� (introduced on p. 35) of a stationary marked point
process with mark p.d.f. f��m� has the simple form

��x
m� = �f��m� 	 (5.1.12)

Note here that for an independently marked point process the mark d.f. coincides
with the d.f. F�m� of the members of the sequence �mn� mentioned on p. 296,

F��m� = F�m� 	 (5.1.13)

A similar theory exists for qualitative marks.

Campbell theorem

In the stationary case the following simple Campbell theorem holds for marked
point processes:

E

( ∑
�x�m�x��∈M

f�x
m�x��

)
= �

∫
�d

�∫
−�

f�x
m�dF��m�dx 
 (5.1.14)
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where the right-hand side simplifies to

�
∫
�d

�∫
−�

f�x
m�f��m�dmdx or �

�∫
−�

∫
�d

f�x
m�dxf��m�dm

if a mark p.d.f. exists, and for qualitative marks,

�
∫
�d

∑
�i�

pif�x
 i�dx or �
∑
�i�

pi

∫
�d

f�x
 i�dx 	

Example 5.2. Two applications of the Campbell theorem
(1) Seed density. Consider again the seed dispersal example discussed in
Example 1.2(1) on p. 34. The aim is now to calculate the mean of the seed density
Sf at y = o. Equation (5.1.14) yields

ESf = �
∫
�2

�∫
0

md��x��f��m�dmdx

= 2���

�∫
0

rd�r�dr 


where f��m� is the mark p.d.f. and � the corresponding mean.
The choice of y = o is natural in the stationary case since the mean value is the

same for all observation points and hence any point may be chosen as an observation
point. Note that the mean seed density is constant while the seed density fluctuates
randomly across the space.

(2) Counting birds. Consider now the birds in Example 1.2(b), which are marked
by their sound levels. The mean number of birds heard at position y = o, denoted
by Sf , is

ESf = �

�∫
0

∫
�2

(
1 − a�x�

m

)
+

f��m�dxdm

= 2��

�∫
0

m/a∫
0

(
1 − ar

m

)
f��m�drdm

= 2��

�∫
0

m

2a
f��m�dm = ���/a 


where � is the mean mark. The formula

ESf = ���/a (5.1.15)
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can be used to estimate � if a and � (as ‘bird parameters’, characterising the
distance at which the bird is audible) are known: if n is the number of birds heard
at some position, then

�̂ = n
a

��
(5.1.16)

is an unbiased estimator of �.

5.1.6 Mark-sum measure

By way of illustration, consider the marked point pattern M of a forest, with x
denoting tree location, m�x� the cross-sectional area of the trunk of the tree at x,
and S�B� the sum of all cross-sectional areas in a set B. In other words, the aim is
to consider S�B�, the mark-sum measure of a marked point process M , i.e. the sum
of the marks of all points x in the set B.

The mark-sum measure is defined as

S�B� = ∑
�x�m�∈M

m1B�x� (5.1.17)

for arbitrary subsets B of �d. If the marks are all positive, S is a random measure.
If the marked point process M is stationary, S is also stationary, i.e.

S�B�
d= S�Bx� for all x ∈�d and all subsets B 	

Then S has also an intensity, the mark-sum intensity, which is denoted by �S ,

�S = E
(
S
(

1
))


 (5.1.18)

i.e. �S is the mean mark-sum per unit area or volume.
Note that in forestry the intensity �S based on cross-section area marks is

commonly used rather than the intensity �. Whereas �S is called the ‘basal area’,
� is, clumsily, referred to as ‘mean number of stems per hectare’.

By the Campbell theorem (5.1.14) with f�x
m� = m1 1 �x�, �S turns out to be
simply

�S = �� 	 (5.1.19)

5.1.7 Palm distribution∗

Similar to the approach in Section 4.1, Palm distributions can also be defined for
marked point processes. (Note that this section assumes that the reader is familiar
with the treatment of Palm distributions in Section 4.1.)
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Palm distributions PL and means EL with respect to mark sets L may be consid-
ered, where L⊂�, for example L= �−�
m� or L= �i�. They yield the conditional
distribution of M given that there is a point of M with mark in L at the origin o.
By analogy with (4.1.6) and (4.1.7), PL and EL can be defined by

���W�PL�M ∈�� = E

( ∑
�x�m�x��∈M

1W �x�1L�m�x��1��M − x�

)

 (5.1.20)

where M ∈� means that the marked point process M has property �, and

���W�EL���M�� = E

( ∑
�x�m�x��∈M

1W �x�1L�m�x����M − x�

)
(5.1.21)

for any function ��M� which assigns a real number to the marked point process M .
Consider the following two specific cases:

• Let L= �−�
�� and � be a process property that is not based on the marks
(such as � = ‘M has three points in some set’). Then

PL�M ∈�� = Po�N ∈�� 


where, as above, N is the point process M without the marks.

• � = ‘there is a point of M at the origin o with mark m�o� ≤ m’. Then

P��M ∈�� = F��m� 	

Hence it is clear that the mark d.f. F��m� may be regarded as a characteristic
related to the Palm distribution.

The distribution PL may be refined based on P�o
m�, which describes M given
that there is a point with mark m at o. This means that

PL�M ∈�� =
∫
L

P�o
m��M ∈��f��m�dm	

Campbell–Mecke formula

Let f�x
m
M� be a function depending on a point x in �d, a real number m and a
stationary marked point process M . Then

E

( ∑
�x�m�x��∈M

f�x
m�x�
M�

)
=�

∫
�d

�∫
−�

E�o
m��f�x
m
M−x��f��m�dmdx 	 (5.1.22)

Here E�o
m� denotes the expectation with respect to P�o
m�.
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5.2 Summary characteristics
5.2.1 Introduction

Summary characteristics for stationary marked point processes serve a similar
purpose as those for non-marked processes: they are numbers or functions that
describe specific aspects of the point distribution. In the analysis of marked point
patterns the marks of the points are also taken into account, resulting in a more
interesting and diverse theory.

Summary characteristics for marked point processes are constructed based on
the same ideas as those for non-marked point processes. Therefore this section
assumes that the reader is familiar with Section 4.2, where summary characteristics
for non-marked processes are treated in detail. In particular, this section does not
discuss the various edge-correction methods again.

However, there are some problems which edge effects which do not occur in
the analysis of non-marked processes. The mark information assigned to a point
does not always originate directly from its location x as, for example, for tree
marks m1�x� = species or m2�x� = dbh. Consider, for instance, marked points that
describe particles, where x = centre and m�x� = volume. To determine the volume,
information from the neighbourhood of x has to be taken into account, which may
be impossible to obtain for particles that are near the edge of the window W .

5.2.2 Intensity and mark-sum intensity

The intensity � is the mean number of points per unit area or volume as discussed
in Section 4.2.3, where the statistical estimation is also described in detail.

Usually it is not at all necessary to take the marks into consideration when
assessing the intensity of a pattern. Indeed, if the points are well-defined, the marks
do not play any role in the estimation of the intensity. Problems may arise with
large objects or particles, e.g. microscopic objects such as in Figures 1.6 and 5.7,
where the ‘points’ xn have been constructed in the analysis as particle centres. In
this case it is not always clear whether all particles in a window should be included
in the analysis, e.g. if the particles cross the edge of the window W . Spatial statistics
provides efficient methods for the estimation of � in these cases, which are based
on geometrical ideas: the Gundersen frame and the equation-system method, which
uses, in the planar case, estimates of area, boundary length and Euler number of all
particles in W ; see Stoyan et al. (1995, p. 222).

For qualitative marks, the intensity �i of the individual sub-point process of the
points with mark i is of particular interest. It is estimated by

�̂i =
∑
x∈W

1�m�x� = i�/��W� 
 (5.2.1)

i.e. by counting the points with mark i in W and dividing this by the area or volume
of W .
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The mark-sum intensity �S is a first-order characteristic which takes the marks
into account. It yields the mean of the sum of all marks of the points per unit area
or volume and satisfies

�S = ��


where � is the mean mark; see (5.1.19). The standard estimator of �S is

�̂S = ∑
x∈W

m�x�/��W�
 (5.2.2)

i.e. the marks of the points in the observation window W are summed and divided
by window area or volume. This estimator simply follows the definition of �S and
is unbiased. It is also consistent if the marked point process M is ergodic. The
estimator assumes that it is possible to count all points in W and to determine
their marks. For cases where this is impossible, methods such as those discussed in
Section 4.2.3 may be used.

Voronoi cell weighting

This estimation method is based on two types of marks for the points x, the natural
marks m�x� and the constructed area marks a�x�, where a�x� is the area of the
Voronoi cell containing the point x. It is similar to the approach described on
p. 191, but now for those points in the pattern that are closest to the measurement
locations yi the natural marks mi are also used. �S may then be estimated as

�̂S
D = 1
n

n∑
i=1

mi

ai

	 (5.2.3)

Its unbiasedness can be shown by analogy with that of �̂V .

Line transect sampling

This estimation method is the same as on p. 192, but the marks mi are considered
in addition to the points in the strip �. The estimator of �S is then

�̂S
H = 1
2L

n∑
i=1

mi

�vi


 (5.2.4)

where L is the length of the strip and �vi describes the visibility of point i as
explained on p. 192.
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Angle count sampling

In forestry, the following estimator has been applied to tree patterns described by
marked points �x�m�x�� = �tree position; dbh] to determine the ‘basal area’

�S = �

4
��2 


where �2 = �2
m + �2 is the second moment of the diameter mark, i.e. �

4 �2 is the
mean cross-section area of the trees. The Bitterlich estimator (Bitterlich, 1947,
1984) for one observation point y1 is

�̂S = sin2 �
∑

�x�m�x��∈M

1
(

�x − y1� <
m�x�

2 sin �

)
	 (5.2.5)

Usually several points yi are used and the results are averaged. In the estimator
given by (5.2.5) all trees that can be seen from y1 within an angle larger than a
fixed size 2� are counted (see Figure 5.2). Analytically the counting condition is

�x − yi� <
m�x�

2 sin �



which means that only trees that are sufficiently thick and not too far away from
the point of observation are counted.

In theoretical terms, here the Bitterlich field plays a role, the shot-noise field
�B�x�� defined by

B�x� = ∑
�xi�m�xi��∈M

1
(

�xi − x� <
m�xi�

2 sin �

)
	

y1

Figure 5.2 The Bitterlich count. The observer is positioned at y1. All trees seen
within an angle larger than 2� are counted, where � is a fixed angle. In the example
shown only one tree (indicated by hatched shading) is counted.
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Large marks

As noted above, the marks m�xn� of the points xn are sometimes based on the
configuration of the objects or their centres in some neighbourhood of xn, for
example when particles of considerable size are analysed or in the context of
constructed marks such as the distance d�xn� from xn to its nearest neighbour. In
these cases it is possible that the marks of some of the points x cannot be determined
if only information from inside the observation window W is available. Then local
plus sampling and local minus sampling (or nearest-neighbour edge-correction)
yield unbiased estimators:

�̂+ = ∑
�x�m�x��∈M

1W⊕m�x��x�

��W ⊕ m�x��
(5.2.6)

and

�̂− = ∑
�x�m�x��∈M

1W
m�x��x�

��W 
 m�x��
	 (5.2.7)

Here m�x� denotes either the particle connected with x or a constructed numerical
mark such as d�x�.

In the first case (which contradicts the general assumption in this book that the
marks are numerical) W ⊕ m�x� and W 
 m�x� are interpreted in a set-theoretic
sense (see Soille, 1999, and Stoyan et al., 1995, for the notation). In the second
case, they are interpreted as W⊕m�x� and W
m�x� with

W⊕m�x� = W ⊕ b�o
m�x�� and W
m�x� = W 
 b�o
m�x�� 	

5.2.3 Mean mark, mark d.f. and mark probabilities

This section discusses the statistical estimation of the mark d.f. F��m�, the
mean mark � and the mark probabilities pi introduced in Section 5.1.5. These
describe the probability distribution of the marks, i.e. their random fluctuations.
These characteristics do not have a spatial nature, and hence classical statistical
methods may be applied to estimate them. Problems occur only when the marks
cannot be determined for all points if only data from inside the window can
be used.

Recall that, as a distribution function, F��m� may be interpreted as the probability
that the mark � of the typical point of M is smaller than (or equal to) m.
Furthermore, pi is the probability P�� = i� that the typical point has mark i, in
other words Po�m�o� = i�. The quantity � is the mean of the mark of the typical
point, i.e. the mean corresponding to F��m� or �pi�.
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The standard estimators are

F̂��m� = ∑
x∈W

1�m�x� ≤ m�/N�W� 
 (5.2.8)

�̂ = ∑
x∈W

m�x�/N�W� (5.2.9)

and

p̂i = �̂i/�̂ 
 (5.2.10)

where N�W� is the number of points of M in the observation window W (without
the marks) and �̂i and �̂ are the intensity estimators given in (5.2.1) and (4.2.10).
All three estimators are quite natural. F̂��m� is simply the fraction of points x in
W with m�x� ≤ m and p̂i the relative frequency of points with mark i. The mark
variance �2

� as well as the standard deviation �� may be estimated in a similar way.

Example 5.3. Mark probabilities and mark probability density function for the
amacrine cells and gold particles

The sample of amacrine cells in Section 1.2.1 consists of 294 points in total,
152 of which are on-cells (i = 1) and 142 are off-cells (i = 2). Consequently, the
empirical mark probabilities are p̂1 = 0	517 and p̂2 = 0	483.

Figure 5.3 shows the estimated mark p.d.f. for the gold particles introduced on
p. 6. The gold particle diameters have a nearly symmetric density function and the
estimated mean mark and mark standard deviation are

�̂ = 6	42 �m and �̂� = 0	87 �m 	

0.0

0.2

0.4

0.6

0.8

3 4 5 6 7 8 9 10
m (x) (in µm)

Figure 5.3 Mark p.d.f. for the gold particle diameters.
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The three estimators above are not unbiased, since N�W� is random. However,
they are ratio-unbiased, since they are quotients of unbiased estimators. For example,
�̂ can be rewritten as

�̂ = �̂S/�̂

with �̂S from (5.2.2) and �̂ from (4.2.10) or any of the other estimators in
Section 4.2.3.

In the estimation of the mark d.f. it may be helpful to know that F��m� can be
expressed in terms of a mark-sum intensity �S for a suitably constructed mark c�x�:

�S = �F��m� 


where

c�x� =
{

1 for m�x� ≤ m


0 otherwise	

Then the mark-sum intensity �S based on these c-marks is the same as �F��m�.
In cases with constructed marks, the mark d.f.s may be estimated based on
estimation approaches for the nearest-neighbour distance d.f. D�r� as described in
Section 4.2.6. Indeed, the neighbour distance d.f. can be regarded as a mark d.f. –
specifically as a mark d.f. of constructed d�x�-marks.

Note an important consequence from the discussion on p. 209: �S and � should
be estimated based on the same principle. It is, for example, usually not helpful
to combine an estimator of � of very high precision with some non-edge-corrected
estimator of �S .

5.2.4 Indices for stationary marked point processes

Indices are numerical summary characteristics that describe the distribution of point
processes in a simple and elegant way. They were discussed for non-marked point
patterns in Section 4.2.4. In the context of stationary marked point processes they
have a similar role; again location- and point-related indices may be distinguished.
However, the more complicated aim is to find indices that provide useful infor-
mation on the relative positions of the points dependent on the marks and on the
correlations of the marks.

Note that the construction of indices, including those considered in Chapter 4,
may actually be described based on marked point process terminology. This provides
a more systematic understanding of the nature of point-related indices, even for
non-marked patterns.

Given a marked point process M (or a non-marked process N ), new marks
c�xn� are constructed for its points as follows. For all points xn the c�xn� are
determined according to some rule. This means that xn is considered as the origin
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of a new coordinate system and c�xn� is then determined by some function f . In
mathematical terms this means that the marked point process M is shifted such that
point xn is moved to the origin, i.e. M−xn

= ��x1 −xn
m�x1��
    
 �o�m�xn��
    �
is constructed and the numerical value f�M−xn

� is calculated for the resulting marked
point pattern by means of some function f . An example in the non-marked case is

c1�xn� = f�M−xn
� = distance from o to the nearest point in M−xn




which is simply d�xn�, the distance from xn to its nearest neighbour. An example
in the marked case is the mark

c2�xn� = f�M−xn
� = sum of the marks of M−xn

in b�o
 r�, not counting o


which is the number of points of M in the disc or sphere b�xn
 r�, not counting xn.
In this way, the points xn are allocated new marks c�xn�. By construction, the

marked point process Mc = ��xn� c�xn��� is stationary if M is stationary.
Valuable information is contained in the corresponding mark distribution, i.e.

in the mark d.f., the mean mark or, if the c�xn� are integer-valued, the mark
probabilities. A well-known example of such a mark d.f. is the nearest-neighbour
distance d.f. D�r�, which is based on d�x�-marks.

Based on the mean (constructed) mark, indices may be derived in a straight-
forward way. These are often standardised by considering the ratio with other
point process characteristics, such as the intensity �, to allow comparison between
patterns with different intensities.

This subsection discusses several indices, which mainly originate in forestry and
ecology, where they have been popular and useful, for example, in characterising,
for a given plant, the strength of competition from its neighbours. However, these
indices may be suitably applied in other areas as well, for instance in physics or
materials science. The exposition commences with a location-related index and
then presents point-related and distance-dependent indices related to the nearest
neighbour, the k nearest neighbours or, finally, to all neighbours within some given
distance r.

A location-related index

The index of dispersion defined by (4.2.22) characterises the variability of numbers
of points in test sets. A similar index, the index of mark-sum dispersion, may be
defined for marked point patterns:

IMD = varS�B�

����B�

 (5.2.11)

where B is some test set, for example a disc of radius r. In other words, IMD
is the ratio of the variance of the sum of the marks of the points in B and the
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corresponding mean. Clearly, the numerical values depend on the set B or on the
radius r.

Point-related indices for qualitative marks

Bivariate aggregation index. The Clark–Evans aggregation index CE defined
by (4.2.24) may be generalised to the bivariate case as

CE12 = mD	1
2 · 2
√

�2 	

Here, mD	1
2 is the mean distance from the typical point of type 1 (i.e. the typical
point of the subprocess of points with mark 1) to its nearest neighbour of type 2,
and �2 is the intensity of the subprocess of points of type 2. To facilitate the
comparison of this mean distance to a similar mean for an independently marked
Poisson process, the mean is multiplied by the factor 2

√
�2.

To understand this, consider a Poisson process of intensity � = �1 + �2 where
the points are independently marked as type 1 and type 2 points yielding two
subprocesses of points of type 1 and type 2 with intensities �1 and �2. For this
process the mean distance from the typical type 1 point to its nearest type 2 point
is 1

2
√

�2

, independent of �1.

Hence, values of CE12 greater than 1 indicate repulsion between the points of
type 1 and the points of type 2, and values smaller than 1 indicate attraction.

Segregation and mingling. Consider now, in the bivariate case, the probabilities
of all combinations of the mark of the typical point and the mark of its nearest
neighbour, i.e. the joint probabilities pkl that the typical point has mark k and its
nearest neighbour has mark l, where k, l = 1, 2. These four probabilities may be
summarised as in Table 5.2. p1 and p2 are the mark probabilities as discussed in
Section 5.1.5, and p·k is the probability that the nearest neighbour has mark k, irre-
spective of the mark of the typical point. Note that pi is not necessarily equal to p·i.

Clearly, the nearest-neighbour probabilities pkl describe important aspects of the
distribution of marks within a pattern and therefore useful indices can be derived
based on these.

Table 5.2 Nearest-neighbour table with probabilities pij .

Mark of NN

1 2

Mark of 1 p11 p12 p1

typical point 2 p21 p22 p2

p·1 p·2 1
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Coefficient of segregation. Pielou (1977) introduces an index that considers the
ratio of the observed probability that the typical point and its nearest neighbour
have different marks along with the same probability for independent marks, with
fixed p1 and p2:

S = 1 − p12 + p21

p1p·2 + p2p·1
	 (5.2.12)

Consequently, S = 0 if the marks are independent. If the nearest neighbour always
has the same mark as the typical point, then p12 =p21 =0 and S =1; if all neighbours
have different marks, then p11 = p22 = 0, and S is negative, with a minimum of
S = −1 for p1 = p2 = 1

2 .

Mingling index. The mingling index is defined here for general multivariate
processes. For the special case of a bivariate process it can be expressed in terms
of the pkl. The index compares the mark of the typical point to those of its k
nearest neighbours. Practical experience shows that in forestry applications it is
often sufficient to consider the first three or four neighbours, k=3 or 4; see Füldner
(1995) and Aguirre et al. (2003). The mingling index is defined as

Mk = 1
k

Eo

(
k∑

i=1

1�m�o� �= m�zi�o���

)

 (5.2.13)

which is the mean fraction of points among the k nearest neighbours of the typical
(or reference) point that have a mark different from that of the reference point.
Thus Mk characterises the mixture of marks.

The mingling index is based on the constructed mark

Mk�xn� = 1
k

k∑
l=1

1�m�xn� �= m�zl�xn��� 	 (5.2.14)

Here zl�xn� is the lth neighbour of xn and m�zl�xn�� its mark. That is, Mk�xn�
describes the fraction of the k nearest neighbours with a mark different from
that of xn.

When the marks of the typical point and its neighbours tend to be different, Mk

has a large value; in the opposite case the index shows that points with different
marks are segregated. In the bivariate case with independent marks,

Mki = 2p1p2 	 (5.2.15)
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Figure 5.4 Oak (type 1,) and beech trees (type 2,•) in a square window W of
side length 80 m. For a detailed description, see Pommerening (2002).

Example 5.4. Segregation and mingling index for two bivariate patterns
This example considers the pattern of the amacrine cells introduced in Section 1.2.1
as well as a pattern of oaks and beeches with 80 oak trees (1) and 164 beech
trees (2) in a square window W of side length 80 m from the Manderscheid 198
forest stand aged 118 years in the German federal state of Rheinland-Pfalz (see
Figure 5.4). These trees form an interesting mixed pattern, which is the result of
the clever work done by foresters whose aim is to harvest good-quality oak timber.
For them, the most important tree species in the forest is oak, which needs light,
while beech tolerates shade. Foresters use the beech trees to cast their shadow on
the oak stems to prevent epicormic growth of oaks, which would otherwise reduce
the timber quality. Beech trees that compete too strongly are removed to avoid
dominance in the forest. In these managed forests the oak and beech trees may be
considered having an equal degree of dominance (see Table 5.1) which is entirely
due to the management strategies applied by the foresters.

Visual inspection reveals that the pattern is not completely randomly mixed. The
beech trees appear in small clusters while the oaks have larger inter-tree distances
(which again is a result of the foresters’ work). The whole pattern (irrespective of
the marks) is somewhat irregular and similar to a sample from a Poisson process.
It was used in Mecke and Stoyan (2005) as a pattern which merits a test of CSR.
It is difficult to decide whether the pattern exhibits CSR based on visual inspection
alone and some tests of little power do not reject CSR. For this data set, the CSR
hypothesis can only be rejected with very powerful tests.
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The empirical nearest-neighbour probabilities p̂ij for the amacrine cell pattern
are as follows:

p̂ij p̂i·p̂·j

0.081 0.434 0.262 0.253
0.428 0.057 0.247 0.238

The p̂ij indicate that on- and off-cells frequently have a cell of the other type as
their nearest neighbour as p̂12 and p̂21 are relatively high. However, further analysis
will show that the two subpatterns are actually independent and that the pattern is
of class (a); see Table 5.1. Thus there is no attraction among type 1 and type 2
points, but it is the regularity of the two subpatterns which makes it unlikely that
two points of the same type are nearest neighbours.

For the oaks and beeches the corresponding probabilities are as follows:

p̂ij p̂i·p̂·j

0.044 0.265 0.080 0.229
0.215 0.476 0.179 0.513

The p̂ij show that there is some repulsion between trees of the same type and some
mutual attraction between the two tree species, which is weaker than in the pattern
of the amacrine cells. Further analysis will reveal that the two subpatterns are not
independent and that the pattern is of class (b); see Table 5.1.

Table 5.3 shows the mingling and segregation indices for the two patterns above,
as well as for the concrete pattern (see Example 5.5) and the mounds and palms
pattern (see Example 5.7).

Table 5.3 The indices M4 and S (mingling and segregation)
for four point patterns M4, in comparison with M4i as in
(5.2.15): (a) amacrine cells; (b) oaks and beeches; (c) concrete,
see Example 5.5; (d) = mounds and palms, see Example 5.7.

Case M4 M4i S

(a) 0.86 0.50 −0	73
(b) 0.48 0.44 −0	18
(c) 0.36 0.36 0	07
(d) 0.37 0.43 0	09



Stationary Marked Point Processes 317

The values in the third column of Table 5.3 are the mingling indices expected in
the case of independent marks, with the observed frequencies of type 1 and type 2
points. For the amacrine cells clear differences between mark and nearest-neighbour
mark are indicated, while for the oaks and beeches these are not so clear. In contrast,
for the concrete pattern and the mounds and palms the marks of typical point and
nearest neighbour seem to be independent.

Point-related indices for quantitative marks

Nearest-neighbour correlation indices. Stoyan and Stoyan (1992, 1994) intro-
duce a general principle for the construction of nearest-neighbour indices of the
form

Eo�t�mark of typical point, mark of nearest neighbour�� 


where t�m�o�
m�z1�o�� is a suitable test function. In the following, three examples
of this type are briefly discussed.

The nearest-neighbour mark product index is given by

nmm = Eo�m�o� · m�z1�o���/�2 
 (5.2.16)

where � is the mean mark. A value of nmm larger than 1 indicates that the mean
mark product of the typical point and its nearest neighbour is above the average,
i.e. it indicates some mutual stimulation. By definition, nmm = 1 if the marks are
independent and nmm < 1 if there is mutual inhibition.

A related index is the nearest-neighbour mark index,

n·m = Eo�m�z1�o��/� 	 (5.2.17)

This is the normalised mean mark of the nearest neighbour of the typical point. A
value of n·m larger than 1 means that points close to other points tend to have large
marks. Again independent marks imply n·m = 1, and n·m < 1 indicates inhibition.

Finally, the nearest-neighbour variogram index

n� = 1
2

E�m�o� − m�z1�o���2

/
�2

� (5.2.18)

denotes half the squared deviation between the mark of the typical point and the
mark of its nearest neighbour. It is related to the mark variogram �m�r� discussed on
p. 344. Theoretically, it can take any positive value. It characterises the variability of
the marks of points that are close together. Constant marks imply that n� =0, while
for independent marks n� =1 because of the normalisation by the mark variance �2

�.
Example 6.4 demonstrates the application of these indices in an example from forest
ecology, which aims to show that the marks are independent, and in Example 5.8
they are used with the same aim for the gold particles.
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Mark dominance index. Using an approach similar to the mingling index, Hui
et al. (1998) introduce the index

Dok = 1
k

Eo

(
k∑

l=1

1�m�o� > m�zl�o���

)

 (5.2.19)

which includes the k nearest neighours zl�o� of the typical point, for l=1
 2
    
 k.
It is the fraction of points of the k-neighbourhood of the typical point which have
a smaller mark than the typical point.

The mark dominance index is based on constructed marks that are defined by

Dok�xn� = 1
k

k∑
l=1

1�m�xn� > m�zl�xn��� 
 (5.2.20)

where zl�xn� is the lth neighbour of point xn. For example, if the points are tree
positions and the marks tree size parameters such as dbh or height, Dok�xn� is the
proportion of trees in the k-neighbourhood that are dominated by the tree at xn.

The approach applied in the mingling and dominance index can be used to
construct further indices; see Füldner (1995), Hui et al. (1998) and Pommerening
(2002).

The following two indices are based on r-neighbourhoods, i.e. on the points
within a distance r from the reference tree.

Hegyi index. Hegyi (1974) introduced a competition index that reflects the
strength of competition in a point pattern. It is based on the following constructed
mark:

H�xn� =
nr �xn�∑
l=1

m�zl�xn��

m�xn��1 + �xn − zl�xn���

 (5.2.21)

where �xn − zl�xn�� is the distance between xn and its lth nearest neighbour zl�xn�.
The index for the whole pattern is again the corresponding mean mark H . Large
values indicate a high degree of competition pressure on the points of the pattern.

Moravie index. The index introduced by Moravie et al. (1999) is again a compe-
tition index which aims to quantify the competition pressure resulting from close
neighbours expressed in terms of their heights. It is based on the following mark:

Mo�xn� =
n>

r �xn�∑
l=1

� − arctan
(

m�xn�−m�zl�xn�

�xn−zl�xn��
)

�

 (5.2.22)

where n>
r �xn� is the number of points in b�xn
 r� with a mark larger than m�xn�.

This index was introduced in the context of trees, and the marks m�xn� were tree
heights.
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Further competition indices based on influence areas around trees and their
mutual intersections were considered in Bella (1971); see Berger and Hildenbrandt
(2000) for a more recent paper; see also the references on p. 159.

Statistical estimation of the indices

In the following, only naive estimators without edge-correction are presented, since
Pommerening and Stoyan (2006) show that indices based on nearest neighbours
should be estimated without any edge-correction. This means that it is only neces-
sary to take into account the ‘nearest neighbours within the window W ’. The
notation used in the estimators is simplified with reference to Table 5.4. As usual,
n = N�W� is the total number of points in W . Each of these points is used as a
reference point. Here a is the number of all pairs of points where the reference
point and its nearest neighbour in W both have mark 1. The frequencies b, c and d
are defined analogously. Clearly r = a + b, and similarly for s, u and v.

Then the naive estimators of CE12, Mk and S are

ĈE = 2d12

√
�̂2 
 (5.2.23)

M̂k = b + c

n
(5.2.24)

and

Ŝ = 1 − n�b + c�

rv + su

 (5.2.25)

where

d12 = 1
m

m∑
i=1

d12
i

Table 5.4 Nearest-neighbour frequency table
showing the observed numbers.

Mark of NN
in W

1 2

Mark of 1 a b r
reference point 2 c d s

u v n
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with d12
i the distance from the ith type 1 point to its nearest type 2 neighbour and
summation over all type 1 points, and

�̂2 = s

��W�
	

Finally,

D̂ok = 1
n

n∑
i=1

1
k

n∑
j=1

1�mi > mn�i
j�� (5.2.26)

and

n̂mm = 1
n

n∑
i=1

�mimn�i��/�̂2 
 (5.2.27)

where mi is the mark of the ith point in W and mn�i� that of its nearest neighbour
in W ; �̂ is the estimated mean mark as in (5.2.9).

5.2.5 Nearest-neighbour distributions

Functional summary characteristics based on nearest neighbours are as useful for
marked point processes as they are for non-marked processes. Now, of course, they
also take the marks into account. Processes with qualitative and quantitative marks
have to be considered separately.

Qualitative marks

In the following, di�x� denotes the distance from x to the nearest point of type i
in M .

Spherical contact d.f. Hs
i�r�. For non-marked point patterns, the spherical
contact distribution function Hs�r� was defined in Section 4.2.5. The definition
is very similar for processes with qualitative marks. The spherical contact d.f. is
simply applied to each of the subpatterns, i.e. by considering Hs
i�r� for Ni, the
subprocess of points with mark i, for i = 1
 2
    :

Hs
i�r� = P�di�o� ≤ r� for r ≥ 0 	 (5.2.28)

This is the d.f. of the distance from the origin o to the nearest point of type i. Note
that the sum

k∑
i=1

Hs
i�r�
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may be usefully interpreted on its own – it is the mean number of different marks
in a spherical test set of radius r.

Nearest-neighbour distance d.f. Dij�r�. Similarly, one may consider the d.f.
of the distance from the typical point of type i to its nearest neighbour of type j.
Thus

Dij�r� = Poi�dj�o� ≤ r� for r ≥ 0 	 (5.2.29)

The distribution function Dij�r� may be used to reveal differences in neighbourhood
relations in multivariate point patterns. The Dij�r� may indeed differ for different
indices i and j. This is the case, for example, for the stand of oaks and beeches
considered in Example 5.4.

In the case of random labelling, the Dij�r� are

Dij�r� = 1 −
�∑

k=0

Po�nr�o� = k��1 − pj�
k (5.2.30)

or

Dij�r� = 1 − Eo��1 − pj�
nr �o�� 


where, as above, nr�o� is the number of points in the sphere of radius r around the
typical point and pj the mark probability for points of type j.

For an independently marked Poisson process this formula simplifies to

Dij�r� = 1 − exp�−�pj�r2� for r ≥ 0 	

Recall the J -function introduced in Section 4.2.7, which is a ratio of D�r� and Hs�r�,
and note that Van Lieshout (2006a) developed a theory of multivariate J -functions.

Mingling distribution �Mi�k�. Consider the k closest neighbours z1�xn�,    ,
zk�xn� of the point xn. Count the number Mk�xn� of those neighbours that have a
mark different from that of xn, i.e. m�xn� �= m�zl�xn��. The corresponding discrete
mark distribution is the mingling distribution,

Mi�k = Po�Mk�o� = i� for i = 0
 1
    
 k � (5.2.31)

Mi�k is the probability that the typical point has i neighbours with a different mark
among the k nearest neighbours. This distribution is more informative than the
mingling index in Section 5.2.4, which is simply the mean of the distribution �Mi�k�,
i.e.

Mk = 1
k

k∑
i=0

iMi�k 	
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Quantitative marks

Distributions based on nearest-neighbour information may also be defined for
patterns with quantitative marks. The following example shows an approach which
uses the marks of the nearest neighbours rather than the distances to them.

Mark dominance distribution. Consider again the k nearest neighbours
z1�xn�, 	 	 	 
 zk�xn� of a point xn and count the number NDk�xn� of these neigh-
bours with a mark larger than xn, i.e. m�zl�xn�� > m�xn�. The corresponding mark
distribution is the mark dominance distribution,

Doi�k = Po�NDk�o� = i� for i = 0
 1
    
 k	 (5.2.32)

Doi�k is the probability that the typical point has i neighbours with a larger mark
among the k neighbours. Large Doi�k for large i indicate a high competition load
on the typical point. The mark dominance index Dok given by (5.2.19) is the mean
of the distribution �Doi�k� divided by k.

Estimation of the nearest-neighbour characteristics

The nearest-neighbour characteristics for qualitative marks can be estimated in
a very similar way for univariate processes, i.e. processes without marks (see
Chapter 4). This means that Hs
i�r� is estimated in the same way as Hs�r�, by
applying the estimator Hs�r� to each of the sub-point processes Ni. Similarly, Dij�r�
is estimated by analogy with D�r�. Its nearest-neighbour estimator is

D̂ij�r� = �̂ij
n�r�
/

�̂i
nn (5.2.33)

with

�̂ij
n�r� = ∑
x∈Ni

1W
dj �x�
�x�1�0 < dj�x� ≤ r�

/
��W
dj�x��

and

�̂i
nn = ∑
x∈Ni

1W
dj �x�
�x�
/

��W
dj�x�� 


where dj�x� denotes the distance from x to the nearest point of type j.
The nearest-neighbour edge-correction method can also be applied to the other

characteristics. It yields, for example,

M̂i�k =
( ∑

�x�m�x��∈M

1W
dk�x�
�x�1�Mk�x� = i�

/
��W
dk�x��

)/
�̂nn
k
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where dk�x� is the distance from x to the kth neighbour of x, Mk�x� the number
of neighbours of x with a mark different from that of x among the k nearest
neighbours, and

�̂nn
k = ∑
�x�m�x��∈M

1W
dk�x�
�x�/��W
dk�x�� 	

5.3 Second-order characteristics for marked point
processes

5.3.1 Introduction

Second-order characteristics for marked point processes are as useful and as popular
a tool as for non-marked point process. Here, the aim is to characterise not only
the variability of the point distribution but also the variability of the marks and,
further, to describe correlations among marks and points. A large variety of charac-
teristics may be constructed for this purpose; this section presents some of the most
useful ones. Section 7.5 presents significance tests for checking the significance of
statistically detected mark correlations.

Again, the exposition first discusses characteristics for processes with qualitative
marks, i.e. bi- and multivariate processes.

5.3.2 Definitions for qualitative marks

Recall that Ni is the sub-point process of points with mark i and intensity �i,
i = 1, 2,    , m, where m denotes the number of different marks. Eoi denotes the
mean with respect to the Palm distribution for points of type i, i.e. the conditional
mean given that the typical point, which is located at o, is of type i.

Multivariate or inter-type K-functions

The K-function as defined in Section 4.3.1 may be generalised for multivariate
point processes in a straightforward way. Define Kij by

�jKij�r� = Eoi�Nj�b�o
 r��� for r ≥ 0 	 (5.3.1)

Thus, �jKij�r� is the mean number of points of type j in a disc (sphere) of radius r
centred at the typical point of type i. Since i �= j the point at o is not counted. For
i = j the notation may be simplified to Ki�r�, which is the classical K-function for
the subprocess Ni.

Note that

Kij�r� = Kji�r� for r ≥ 0 	 (5.3.2)
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This important equation is discussed in detail below, in the context of partial pair
correlation functions gij�r�.

Remark. It is often useful to also consider what one might call ‘condensed’ K-
functions Ki·�r� and K·j�r�, defined by

�Ki·�r� = Eoi�N�b�o
 r�\�o��� for r ≥ 0 (5.3.3)

and

�jK·j�r� = Eo�Nj�b�o
 r�\�o��� for r ≥ 0 	

The interpretation of these functions is similar to that of the Kij�r�: �Ki·�r� is the
mean number of points (irrespective of their marks) in a disc (sphere) of radius
r centred at the typical point of type i, which itself is not counted. Similarly,
�jK·j�r� is the mean number of points of type j in a disc (sphere) of radius r
centred at the typical point (irrespective of its mark). The condensed K-functions are
given by

�Ki·�r� =
n∑

j=1

�jKij�r� and K·j�r� =
n∑

i=1

piKij�r�

with pi = �i/�.

The multivariate K-functions may be used to reveal information as to which
marking model (see Section 5.1.3) may be suitable for a specific process.

If the marks are independent, i.e. if the marking may be regarded as random
labelling, then all Kij�r� coincide, and

Kij�r� = K�r� for all i and j 
 (5.3.4)

where K�r� is the K-function of the entire point process N , i.e. M irrespective of
the marks. This is an effect of the definition of the K-functions by normalisation.

In the case of the random superposition model discussed on pp. 297 and 370,

Kii�r� = Ki�r� and Kij�r� = bdrd for i �= j 
 (5.3.5)

where Ki�r� is the K-function of the subprocess Ni.
Differences between the Kij�r� for different indices i and j and between the

Kij�r� and K�r� indicate correlations between the marks. Note, however, that the
functions gij�r� and pij�r� introduced below are more suitable for the detection of
these correlations in an exploratory analysis than the cumulative functions. This
is analogous to the non-marked case as discussed in Section 4.3. And again the
Kij-functions should be used for the construction of statistical tests, which test
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the null hypothesis of independent marking vs. superposition. This is discussed in
Section 7.5.

Again, as in Section 4.3, it is useful to transform the Kij�r� to multivariate
L-functions via

Lij�r� = d

√
Kij�r�

bd

for r ≥ 0 	 (5.3.6)

Partial or cross-pair correlation functions gij �r�

The mark-independent product density ��r� introduced in Section 4.3.1 can be
refined for multivariate point processes in a straightforward way by defining the
product densities �ij�r�.

The term �ij�r�dxdy describes the probability of finding a point of type i in
an infinitesimally small sphere b�x� of volume dx and a point of type j in an
infinitesimally small sphere b�y� of volume dy, where the distance between the two
sphere centres is r.

Clearly,

�ij�r� = �ji�r� for all i and j and r ≥ 0 	 (5.3.7)

As for Kij above, i = j yields the second-order product density of the subprocess
Ni.

By analogy with the construction of the pair correlation function in (4.3.10),
partial pair correlation functions gij�r� may be derived from �ij�r� by normalisation,

gij�r� = �ij�r�/�i�j for r ≥ 0 	 (5.3.8)

The symmetry of the �ij�r� in (5.3.7) implies that

gij�r� = gji�r� for all i and j and r ≥ 0 	 (5.3.9)

And again, as in (4.3.8), the partial pair correlation function may also be defined
as the derivative of the Kij-function,

gij�r� = K′
ij�r�

/
dbdrd−1 for r ≥ 0 	 (5.3.10)

It is now straightforward to show that (5.3.2) holds, by (5.3.10) together with (5.3.9)
and since Kij�0� = 0 for all i and j.

The global behaviour of the partial pair correlation functions gij�r� is the same
as the behaviour of the classical g�r�, i.e.

gij�r� ≥ 0 (5.3.11)
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and

lim
r→� gij�r� = 1 (5.3.12)

for all i and j. They may be interpreted along the lines of g�r�; see the detailed
discussion in Section 4.3.4 and the examples below. Most importantly, they are
valuable tools for finding a suitable marking model (see Section 5.1.3) for a specific
marked point pattern.

In the case of random labelling,

�ij�r� = pipj��r�

and

gij�r� = g�r� for r ≥ 0 
 (5.3.13)

where g�r� is the pair correlation function of the whole non-marked point process
N . The random superposition model yields

gii�r� = gi�r� and gij�r� ≡ 1 for i �= j 


where gi�r� is the pair correlation function of the subprocess Ni.

Example 5.5. Partial pair correlation functions for bivariate point patterns

(a) The data for the amacrine cells shown in Figure 1.2 consist of locations of
cells in the retina of a rabbit. Refer to Section 1.2.1 for more background
to this data set and the nature of the different cells. Points of type 1 are
on-cells and points of type 2 are off-cells. The relationship between the two
subprocesses formed by points of type 1 and 2 is analysed here. Based on the
biological function of the cells, one may assume that the two types of points
do not dominate each other, thus one of the cases (a) or (b) in Table 5.1 is
given.

The pattern is analysed with the partial pair correlation functions gij�r� for i,
j = 1, 2. Figure 5.5 shows estimates of these functions obtained with the estimator
(5.3.49) with bandwidth h = 13	2 �m.

Apparently, ĝ11�r� and ĝ22�r�, the estimates of the pair correlation functions for
the sub-point processes of cells of type 1 and 2, are rather similar. The type 2
process (off-cells) is perhaps slightly more regular than the type 1 process, as
indicated by the higher first maximum at around r =75. The range of correlation in



Stationary Marked Point Processes 327

0.0

0.5

1.0

1.5

2.0

gij (r)

r (in µm)
0 30 60 90 120

Figure 5.5 Empirical partial pair correlation functions ĝij�r� for the amacrine
cells: ĝ11�r� (solid line), ĝ12�r� (dashed line), ĝ22�r� (dotted line).

both patterns seems to be around 100 �m. The soft-core form results from projection
effects; the cells form hard-core patterns in their layers.

The function ĝ12�r�, one of the functions describing inter-type correlations
between the patterns of type 1 and type 2 points, fluctuates around the value 1.
These fluctuations are irregular and show no clear pattern. One may thus assume
that the ‘true’ g12�r� is constant and equal to 1, reflecting independence between
the two patterns. A formal test of the corresponding independence hypothesis is
presented in Section 7.5.

(b) Consider again the oaks and beeches introduced in Example 5.4. The aim
is to identify the beech cluster size, the inhibition distance of oaks and the
nature of the correlation between oaks (1) and beeches (2).

Figure 5.6 shows the estimated partial pair correlation functions ĝij�r�. Clearly,
these functions differ substantially: g11�r� indicates a hard-core process for the
oaks (with minimum inter-point distance 2.0 m). It reflects some short-range order
(reflected in the maxima at r ≈3 m and 7 m, probably caused by the first and second
neighbour of the typical oak).

In stark contrast, ĝ22�r� for the beeches resembles the pair correlation function of
a cluster process with a cluster diameter of 1 m; the minimum inter-point distance
for points of type 2 is 0.5 m. Note also the maximum of ĝ22�r� at r ≈ 6 m, which
may reflect the distance between beech clusters.

The function ĝ12�r�, which describes the correlation between type 1 and type 2
points, is difficult to interpret in this example. It remains below 1 for almost all
r, indicating repulsion between the two types of points. The range of correlation
seems to be around 8 m for �i
 j� = �2
 2� and (1,2), whereas for (1,1) it appears to
be larger, around 12 m.
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Figure 5.6 Estimated partial pair correlation functions ĝij�r� for the oak and beech
forest obtained by (5.3.19) with bandwidth h = 1 m: ĝ11�r� (solid line), ĝ12�r�
(dashed line), ĝ22�r� (dotted line).

(c) Consider now the pattern of hard grains and air pores in a sample of
concrete as shown in Figure 5.7. This is a planar section through a sample of
self-flowing refractory castable, a specific type of concrete as described in
Section 1.2.5. The nearly spherical corundium grains appear in white, while
the matrix (the binding system) appears in grey; the air pores are shown in
black. This material was produced for research purposes and investigated
in Hubalková and Stoyan (2003) based on planar sections and in Ballani

Figure 5.7 Planar section through a sample of concrete: (left) original image, 130
grain centres (2) in white and 41 air pores (1) in black, side length of the square
around 10 mm; (right) point pattern of grain centres () and (•).
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(2006) and Ballani et al. (2005) using three-dimensional information from
computerised tomography. The number of air pores is unusually large.

Any statistical analysis of a planar section as shown in Figure 5.7 can only
yield limited results due to the substantial amount of information lost through the
reduction from three to two dimensions. Sophisticated stereological methods have
been developed that may be used to determine the spatial density of particles per
unit volume and the pair correlation function of sphere centres (see Stoyan et al.,
1995) from planar sections. However, further stochastic modelling makes sense
only if the aim is to yield information on the three-dimensional structure. Based on
three-dimensional information, Ballani (2006) and Ballani et al. (2005) were able
to show that a modified hard sphere Gibbs process model is the best model for the
three-dimensional structure, better than an RSA model or a packing model.

There are, however, two questions that can probably be answered based on the
planar data:

1. Are there any spatial correlations between the grains (points of type 2) and
pores (points of type 1)? One would expect that type 2 points dominate as
corundium is much harder than air.

2. Can the pattern of points of type 1 be considered completely random? The
point distribution in the figure seems to confirm this assumption, but this
should of course not be the case if the answer to question 1 was ‘yes’.

On the one hand, the partial pair correlation function g11�r� in Figure 5.8 shows
that the corundium particles exhibit a certain degree of clustering. The partial pair
correlation function g22�r�, on the other hand, indicates that the pores seem to form
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Figure 5.8 Estimated partial pair correlation functions ĝij�r� for the concrete
sample: ĝ11�r� (solid line), ĝ12�r� (dashed line), ĝ22�r� (dotted line).
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a soft-core process; stereological experience even suggests that the arrangement of
grain centres in three-dimensional space is similar to that of centres of a random
system of hard spheres as discussed in Section 6.5. This is indeed the case; see the
discussion in Ballani et al. (2005).

There is probably some interaction among the pores, which causes neighbouring
pores to coalesce to form larger and isolated pores. As a result, with reference to
question 2, the pattern formed by the points of type 1 cannot be considered random.

The partial pair correlation function g12�r� has a shape similar to that of g22�r�.
It is difficult to interpret.

It is useful to combine gij-functions for a more refined correlation analysis. The
quantity

�ij�r� = �jgij�r� − �igii�r� for r ≥ 0 (5.3.14)

is a good indicator of correlations between i and j points. Positive values of �ij�r�
indicate that, at distance r, there are more points of type j than points of type i
around a point of type i.

Note that it is probably not advisable to consider the differences

gij�r� − gii�r�

or

Kij�r� − Kii�r� 	

Consider, for example, a bivariate point process with two independent subprocesses,
the first of which is a cluster process with g11�r� > 1. Due to the independence of
the subpatterns, g12�r�≡1. Assume, in addition, that the intensity of N1 is small but
that the intensity of N2 is large. As a result, there are mainly points of type 2 in the
neighbourhood of a point of type 1, despite the clustering of the points of type 1.
This is indicated by �ij�r�, while the difference gij�r� − gii�r� is negative and not
influenced by the intensities.

In ecology, species diversity and species richness in ecosystems have long been
discussed in the context of ecosystem functioning, where high degrees of species
richness or diversity have often been associated with healthy and well-functioning
ecosystems. Several indices have been derived in this context, of which the Simpson
index and Shannon index have been the most prominent; see Krebs (1998). Neither
of these indices take the spatial structuring in ecosystems into account.

Shimatani (2001) introduced a spatial Simpson index in the context of genetic
marks, which may be written in terms of pair correlation functions as

��r� = 1 −
m∑

i=1

�igii�r�

/
�2g�r� 	

It can be interpreted as the probability that two arbitrarily chosen points occurring
at a distance r have different marks.
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Mark connection functions pij �r�

The mark connection functions pij�r� are another refined tool for the correlation
analysis of qualitative marks. The quantity pij�r� can be interpreted as the condi-
tional probability that two points at distance r have marks i and j, given that these
points are in the point process N . Due to stationarity and isotropy the two points
can be chosen as o and r, where r is any point at distance r from o. Thus

pij�r� = Por�m�o� = i
m�r� = j� 	

In practice, the pij�r� are calculated by means of

pij�r� = �ij�r�

��r�
for r > 0 (5.3.15)

or

pij�r� = pipj

gij�r�

g�r�
for r > 0 	 (5.3.16)

This implies that pij�r� is defined only for those r for which g�r� > 0. For r = 0,

pii�0� = 1 and pij�0� = 0 for i �= j 


using the partial product density defined on p. 325. It is important to know the
asymptotic behaviour of the mark connection function, i.e. the behaviour of pii�r�
and pij�r� as r tends to infinity. In applications, one can use this to find the range
of mark correlation:

lim
r→� pii�r� = p2

i

and

lim
r→� pij�r� = 2pipj for i �= j 	

If the marks are independent (random labelling), all pij�r� are constant, it is

pii�r� ≡ p2
i and pij�r� ≡ 2pipj for i �= j 
 (5.3.17)

while for the random superposition model

pii�r� = �2
i gi�r�

�2
i gi�r� + �2

j gj�r� + 2�1�2

(5.3.18)

and

pij�r� = 2pipj for i �= j 


where gi�r� is the pair correlation function of the subprocess Ni.
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Shimatani (2001) considers the function

�i�r� = 1 − pii�r�


which yields the probability that two points with an inter-point distance of r have
marks different from i, i.e. in the specific application discussed in the paper the
probability that the trees represented by the points are from different species.

Note that gij�r� and pij�r� provide different information, similarly to the way the
probability P�A ∩ B� and the conditional probability P�A ∩ B�C� provide different
information for random events.

To illustrate this, assume that gij�r� has a very small value for some r = r ′ due to
a small number of pairs of points of type i and j with an inter-point distance of r ′.
Assume further that, irrespective of the marks, pairs of points with a distance of r ′

are very rare in M in general. Then g�r ′� is also small. However, pij�r� can still be
close to 1, if the few pairs of points with a distance of r ′ are mainly �i
 j� pairs.

Example 5.6. Mark connection functions for three bivariate point patterns
(a) The mark connection functions pij for the amacrine cells are shown in Figure 5.9.
Since 51.7 % of the points are on-cells, the estimates of the long-range probabilities
or theoretical limits of p̂ij�r� for r → � are

p̂1 = 0	267
 p̂2 = 0	233
 p̂12 = 0	500	

Clearly, the p̂ij�r� in Figure 5.9 tend to converge towards these limits. Apparently,
only some random fluctuations of the functions can be detected for distances from
r =100 �m onwards, and thus the correlation range of the pattern is around 100 �m.
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Figure 5.9 The estimated mark connection functions p̂ij�r� for the amacrine data:
p̂11�r� (solid line), p̂12�r� (dashed line), p̂22�r� (dotted line).
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This is perhaps not so clear in the graph of the partial pair correlation function in
Figure 5.5.

The similarity of the curves for p̂11�r� and p̂22�r� again reflects the similarity
of the distribution of the points of type 1 and 2; the increase in these functions
reflects the same behaviour of the sub-point patterns as the increase in the partial
pair correlation functions for r ≤ 60 �m.

The function p̂12�r� suggests that there is a high probability that the points in
pairs of points with small distances are of different types. This is less clear from
the ĝij�r� in Figure 5.5, but simple reasoning shows that there is inhibition among
points of type 1 as well as among points of type 2. In a pair of points that are close
together those points are very likely to be of different type. It is natural that this
effect disappears for r > 100 �m, where the partial pair correlation functions begin
to fluctuate around 1.

If the two sub-point processes N1 and N2 were really independent, the pattern may
be interpreted as resulting from the superposition of two independent processes, as
discussed in Section 6.2.3. If g1�r� and g2�r� are the corresponding pair correlation
functions and �1 and �2 the corresponding intensities, this yields the pair correlation
function g�r� of the pattern resulting from the superposition as

g�r� = (
�2

1g1�r� + �2
2g2�r� + 2�1�2

)/
��1 + �2�

2 for r ≥ 0 	 (5.3.19)

Figure 5.10 shows the pair correlation function estimate ĝ�r� for all 294 cells in
Figure 1.2 and for comparison the function resulting from (5.3.19) by plugging in ĝii�r�
for gi�r� and �̂i for �i (the intensity estimates, e.g. �̂1 = 152/�1060 × 662) �m−2).
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Figure 5.10 The estimated pair correlation function ĝ�r� of all amacrine cells
(ignoring the marks) (solid line) and the function obtained from (5.3.19) with
gi�r� = ĝii�r� from Figure 5.5 (dashed line). The similarity between the functions
may be considered as ‘evidence’ in favour of the hypothesis that the pattern may
be regarded as a superposition of two independent components.
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The two curves are very similar which provides further evidence for the
independent-superposition hypothesis.

This hypothesis can be more formally tested by significance tests based on simu-
lation; see Example 7.4 for more details. It turns out that the random superposition
hypothesis is accepted on the basis of the given data.

The amacrine data were analysed very carefully by means of the Kij-functions in
Diggle et al. (2006). The authors fitted a bivariate (i.e. marked) pairwise interaction
point process (as in Section 3.6) to the data. The ‘effective range’ of correlation
for the pattern was estimated as 90 �m. Diggle et al. (2006) refined the analysis by
distinguishing ‘functional’ and ‘statistical’ independence: since the points represent
cells, there is a natural minimum distance between points of type 1 and 2 (which is
observed as 4	9 �m in the pattern) such that the patterns cannot be completely or
statistically independent. However, there was evidence for functional independence.

(b) The empirical mark connection functions pij�r� for the oaks and beeches are
shown in Figure 5.11. They look less irregular than the ĝij�r�. For large r they tend
to converge to the values

p̂1 = 0	107 
 p̂2 = 0	452 
 p̂12 = 0	441 


which result from the fact that 32.8 % of the trees are oaks.
The function p̂11�r� reflects inhibition among the oak trees and p̂22�r� mutual

attraction among the beech trees. Both ‘forces’ seem to level out at a distance of
8 m. The maxima of p̂12�r� and p̂22�r� at r = 2 m and r = 5 m, respectively, are very
prominent. The first maximum seems to reflect relations between clusters of beeches
and their oak neighbours, while the second one may correspond to relationships
between pairs of neighbouring clusters.
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Figure 5.11 Empirical mark connection functions p̂ij�r� for the oak and beech
forest obtained by (5.3.50) with bandwidth h = 1	0 m: p̂11�r� (solid line), p̂12�r�
(dashed line), p̂22�r� (dotted line).
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Figure 5.12 Empirical mark connection functions p̂ij�r� for the concrete sample
obtained with bandwidth h=0	4 mm: p̂11�r� (solid line), p̂12�r� (dashed line), p̂22�r�
(dotted line).

The above analysis has provided a detailed picture of the spatial correlation in
the oak and beech forest, both biologically and statistically: the oak trees form a
hard-core pattern, whereas the beech trees form clusters in weak dependence on the
oak trees.

(c) The mark connection functions pij�r� for the pattern of hard grains and air
pores in the concrete sample are shown in Figure 5.12. The functions reveal a range
of correlation of around 0.8 mm. For small r, p11�r� indicates some attraction among
points of type 1, which is further evidence of clustering of the pores. In contrast,
p22�r� indicates repulsion among the grains, supporting the soft-core hypothesis.
Finally, the values of p12�r� around r = 0	4 mm indicate attraction between pores
and grains.

In summary, there is clearly some interaction between pores and grains, but this
interaction cannot be simply classified as complete dominance of the grains over
the pores.

Example 5.7. Termite mounds and juvenile palms in the African tree savannah
Barot et al. (1999) and Barot and Gignoux (2003) studied ecological relationships in
plant societies in the humid tree savannah of Lamto, Côte d’Ivoire. They focused on
the analysis of the palm species Borassus aethiopum, which is a common tall palm
tree of this savannah exhibiting a specific root foraging strategy: palm root density
increases significantly in nutrient-rich patches, even far away from the actual stem
of the palm. The savannah is a strongly heterogeneous environment, where the soil
is globally nutrient-poor, but tree clumps and termite mounds constitute nutrient-
rich patches. The palms were classified with respect to sex and age (seedlings,
juveniles and adults). The life cycle of B. aethiopum starts with dense clusters of
seedlings around mother trees. Seedlings that grow at some distance from these
females are the most likely to survive and grow to become juveniles. The level
of competition among the juveniles is very high and they are mainly found on
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Figure 5.13 Pattern formed by 104 palms �+� and 48 termite mounds ��� in
a 250 × 150 m window W from the tree savannah of Côte d’Ivoire. Courtesy of
S. Barot. Reproduced by permission of the Ecological Society of America.

nutrient-rich patches. Some of them develop the above-mentioned root foraging
strategy and develop into adults.

This example describes an analysis of one of the patterns, termed TS3, which
consists of 104 juvenile palms (type 1, referred to simply as ‘palms’) and 48
termite mounds (type 2) in a 250 × 150 m rectangle of tree savannah, as shown in
Figure 5.13. Visual inspection reveals the main properties of the pattern: it appears
fairly random and looks statistically homogeneous. On the one hand, the pattern of
mounds is rather regular, which may indicate that around each mound there has to
be a mound-free region to provide enough room for the termite colonies. On the
other hand, the palms exhibit clusters, and these clusters are often close to mounds.

This triggers the idea of a ‘functional’ relationship between the mounds and
palms, in the sense of case (d) in Table 5.1, where the mounds ‘control’ the
positions of palms by attraction. Point process statistics may be used to quantify
this relationship.

Figure 5.14 shows the pair correlation function g2�r�=g22�r� of the point pattern
formed by the mounds. It looks like the pair correlation function of a soft-core
point process, as discussed in Section 4.3.4. The first local maximum of g2�r� is
at around 30 m, which is apparently the most frequent inter-mound distance. Some
pairs of points with a distance of less than 10 m have given the function a soft-core
form. The range of correlation rcorr is around 40 m, thus the window is perhaps
slightly too small for a thorough analysis of the mound pattern.

The cluster behaviour of the palms is clearly reflected in the corresponding pair
correlation function g1�r� = g11�r� in Figure 5.14. If the mounds are regarded as
cluster centres (with many ‘empty’ clusters) of a cluster process formed by the
palms, the pattern cannot be a simple Neyman–Scott process, where, as explained
in Section 6.3.2, the parent points form a Poisson process. In the given situation,
the pattern formed by the mounds is clearly not CSR and hence the parent points
or clusters centres cannot be assumed to form a Poisson process.
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Figure 5.14 The estimated partial pair correlation functions for the mounds (dotted
line) and the palms (solid line). For the mounds the pair correlation function looks
like that of a soft-core process, whereas the function for the palms shows a behaviour
similar to that of a cluster process. The function indicates a range of correlation of
r ≈ 40 m. Additionally, the figure shows the partial pair correlation function ĝ12�r�
(dashed line).

The shape of the pair correlation function for the palms suggests a cluster diameter
of around 15 m and a range of correlation of perhaps 40 m. The maximum at r ≈
30 m may be easily interpreted: it is linked to the maximum of the pair correlation
function g�r� of mounds at r ≈ 25 m.

The correlation between the palms �i = 1� and mounds �i = 2� may be charac-
terised by both the partial pair correlation function ĝ12�r� and the mark connection
functions p̂ij�r� for i, j = 1, 2. Figure 5.14 shows ĝ12�r�, which indicates strong
attraction between points of type 1 (palms) and type 2 (mounds) for small r (r ≤10).
For larger values of r it almost coincides with ĝ2�r�, the estimated pair correlation
function for the mounds. This may also be a result of the clustering of points of
type 1 (palms) around points of type 2 (mounds).

Figure 5.15 shows the three functions pij�r�. p11�r� is perhaps the most interesting
mark connection function for this example. For small r, the values of p11�r� are
very large. This is easy to understand since pairs of points that are close together
are most likely to be two palms and the number of palms is high. The steep decline
near r ≈ 10 m might reflect the size of the clusters. There are not many pairs of
points with a distances of around 17 m, and any pair at this distance is rarely a
pair of palms. The distinct maximum at r ≈ 32 m reflects pairs of palms from
different clusters. The conditioning used in the definition of p11�r� provides clearer
evidence of this second-cluster behaviour (which is not visible in g11�r�), since the
number of pairs of points with a distance around 32 m is small in comparison to that
for 5 m.
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Figure 5.15 The estimated mark connection functions p̂ij�r� for the palms and
mounds: p̂11�r� (solid line), p̂12�r� (dashed line), p̂22�r� (dotted line).

The behaviour of p12�r� is in some sense complementary to that of p11�r�. There
are of course pairs of points of type 1 and 2 at small values of r, but these are
relatively rare since usually only a single mound forms the cluster centre with some
palms surrounding it. Therefore, the pairs of points of type 1 and 2 are the most
frequent among the few pairs of points with an inter-point distance of 17 m.

Finally, the behaviour of p22�r� is rather different from the behaviour of p11�r�
above. It has small values for r<15 m, then increases linearly and is nearly constant
for larger r. The fluctuations are around 0.1, which equals p̂2

2, with p̂2 = 48
104+48 .

Clearly, the small values for r < 15 m reflect the soft-core property of the mound
pattern.

The statistical analysis shows clearly that the palms form a cluster process with
the mounds as cluster centres or parent points. The diameter of the clusters is around
15 m.

In the following, the cluster size is estimated quantitatively. Note that here the
aim is to estimate neither the number of points per cluster nor, more precisely,
the probability pk that the typical cluster consists of k points. (It is clear that p0

is large due to the large number of mounds without any associated palms.) The
aim is rather to approximately estimate the probability density dp�r� of the random
distance of palms from ‘their’ mound. For this purpose the relationship between
distance and point density given by formula (3.4.7) in Example 3.4 is used, where
p�r� corresponds to g12�r�. Hence, for small r,

d̂p�r� ∝ 2�rĝ12�r� 


assuming that the pattern of mounds is regular and only one cluster of palms
contributes. (Note that, of course, ĝ12�r� = ĝ21�r�.)
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Figure 5.16 The function 2�r�̂1ĝ12�r� for the palm and mound data. The addi-
tional dashed curve shows a rough non-normalised estimate of dp�r�.

Figure 5.16 shows the result. Clearly, only the first part of the curve of
2�r�̂1ĝ12�r� for small r should be seriously considered, since the curve for r> 15m
results from pairs of points of type 1 in different clusters. The probability density
dp�r� is skewed and is similar to the distance probability density corresponding to
the modified Thomas process considered in Section 6.3.2. In this case

d�r� = r

�2
exp

(
− r2

2�2

)
for r ≥ 0 	

The deviation parameter is around � = 3–5 m.
The palm and mound data can also be used to demonstrate the potential of another

statistical method. An important research issue in the context of cluster processes
is the development of suitable algorithms that can be used to reconstruct (or esti-
mate) the locations of cluster centres; see Van Lieshout (1995), Van Lieshout and
Baddeley (1995, 2002) and many other papers. This is of interest, for example, in
seismology where researchers aim to separate background seismicity from earth-
quake clusters; in this context the term ‘declustering’ has been used (see Zhuang et
al., 2002).

A number of algorithms have been developed that can be applied to simulated
data or to real clustered point patterns. However, for real data the true cluster
centres, if there are any, are typically unknown and it is impossible to verify whether
the method has identified the right centre. The palm and mound data provide a nice
example which is well suited for testing the methods on real data if the mounds are
assumed to be cluster centres.

M.N.M. van Lieshout kindly analysed the palm and mound data in this way. She
used only the 108 palm locations (and did not know the locations of the mounds),
considered them as points in a cluster process, reconstructed the cluster centres and
compared them with the mound positions.
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She assumed that the clusters are i.i.d with respect to their centres. For the cluster
distribution she assumed that the numbers of points per cluster follow a Poisson
distribution with mean � and their locations are given by a radially symmetric
Gaussian distribution with variance �2 (refer to the modified Thomas process in
Section 6.3.2). In accordance with dp�r� as shown in Figure 5.16, � was chosen to
be 4 m.

Given the cluster centres z1
    
 zc, the joint density of the n points x1
    
 xn,

f�x1
    
 xn�z� with z = �z1
    
 zc�


can be given in closed from (Van Lieshout, 1995). The maximum likelihood estimate
of z is the pattern ẑ maximising f�x�z�,

ẑ = arg maxz f�x�z� � (5.3.20)

here both c and the locations z1,…,zc have to be determined.
Numerical experience gathered by Van Lieshout shows that this naive approach

does not work well and ‘detects’ too many cluster centres, which are close together.
Therefore, a Bayesian approach was used which started from an a priori distribution
p�z� of z with sufficiently large inter-point distances. Van Lieshout used a nearest-
neighbour Markov point process (see Section 3.6). Thus (5.3.20) is replaced by

ẑ = arg maxz f�x�z�p�z� 	 (5.3.21)

Numerical methods as described in Van Lieshout and Baddeley (2002) were used
to derive the estimate ĉ = 39 and the cluster centres shown in Figure 5.17. Since
the approach is based entirely on the palm data, it is clear that the statistical method
cannot detect empty clusters, i.e. mounds without palms, and hence ĉ < 48.
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Figure 5.17 Reconstructed cluster centres shown as × for the point process of
palms and the pattern of mounds. Both patterns are fairly similar, which indicates
that the cluster reconstruction algorithm works very well.
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5.3.3 Definitions for quantitative marks

This section discusses second-order characteristics for marked point patterns with
quantitative marks. The spatial correlations considered here are of a very different
nature than correlations in processes with qualitative marks. Whereas the latter
processes are analysed for aggregation or repulsion among the subprocesses, the
analysis of processes with quantitative marks typically focuses on questions such
as the numerical differences among the marks dependent on the distances of the
corresponding points. For instance, the marks of neighbouring points may tend to
be smaller (larger) than the mean mark �, i.e. there may be inhibition (stimulation)
of the marks.

Another issue concerns the numerical similarity of the marks of neighbouring
points. This means that these points may tend to have similar marks, but the opposite
behaviour may be also observed, i.e. specific points may dominate the points in
their vicinity and thus have a large mark, while the other points have small marks
(see Example 6.4).

Second-order characteristics for point processes with quantitative marks can be
introduced in an elegant, yet abstract and theoretical way. Before embarking on
this, this subsection initially discusses a special case, which leads to the classical
mark correlation function kmm�r�.

Consider the mean

cmm�r� = Eor�m�o� · m�r�� for r > 0 	 (5.3.22)

In the notation used in this book, this is the conditional mean of the product of the
marks of a pair of points in M with distance r, where o is the origin and r any point
with distance r from o. The condition is that there are points in o and in r. A naive
statistical approach to determining such a mean is to consider all pairs of points
in the marked point pattern of interest with an inter-point distance approximately
equal to r and to calculate the mean of the products of the marks of these pairs of
points.

A value of cmm�r� that is larger than the squared mean mark �2 is indicative of
some form of mutual stimulation among the points resulting in increased marks at
distance r.

This mean may be normalised by dividing it by �2 (assuming �2 �= 0) to allow
comparison of the strength of mark correlation between different processes. This
yields the mark correlation function kmm�r�, which is defined by

kmm�r� = cmm�r�

�2
for r > 0 	

Note that �2 can be interpreted as cmm���, the value of cmm�r� for very large r,
where the marks are independent and the mean of the product is equal to the product
of means. The term ‘mark correlation function’ was introduced in Stoyan (1984).
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Figure 5.18 Estimated mark correlation function k̂mm�r� for the gold particle data.
The bandwidth h = 3 lu. The curve is shown only for r ≥ 5	65 lu since for the
smaller distances the estimated pair correlation function ĝ�r� vanishes.

It is also used in this book, even though it is not exactly a correlation function in
the strict sense of the word, as discussed in Schlather (2001a). However, it is an
elegant function describing important aspects of the spatial correlation of marks.

Example 5.8. Gold particles: mark correlation function for the diameter marks
Figure 5.18 shows the empirical mark correlation function k̂mm�r� for the diameter
marks of the gold particles. The function is not defined for r ≤ 5	66 since there
ĝ�r� = 0. It reveals that the marks are indeed spatially correlated, but perhaps not
very strongly. The empirical mark correlation function k̂mm�r� is a little above 1
and decreases continuously. That there are indeed correlation between the marks is
shown by the mark variogram �m�r� in Figure 5.21. The range of mark correlation
indicated by kmm�r� seems to be short, perhaps rcorr = 15 lu.

For comparison consider also the empirical nearest-neighbour mark product index
n̂mm. Its value is 1.03, i.e. very close to 1. Hence one might conclude that the marks
of points that are close together are independent. Similarly, the nearest-neighbour
mark index n·m = 1	02. However, the nearest-neighbour variogram index n̂� = 0	69
is clearly smaller than 1. It indicates that the marks of points that are close together
tend to be similar. In Example 5.10 the mark variogram provides further support
for this initial impression.

The approach used in the derivation of the mark correlation function kmm�r�
may be generalised in a natural way. This generalisation is discussed below to
provide readers with a method that may be used to construct tailor-made correlation
functions for specific questions relating to the analysis of marked point patterns.

The summary characteristics are constructed based on so-called test functions
t�m1
m2�, which depend on two marks m1 and m2, where m1 =m�o� and m2 =m�r�.
For instance, for the mean cmm�r� the test function is
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t�m1
m2� = m1m2 	

Different test functions may be used for this purpose; this book focuses on the
following ones:

t1�m1
m2� = m1m2 


t2�m1
m2� = m1 


t3�m1
m2� = m2 


t4�m1
m2� = 1
2

�m1 − m2�
2 


t5�m1
m2� = �m1 − ���m2 − �� 


t6�m1
m2� = min��m1 − m2�
� − �m1 − m2�� 	

Note that t1�m1
m2� is the test function that is used to construct cmm�r�.
In the following, the other test functions are explained, apart from t6, which is

discussed in Section 5.4.3 in the context of angular marks.

Non-normalised mark correlation functions ct�r�

A number of second-order characteristics may be defined that can be subsumed
under the term ‘non-normalised mark correlation functions’. Analogously to the
construction of the mean cmm�r�, the summary function ct�r� given some test
function t�m2
m2� is defined as

ct�r� = Eor�t�m�o�
m�r��� for r > 0 	 (5.3.23)

This is the mean of t�m�o�
m�r�� given that there are points of M at locations o
and r. See below for a definition of ct�0� for r = 0.

In particular, for the test function t = t1, ct�r� is the same as cmm�r� and is, as
indicated, the mean of the product of the marks of a pair of points in M with
inter-point distance r.

For t = t2, ct�r� is denoted cm·�r� and called the r-mark function. It is the mean of
the mark of the first point of a pair of points in M with interpoint distance r. Note
that, by definition, it is not the same as the mean mark � introduced in Section 5.1.
If the marks are not independent, it is likely that

cm·�r� �= �


since the existence of a partner point at distance r can influence the mean mark.
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For t = t3, ct�r� is of no interest since it leads to the same function as for t2, with

cm·�r� = c·m�r� for all r > 0 


where c·m�r� is simply the analogue of cm·�r� based on the test function t3.
For t = t4, ct�r� is denoted �m�r� and called the mark variogram. It characterises

the squared differences between the marks of pairs of points with a distance of
r. The mark variogram has small values if the marks of the points in a pair with
inter-point distance r are similar and large values if the marks differ strongly. It is
typically used in the non-normalised form. For large r it converges towards �2

�, the
variance of the marks:

lim
r→� �m�r� = �2

� 	

Note that despite the similarity in name and character, the mark variogram �m�r�
and the geostatistical variogram differ strongly in their definition. Geostatistical
variograms characterise regionalised variables, i.e. random fields as introduced in
Section 1.8.3. They are variables that take values at any location; examples include
nitrogen levels in the soil, water temperature and annual rainfall. The corresponding
variograms satisfy some analytical conditions covered in the geostatistical literature
(see also Appendix C), and statisticians have gained thorough experience in their
interpretation. In contrast, the marks of a marked point process are given only at the
points of the process, and otherwise are undefined. Thus there is no regionalised
variable and only a mark variogram can be estimated. Statistical experience shows
that the shapes of mark variograms would be considered rather unusual for geosta-
tistical variograms (see Wälder and Stoyan, 1996; Kint et al., 2003). Attempts to
interpret these with geostatistical logic in mind may fail. This is true, in particular,
if a pattern exhibits inter-point interactions which favour point pairs with small and
large marks in close proximity. Example 6.4 is an example of this case, whereas
the mark variogram in Example 5.10 has a form similar to that of a typical geosta-
tistical variogram. The confusion with variograms results from uncritical use of
geostatistical software, misled by the similar structures of marked point pattern and
geostatistical data, which both consist of points and Z-values.

For t = t5, a characteristic is obtained that is akin to Moran’s I-statistic and is
defined as

I�r� = Eor��m�o� − ���m�r� − ���
/

�2
� 
 (5.3.24)

which is a normalised c�r�; see Shimatani (2002). This is a marked point process
analogue of the classical (Pearson) correlation coefficient.

The following assumes that the marks are positive, but the theory can be gener-
alised to be applicable to negative as well as positive marks, where modifications
are necessary if � = 0.
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The value of the non-normalised mark correlation function for r = 0 is defined
as

ct�0� = Eo�t�m�o�
m�o��� (5.3.25)

or

ct�0� =
�∫

0

t�m
m�f��m�dm


i.e. it is the mean of t�m�o�
m�o�� where m�o� is the mark of the typical point
(Schlather, 2001b). Here f��m� is the mark probability density. Thus

cmm�0� = �2 =
�∫

0

m2f��m�dm
 cm·�0� = c·m�0� = �
 �m�0� = 0 	

The definition of the ct�r� may appear rather complicated because of its condi-
tional nature. It may thus be surprising that they can easily be estimated statistically;
see (5.3.52). This is based on the following equation, which reflects clearly the
conditional nature of ct�r� as a ratio of two infinitesimal probabilities:

ct�r� = �t�r�

��r�
for r > 0
 ��r� > 0	 (5.3.26)

Here ��r� is the second-order product density of the unmarked process N as defined
in Section 4.3.1 and �t�r� is another product density. Equation (5.3.26) implies that
the general ct�r� and the special correlation functions kmm�r�, km·�r� below and
�m�r� are defined only for those r for which g�r� > 0. The ratio in (5.3.26) may be
interpreted as a conditional mean. The denominator contains the probability of the
condition, based on the interpretation of ��r�dxdy (see p. 219). The term �t�r�dxdy
in the numerator is related to the mean of t�m�x�, m�y��, where m�x� and m�y� are
the marks of the points at x and y.

More technically, �t�r� is the density of the factorial moment measure �t

defined by

�t�B1 × B2� = E

⎛
⎜⎝ ∑�=

�x1�m�x1��

�x2�m�x2��∈M

1B1
�x1�1B2

�x2�t�m�x1�
m�x2��

⎞
⎟⎠ 


where B1 and B2 are subsets of �d.
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Mark correlation function kt�r�

In practice, it is helpful to normalise the functions ct�r� by dividing it by ct���=ct,
the value the function takes for very large distances r, at which the marks are inde-
pendent. This means that mark correlation functions consider correlations among
marks relative to the case of independent marks. This facilitates their interpretation;
the resulting mark correlation functions tend towards 1 for large r.

The mark correlation function kt�r� based on a test function t is defined as

kt�r� = ct�r�

ct

for r > 0 (5.3.27)

and

kt�0� = ct�0�

ct

	 (5.3.28)

The normalising factor ct��� = ct is obtained from

ct =
�∫

0

�∫
0

t�m1
m2�f��m1�f��m2�dm1dm2 	 (5.3.29)

For the test functions described on p. 343 the normalising factors are:

t1 � �2 


t2 � � 


t3 � � 


t4
 t5 � �2
� 


t6 �
�

4
for d = 2 and 1 for d = 3 	

As above, � is the mean mark, and �2
� the mark variance. As indicated, the mark

variogram, like the geostatistical variogram, is typically not normalised. Important
examples of mark correlation functions include the following functions:

• mark correlation function,

kmm�r� = cmm�r�
/

�2 for r > 0
 kmm�0� = �2

/
�2 


with �2 = �2 + �2
m;

• r-mark correlation function,

km·�r� = cm·�r�/�
 km·�0� = 1 	
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Mark correlation functions are valuable tools in the exploratory analysis of
marked point processes. They may be used to detect correlations among marks and
to identify suitable marking models (see Section 6.8).

If the marks are independent,

kmm�r� = km·�r� ≡ 1 for r ≥ 0 (5.3.30)

and

�m�r� ≡ �2
� 	 (5.3.31)

In applications, if the empirical correlation functions are not constant then there is
reason to assume that the marks are not independent. Consider the following two
main types of dependence among the marks (see also Figure 5.19):

• Inhibition. The objects represented by the points compete and thus have
smaller than average marks if they are close together and

kmm�r� < 1 and km·�r� < 1 for small r 	

• Mutual stimulation. The points benefit from being close together and thus
have on average larger marks than � and then

kmm�r� > 1 and km·�r� > 1 for small r 	

For large r all of these functions converge to 1; empirical correlation functions
fluctuate irregularly around 1 for r > rcorr. The latter quantity is the range of
correlation, which is an important characteristic in the context of spatial correlation:
rcorr is the distance at which the correlation function becomes constant. It is similar

1
kmm(r)

r

Figure 5.19 Idealised shapes of mark correlation functions: (dashed line) inhibi-
tion; (dotted line) mutual stimulation; (solid line) independence.
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to the correlation range discussed in the context of pair correlation functions as
defined on p. 220, but it is possible for the values of rcorr to differ for different test
functions, e.g. that g�r�, kmm�r� and ���r� yield different correlation ranges.

The mark variogram and r-mark function are very useful in the context of the
important random field model, see Section 6.8.3. For this model

km·�r� ≡ 1 for r ≥ 0	 (5.3.32)

Multiplicatively weighted pair correlation function

The function

gmm�r� = �mm�r�

����2

 (5.3.33)

where �mm�r� is a product density like �t�r� in (5.3.26) with

t�m�x1�
m�x2�� = m�x1�m�x2�


may be called the multiplicatively weighted pair correlation function. It can be inter-
preted as a second-order version of the mark-sum intensity �S . It is a second-order
characteristic of the mark-sum measure, which describes the spatial distribution of
the mark mass rather than the point distribution. Since points with small marks
get small weights, gmm�r� for a cluster process may resemble the pair correlation
function of a Poisson process, if the points in dense clusters have small marks and
isolated points have large marks. In this case, the function reflects the uniform
distribution of mass.

Example 5.9. A three-dimensional sample of concrete
This example analyses the three-dimensional sample of hard spheres shown in
Figure 1.6. The marks are the radii of the spheres. Since the radii determine the
smallest possible nearest-neighbour distance for each sphere, it is clear that marks
and nearest-neighbour distances are closely related. Figure 5.20 shows estimates
of the pair correlation function g�r�, the mark correlation function kmm�r� and the
r-mark function km	�r�.

The shape of the pair correlation function resembles the functions in Figure 4.27
and 6.11, which correspond to random dense systems of hard spheres with random
radii. Its maximum is at r = 0	8, which corresponds to the mean diameter of the
spheres; cf. the corresponding estimated mark p.d.f. shown in Figure 5.3.

The functions kmm�r� and km·�r� are not defined for values of r ≤ 0	5, since for
these g�r� = 0. For the larger r, kmm�r� indicates inhibition among the marks for
r ≤ 0	8: pairs of the hard spherical particles can only be close together if their radii
are smaller than the mean radius. This changes for 0	8 ≤ r ≤ 1	1: these distances
are common in the pattern, and pairs of points with these distances can also include
large spheres. Finally, for r ≤1	5, km·�r� deviates clearly from the value of 1, hence
neither a marking model assuming independent marks nor the random field model
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hold, which is also clear because of the nature of the structure investigated. All
three curves suggest a range of correlation rcorr ≤2; this may be interpreted as some
form of short-range order.

For this pattern models for systems of hard spheres are natural and were studied
in Ballani (2006).
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Figure 5.20 Estimates of second-order characteristics for the concrete sample:
(a) pair correlation function ĝ�r�; (b) mark correlation function k̂mm�r�; (c) r-mark
function k̂m·�r�. Courtesy of F. Ballani. With kind permission of Springer Science
and Business Media.

Example 5.10. Gold particles: mark correlation analysis, continued
This example continues the mark correlation analysis of the gold particle pattern
in Example 5.8. Figure 5.21 shows k̂m·�r� and the mark variogram �̂m�r�. Both
functions indicate that the marks are indeed correlated, but perhaps not very strongly.

The behaviour of k̂m·�r� is similar to that of k̂mm�r� with values just below 1 for
small r .

0.4

0.6

0.8

1.0

1.2

0

km·(r)

3024
r (in lu)

12 186

Figure 5.21 Estimated r-mark correlation function k̂m·�r� (solid curve) and mark
variogram �̂m�r� (dashed curve) for the gold particles. The bandwidth h is 3 lu for
k̂m·�r� and 8 lu for the mark variogram. The curves are shown only for r ≥ 5	65 lu
since for the smaller distances ĝ�r� vanishes. Note that the ordinate starts at 0.4.
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The empirical mark variogram �̂m�r� resembles a geostatistical variogram if deter-
mined by a larger bandwidth than that used for the estimation of g�r� and the other
correlation functions. It increases monotonously and converges to the empirical
mark variance �̂2

�, which is 0.757 �m2. The range of correlation of the variogram
is around rcorr = 50 lu. For this example, the random field model with variogram
��r� = 0	4 + 0	24�1 − exp�−0	13r�� is suitable, as a simulation test has shown.

Cumulative characteristics for marks

The mark correlation functions discussed so far provide an excellent insight into
correlations among marks in the exploratory analysis of spatial point patterns.
However, they are not the only second-order characteristics that should be con-
sidered in the context of marked point processes with quantitative marks. Statistical
tests of correlation hypotheses should not be based on mark correlation functions
but should rather be constructed based on generalised L-functions. These result
from mark-weighted K-functions by the usual square root transform. The following
paragraphs discuss these functions.

Like the Kij-function in Section 5.3.2, the mark-weighted K-function Kmm�r� is
a natural generalisation of Ripley’s K-function. Hence, Kmm is constructed in a
very similar way and has a similar interpretation to K and Kij . Recall that Ripley’s
classical K-function can be written as

�K�r� = Eo

(∑
x∈N

1b�o
r��x�

)

(see (4.3.1)). The mark-weighted K-function has a very similar form but the marks
are now also taken into account, i.e.

�Kmm�r� = Eo

( ∑
�x�m�x��

m�o�m�x�1b�o
r��x�

)/
�2 	 (5.3.34)

This means that ��2Kmm�r� is the mean of the sum of the products formed by the
mark of the typical point and the marks of all points in the disc (sphere) of radius
r centred at the typical point. Due to stationarity the typical point can be chosen as
the origin o. Because of its cumulative nature, Shimatani and Kubota (2004) call
the function the ‘cumulative mark product function’.

Like the K-function, Kmm�r� is also normalised by dividing it by the intensity
�, but also by the squared mean mark �2. If the marks are independent, this
normalisation yields

Kmm�r� = K�r� for r ≥ 0	 (5.3.35)
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The derivative K′
mm�r� reveals the close relationship to the mark correlation function

kmm�r�:

K′
mm�r� = dbdrd−1kmm�r�
 (5.3.36)

by analogy with (4.3.8) for K�r� and g�r�.
The concept of the mark-weighted K-function can be easily extended to the Kt-

function for any test function t. Note first that the weighting in the construction of
Kmm�r� may be regarded as a weighting based on the test function t1 as defined on
p. 343. Other test functions may of course be used in a similar way and thus more
general mark-weighted K-functions may be defined as

�Kt�r� = Eo

( ∑
�x�m�x��∈M

t�m�o�
m�x��1b�o
r��x�

)/
ct 	 (5.3.37)

In particular, the test function

t3�m1
m2� = m2

yields

�K·m�r� = Eo

( ∑
�x�m�x��∈M

m�x�1b�o
r��x�

)/
�	 (5.3.38)

This is a Palm mean corresponding to the mark-sum measure,

��K·m�r� = Eo �S�b�o
 r��� /� for r ≥ 0 	

Similarly, the test function t2�m1
m2� = m1 yields

�Km·�r� = Eo

( ∑
�x�m�x��∈M

m�o�1b�o
r��x�

)/
�


and the right-hand side can be rewritten as

Eo�m�o�N�b�o
 r���/� 	

In general, this mean is not equal to �K�r�, since the mark of the typical point and
the number of points in its neighbourhood may be correlated.
However, if the marks are independent or if the random field model is a suitable
marking model, then

Km·�r� = K·m�r� = Kt4
�r� = K�r�	 (5.3.39)
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A test of the hypothesis of the random field model may be based on this equation,
see Section 7.5.

A generalisation of (5.3.36) yields

K′
t�r� = dbdrd−1kt�r�g�r� for r > 0
 (5.3.40)

since Kt�r� can be expressed in terms of ‘two-point Palm means’ as

��Kt�r� =
�∫

0

Eou�t�m�o�
m�u���dbdud−1g�u�du
 (5.3.41)

where g�u� is the pair correlation function of N with variable u instead of the usual
r and u =�u�. By (5.3.23), the right-hand side becomes

�∫
0

ct�u�dbdud−1g�u�du


which yields the formula for K′
t�r�.

As mentioned above and discussed in Chapter 4, the L-function as a square-
root transformed version of the classical K-function should be used. Similarly,
Kmm�r�, …, Kt�r� may be transformed in the same way yielding the mark-weighted
L-function

Lmm�r� = d

√
Kmm�r�

bd

for r ≥ 0 (5.3.42)

and

Lt�r� = d

√
Kt�r�

bd

for r ≥ 0 	 (5.3.43)

5.3.4 Estimation of second-order characteristics

This subsection presents estimators of the most important second-order character-
istics for marked point processes. The order is similar to that of Section 4.3.3.

Mark-weighted K-functions

The K-functions Kij�r�, Kmm�r� and Kt�r� for marked point processes may be
estimated in a similar way to Ripley’s K-function as discussed in Section 4.3.3.
Recall that this implies first calculating characteristics similar to �̂st�B� and �̂i�r�
and then normalising these by estimators of intensities and suitable constants.
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In the following, estimators are introduced based on stationary edge-correction,
by analogy with �̂st�b�o
 r��; the formulas for isotropic edge-correction can be
derived analogously to �̂i�B� on p. 229.

An unbiased estimator of �i�jKij�r� is given by

�̂st
ij�r� = ∑�=

x1
x2∈W

1�m�x1� = i�1�m�x2� = j�1��x1 − x2� ≤ r�

��Wx1
∩ Wx2

�
(5.3.44)

for r ≥ 0. Ratio-unbiased estimators of Kij�r� result from division by intensity
estimators

�̂i =
Ni�W�

��W�
and �̂j = Nj�W�

��W�

or, better, by �̂i
V �r� and �̂j
V �r�, which are constructed for Ni and Nj as �̂V �r� in
Section 4.2.3.

The following is an unbiased estimator of �2cmmKmm�r�:

�̂st
mm�r� =∑�=
x1
x2∈W

m�x1�m�x2�1��x1 − x2� ≤ r�

��Wx1
∩ Wx2

�
for r ≥ 0 � (5.3.45)

see Stoyan and Stoyan (1994, p. 303). Again ratio-unbiased estimators of Kmm�r�
result from division, now by estimators of �2 and cmm.

�̂2 is chosen as in Section 4.3.3, either by (4.3.34) or as ��̂V �r��2. Since cmm =�2,
cmm may be estimated by

ĉmm = �̂2 
 (5.3.46)

using �̂ in (5.2.9).
Finally, an unbiased estimator of �2ctKt�r� is given by

�̂st
t�r� = ∑�=

x1
x2∈W

t�m�x1�
m�x2��1��x1 − x2� ≤ r�

��Wx1
∩ Wx2

�
for r ≥ 0
 (5.3.47)

and ratio-unbiased estimators of Kt�r� can be derived by dividing by estimators of
�2 and ct. The characteristic ct may be estimated by

ĉt =
n∑

i=1

n∑
j=1

t�mi
mj�/n2 
 (5.3.48)

where m1,    
 mn are the marks of the points of M in W and n is the number of
points in W .
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Partial pair correlation functions and mark connection functions

Estimators of gij�r� and pij�r� are based on (5.3.8) and (5.3.15). Ratio-unbiased
estimators of gij�r� and pij�r� are

ĝij�r� = �̂ij�r�

�̂i�̂i

for r > 0 (5.3.49)

and

p̂ij�r� = �̂ij�r�

�̂�r�
for r > 0 
 (5.3.50)

where �̂ij�r� and �̂�2��r� are estimators of the product densities �ij�r� and ��2��r� and
�̂i and �̂j are intensity estimators. For ��r� the estimator in (4.3.29) is recommended
and for �ij�r�,

�̂ij�r� = ∑�=

x1
x2∈W

1�m�x1� = i�1�m�x2� = j�k��x1 − x2� − r�

2�r��Wx1
∩ Wx2

�
(5.3.51)

for r> 0; see Stoyan and Stoyan (1994, p. 291). The denominator 2�r in the above
equation is appropriate for the planar case, i.e. d=2. For d=3 it has to be replaced
by 4�r2.

Mark correlation functions

Estimators of mark correlation functions are based on (5.3.26). Therefore,

k̂t�r� = �̂t�r�

�̂�r�

/
ĉt for r > 0 (5.3.52)

is a ratio-unbiased estimator of kt�r�. Here

�̂t�r� = ∑�=

x1
x2∈W

t�m�x1�
m�x2��k��x1 − x2� − r�

2�r��Wx1
∩ Wx2

�
	 (5.3.53)

For the special case of t1�m1
m2� = m1m2,

�̂mm�r� = ∑�=

x1
x2∈W

m�x1�m�x2�k��x1 − x2� − r�

2�r��Wx1
∩ Wx2

�
	 (5.3.54)

The quantity ct (see (5.3.29)) used for normalisation is estimated by (5.3.48).
The values for r = 0, kmm�0� and kt�0�, can be estimated by

k̂mm�0� = 1
n

n∑
i=1

m2
i

/
�̂2 (5.3.55)
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and

k̂t�0� = 1
n

n∑
i=1

t�mi
mi�

/
ĉt 
 (5.3.56)

where m1, …, mn are the marks of the points of M in W and n is the number of
these points.

Note that the estimators of mark correlation functions are ratios of estimators
which have a rather similar structure. Therefore, they yield precise estimates since
fluctuations cancel out. Practical experience shows that for the estimation of mark
correlation or connection functions the estimators of �ij�r�, �t�r� and ��r� do not
have to be of a particularly good quality. They can be estimated without edge-
correction, if both functions are estimated based on the same estimation principle.
As a result, estimates of gij�r� might be of a lower quality than those of pij�r�. This
information may be useful in the context of patterns observed in irregular windows,
where edge-correction is difficult.

Note that for the estimation of pij�r� and kt�r�, intensity estimation is not
necessary.

Mark correlation functions for quantitative marks were first defined and discussed
in Stoyan (1984) and Isham (1987). Further development and applications may be
found in Penttinen and Stoyan (1989), Cressie (1993), Schlather (2001a), Schlather
et al. (2004), Stoyan et al. (1995) and Stoyan and Stoyan (1994).

5.4 Orientation analysis for marked
point processes

5.4.1 Introduction

Many geometrical structures are anisotropic, either globally or locally. In point
process applications, objects which are represented by points may have their own
orientations. In the planar case, using angles as marks is a natural choice in this
context. This section introduces statistical methods that may be applied to data sets
with angular marks or for which angular marks can be constructed. (This is different
from Section 4.5, which only discusses constructed marks, since there marks that
were given a priori were not considered.) Figure 5.22 shows a pattern of this type,
where the points are centres of particles the orientation of which is described by
main axis orientation. This structure is globally anisotropic.

Angular marks are called directions if the angles are between 0 and 360 and
correspond to rays or directed lines, or orientations if the angles are between 0

and 180 and correspond to axes or undirected lines.
In the case of anisotropic processes, the main aim is the estimation of the direc-

tional distribution, i.e. the mark distribution. This distribution is usually different
from the uniform distribution on �0
 360� or �0
 180�.
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Figure 5.22 A point pattern obtained from a planar section through a Cd-Zn
eutectic with rod-shaped Zn in a 171 × 111 �m rectangle. The centres of gravity of
the section profiles form the point pattern. For the orientation analysis the directions
of maximum projection lengths are shown.

Figure 5.23 A packing of 4000 oblate spheroids of aspect ratio 1:2 and packing
density (= volume fraction of spheroids) 0.55.

Note that the situation becomes more complicated if the pattern is isotropic, which
implies that it has a uniform direction distribution. Even in this case directional
statistics can be usefully applied. However, the analysis now aims to detect inner
orientations or local non-isotropies such as a tendency to local parallelity (or anti-
parallelity). For example, Figure 5.23 shows a (nearly) isotropic system of spheroids
with a tendency to local parallelity. The spheroids are arranged in parallel due to
their shape, whereas their centres form a nearly isotropic point process.
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Figure 5.24 Empirical orientation probability density function for the particle axes
of Figure 5.22. The apparent non-isotropy of the pattern is well described by this
density; the ‘main’ direction is at 38, corresponding to the mode in the density
function.

5.4.2 Orientation analysis for anisotropic processes
with angular marks

This subsection discusses anisotropic marked point patterns with angular marks, i.e.
data sets as in Figure 5.22. The statistical analysis is based on the general approach
to the estimation of mark distributions as described in Section 5.2.3.

The analysis of marked point patterns with angular marks applies methods that
have already been developed in an area of statistics called ‘directional statistics’;
see Upton and Fingleton (1989) and Fisher et al. (1987) for the two- and three-
dimensional case, respectively. It is beyond the scope of this book to provide full
coverage of these methods, but it suffices to understand that the angular marks
are regarded as a sample of angular data and analysed by directional statistics.
Figure 5.24 shows a kernel estimate of the orientation probability density function
for Figure 5.22, reflecting the frequencies of the different orientations in the pattern.

The second-order analysis of Section 4.5.3 can also be applied to bivariate data,
as demonstrated by Haase (2001). In an ecological study of shrub positions in
dryland he uses four quadrant functions K12�r
�� corresponding to 90 sectors and
shows that there is a preference for the more sheltered quadrants north-west to
north-east.

5.4.3 Orientation analysis for isotropic processes
with angular marks

This subsection introduces methods to detect potential inner orientations based
on the orientation correlation function kd�r�. This function is a mark correlation
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d(m1, m2)
x2

x1

Figure 5.25 Angles d�m1
m2� between points marked by orientations.

function as discussed in Section 5.3.3 that is based on a specific test function
denoted here as d�m1
m2�.

For two orientation marks m1 and m2, d�m1
m2� is the smaller angle between
the orientations m1 and m2. In the planar case the function is simply

d�m1
m2� = min��m1 − m2�
 180 − �m1 − m2�� 
 (5.4.1)

where m1 and m2 are angles between 0 and 180 (see Figure 5.25).
In the spatial case two undirected lines through the origin o having directions

m�x1� and m�x2�, respectively, are considered for the marked points �x1�m�x1�� and
�x2�m�x2��. These lines form a plane, and d�m�x1�
m�x2�� is the angle between
the two lines in this plane.

To obtain kd�r�, the function

cd�r� = �d�r�

��r�
(5.4.2)

is defined analogously to ct�r� in (5.3.26). �d�r� is the same as �t�r� there with
t6 =d with d�m1
m2� defined in (5.4.1). Then cd�r� is normalised by cd���, which
corresponds to the case of independent uniform marks on [0,180],

kd�r� = cd�r�

cd���
	 (5.4.3)

For the planar case

cd��� = 45 = �

4
rad


and for the spatial case

cd��� = 57	3 = 1 rad	

In the spirit of Section 5.3.3, cd�r� may be interpreted as the conditional mean
of the angle between the orientations of two points of distance r. (Note that
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Figure 5.26 Orientation correlation functions of three packings of oblate spheroids:
(solid line) aspect ratio 1 : 2, Figure 5.23; (dashed line) aspect ratio 1 : 3, packing
density 0.45; (dotted line) aspect ratio 1 : 4, packing density 0.37 (see Bezrukov and
Stoyan, 2006). Reproduced by permission of John Wiley & Sons, Ltd.

this mean is based on the usual arithmetric mean and not on the mean defini-
tion of directional statistics.) Values of kd�r� smaller than 1 indicate a tendency
for local parallel alignment at distance r; in the case of independent orientations
kd�r� ≡ 1.

The function kd�r� is estimated in a similar way as kt�r� (see Section 5.3.4),
since the d�m1
m2� in (5.4.1) is just the test function t6�m1
m2�. Based on this
argument, a Kd-function can also be defined and estimated, by analogy with the
constructions discussed above.

Figure 5.26 shows the empirical orientation correlation function k̂d�r� for the
system of spheroids in Figure 5.23, where the marks are the orientations of the axes
of rotational symmetry. It indicates a tendency towards local parallelity. Such local
parallelity is quite natural for the patterns, where non-spherical objects were forced
to arrange very densely in the space, which implies the need to be locally parallel. If
the density increases further, even global anisotropy is necessary; see, for example,
Bezrukov and Stoyan (2006). The statistical methods for the three-dimensional case
are described in Low (2002).

5.4.4 Orientation analysis with constructed marks

The orientation correlation function kd�r� can also be easily applied to constructed
marks and hence is a useful method in the context of non-marked point processes.
Note that this approach was not discussed in Section 4.5 as some knowledge of the
theory of marked point processes is necessary to fully understand it.

A natural mark construction principle uses the orientation o�xn� of the line
connecting the point xn with its nearest neighbour z1�xn�. In the planar case,
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where xn = ��n
�n� and the nearest neighbour of xn, z1�xn� = ��′
n
�′

n�, the mark is
computed by

o�xn� = arctan
(

�n − �′
n

�n − �′
n

)
(5.4.4)

with the convention that

o�xn� �= o�xn� − 180 if o�xn� > 180 	

Remarks

1. The ray starting at xn and pointing towards z1�xn� defines a direction. But its
use seems unnatural, since often xn and z1�xn� are mutual nearest neighbours
and would then have diametrically different directional marks. Working with
orientations of connection lines results in the same mark for two points that
are mutually nearest neighbours.

2. In empirical data sets it is possible that �n = �′
n, which implies that o�xn�

cannot be defined. The resulting numerical difficulties can be avoided by
adding very small random independent numbers to the coordinates.

Example 5.11. Sea anemones on a rock
Figure 5.27 shows the locations of 231 beadlet anemones in a 280 × 180 cm rec-
tangle on a rock. The pattern looks like an isotropic pattern, but there seem to be
chains of points, i.e. the animals have a tendency to be arranged in lines. These
chains have been already analysed by Upton and Fingleton (1985), who constructed
marks, the nearest-neighbour orientations o�xn�, and then used the corresponding

Figure 5.27 Locations of 231 beadlet anemones in a 280 × 180 cm rectangle
on a stone. The diameters of the circles are related to animals’ sizes. (After
S. A. L. Kooijman.) Courtesy of G. Upton. Reproduced by permission of John
Wiley & Sons, Ltd.



Stationary Marked Point Processes 361

0.0

0.5

1.0

1.5

r (in cm)
0 12 3018 24

kd 
(r)

6

Figure 5.28 The orientation correlation function k̂d�r� for the anemones (solid
line). The function indicates close orientational correlations for short distances
(up to r = 4, it is kd�r� = 0� and a range of correlation of around rcorr = 10 cm.
The dashed line is k̂d�r� for 1012 simulated completely random points in a larger
window. There is also some orientation correlation, but it is clearly weaker.

mark distribution as discussed in Section 4.5.2. This method failed to reveal the
structure, but the approach with mark correlation is slightly more successful.

In the first step of the analysis, marks o�xn� were constructed for all 231 points
following (5.4.4). The analysis accepts that the true nearest neighbours cannot
be determined for points close to the boundary, but only the nearest neighbour
inside the window. In the second step the method introduced in Section 5.4.3 is
applied, i.e. the estimation of the orientation correlation function kd�r�. The result
is shown in Figure 5.28. This function indicates some orientation correlation: for
short distances (r ≤ 4 cm), k̂d�r� = 0. This means that at these distances pairs of
points are considered which are mutual nearest neighbours. For larger distances
the correlation decreases, which is indicated by increasing k̂d�r�, and the range of
orientation correlation is around rcorr = 10 cm, as the empirical mark correlation
function k̂d�r� has only statistical fluctuations around 1 for r > 10 cm.

Note that the mark construction method introduces some artificial correlation,
which has to be taken into account. It is demonstrated in Figure 5.28, which
shows k̂d�r� also for a simulated pattern of 1012 completely random points in a
470 × 470 cm window. (This is a larger point pattern with the same point density as
the pattern of anemones.) There is also some spatial correlation, but it is apparently
weaker than in the anemone pattern. The observed orientation correlation results
partly from pairs of points which are mutual nearest neighbours.
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6

Modelling and simulation of
stationary point processes

Models are indispensable in all areas of statistics, and point process
statistics is no exception. Models aid in the interpretation and under-
standing of empirical patterns and their summary characteristics, as they
show possible theoretical forms and give information on the possible
statistical fluctuations. And, of course, simulations of spatial point
processes are typically based on models.

This chapter first discusses some operations on point patterns, which
represent construction principles and are useful for constructing and
modifying given patterns and often mimic the natural generation of
point patterns. Then several classical point process model classes –
cluster, Cox, hard-core and Gibbs processes – are introduced. Some
marking models are also presented.

In addition, three very important and rather diverse topics are
discussed. The first topic is a method for simulating point patterns
without any explicit model, the second are space–time point processes,
and finally the text covers problems from spatial statistics that are more
general than point process theory by studying correlations between point
processes and random fields or fibre systems.

Statistical Analysis and Modelling of Spatial Point Patterns J. Illian, A. Penttinen, H. Stoyan and D. Stoyan
© 2008 John Wiley & Sons, Ltd
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6.1 Introduction
A large part of classical statistics deals with fitting statistical models and theoretical
probability distributions to data as well as with their interpretation and the evaluation
of their suitability. Well-known examples of distributions that may be suitably fitted
to specific data structures include the Gaussian, the Poisson and the exponential
distribution. Choosing such a distribution in itself constitutes ‘modelling’. It is
particularly satisfying if such a distribution is not only formally chosen but can also
be motivated by knowledge of mechanisms underlying the observed data.

Both distributions and statistical models typically depend only on a small number
of parameters. These parameters often have an intuitive meaning and interpretation.
For this reason the characteristics of a specific phenomenon can easily be described
based on the type of distribution or model and the parameters.

In point process statistics, models have a similar role. Some basic models have
already been discussed in earlier chapters, such as the Poisson process (Chapter 2)
and finite point process models (Chapter 3). This chapter presents further models for
stationary point patterns. As in classical statistics, these models help to characterise
the given data sets:

• Given a model, a small number of parameters provide a unique description
of the process of interest. Ideally, it should be clear how these parameters
control the structure of the corresponding point patterns. In other words,
different patterns that are samples from the same model can be distinguished
entirely on the basis of different parameters. For example, in an evolution
process, these may be point density and object size.

• Statistical analysis is greatly simplified if it is based on a parametric model.
Then it suffices to estimate the parameters, i.e. a parametric statistical
approach is taken.

• The model construction may reflect the processes that have caused the
pattern. Hence, the model construction itself provides an improved under-
standing of these underlying processes.

• Section 1.9 discussed the many issues that can be addressed with simulation
approaches and the reasons why they are indispensable in the context of
spatial point processes. Models are very important as simulations are typically
based on models.

6.2 Operations with point processes
Many point process models can be derived from less complex models by applying
one or several operations to simpler models such as the Poisson process. This
section describes three fundamental operations that may be used to generate new
point processes from given processes. The resulting models, and many others,
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are described in later sections of this chapter. The three fundamental operations
described here are thinning, clustering and superposition.

6.2.1 Thinning

A thinning operation uses a specifed rule determining which points in a basic
process Nb are deleted, yielding the thinned point process N . Regarded as a random
set, N is a subset of Nb:

N ⊂Nb�

There are many different thinning rules.

p-thinning. The simplest form of thinning is p-thinning: each point in Nb is
deleted with probability 1 − p. The deletion is independent of the location of
the point and the deletion or non-deletion of other points in Nb. The constant
p is called the retention probability.

p�x�-thinning. p�x�-thinning generalises the simple approach of p-thinning in
so far as that the retention probability p now depends on the location x of
the point. Thinning is based on a deterministic function p�x� on �d, with
0 ≤ p�x�≤ 1. A point x in Nb is deleted with probability 1 − p�x�, and again
its deletion is independent of deletion or non-deletion of any other points.
The p�x�-thinning of a stationary point process is a second-order intensity-
reweighted point process, i.e. an important example of a non-stationary point
process as discussed in Section 4.10.

P�x�-thinning. In a further generalisation, the thinning function p�x� itself is
random. More formally, thinning is based on a random field �P�x��x∈�d which
is independent of Nb. A realisation of the thinned process N is constructed by
taking a realisation of Nb and applying p�x�-thinning to it, where p�x� is a
sample �p�x�� of the random field �P�x��.

The thinning approaches discussed so far are independent thinnings. In other
words, the deletion or non-deletion of any particular point is not correlated with
the operation on the other points, i.e. the thinning functions (which are indepen-
dent of Nb) completely determine the operation. However, more general thinning
approaches may be considered where the thinning operation depends on the config-
uration of Nb, thus yielding the class of dependent thinnings. For example, thin-
ning operations in this class drive the evolution of plant communities. Often, the
spatial distribution of plants becomes more regular over time due to competition-
induced mortality. Humans apply thinning to plants, for example by weeding (as
gardeners) or thinning-out trees (as foresters). Clearly, in applications thinnings
are often dependent thinnings, but independent thinnings are nevertheless useful
approximations.
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If the characteristics of the basic process Nb (denoted by the subscript b) are
known, the characteristics of the point processes N resulting from independent
thinning may be derived.

First-order characteristics

If �b�x� is the intensity function of the basis process Nb, the intensity function of
the thinned process is

��x�=p�x��b�x�� (6.2.1)

If Nb is stationary, the p-thinned process N is also stationary. Note that this is not
true for a p�x�-thinned process. The intensity of a p-thinned processes is given by
(6.2.1), i.e.

�=p�b� (6.2.2)

A P�x�-thinned process from a stationary Nb is stationary if P�x� is a stationary
random field. Equation (6.2.2) generalises to

p= E�P�o��� (6.2.3)

i.e. p is the mean of the random thinning field.

Second-order characteristics

The product density of a p-thinned process N is given by

	�2��r�=p2	
�2�
b �r� (6.2.4)

and the K-functions as well as the pair correlation functions of N and Nb coincide:

Kp�r�=K�r�� (6.2.5)

gp�r�= g�r�� (6.2.6)

The product density of a p�x�-thinned stationary and isotropic point process with
pair correlation function g�r� is

	�2��x� y�=��x���y�g�r� for r = �x− y�� (6.2.7)

with ��x�=�p�x�.
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P�x�-thinning based on a stationary and isotropic thinning field �P�x�� with mean
p and covariance function

k�r�= E �P�o�P�r��−p2 where r = �r�

yields

	�2��r�= (k�r�+p2
)
	
�2�
b �r�� (6.2.8)

Consequently, Ripley’s K-function is

K�r�=
r∫

0

(
k�t�+p2

)
dKb�t�

/
p2 =

r∫
0

�k�t�+p2�dbdt
d−1gb�t�dt�

The intuitive interpretation of the product density 	�2��r� on p. 32 shows that (6.2.4)
is plausible: if two points both contribute to the product density then both of them
have to survive the thinning.

Thinning a Poisson process

Consider a Poisson process Nb with intensity function �b�x�. The p�x�-thinned
process N is an inhomogeneous Poisson process with intensity function given
by (6.2.1). This fact is implemented in the context of simulation of inhomoge-
neous Poisson processes as described in Section 3.4.1. If Nb is a homogeneous
Poisson process with intensity �b then the p-thinned process is a homogeneous
Poisson process with intensity p�b. Note that the points that are deleted by this
thinning operation form another Poisson process, and the two processes are stochas-
tically independent. A P�x�-thinned Poisson process is a doubly stochastic Poisson
processes (or Cox process) as discussed in Section 6.4.

Example 6.1. Thinning a forest of Sitka spruce
Figure 6.1 shows again the pattern of 294 Sitka spruce trees that was discussed
in Example 4.14 in its November 2003 state. In June 2004 this stand was thinned
by a forester, resulting in a more regular pattern of 74 trees. The objectives of the
intervention were to release approximately 80 windfirm trees and to uniformly open
the crown canopy to provide more light for Sitka spruce regeneration. Clearly, this
was not a random p-thinning with p= 74

294 = 0�252, but the neighbourhood situation
of each tree influenced the forester’s decision.

Simple point process methodology was applied to analyse the thinning scheme,
with the idea in mind that trees with small marks were more likely to be felled.
The following marks (natural or constructed) were considered:
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Figure 6.1 Positions of 294 Sitka spruce trees: � = thinned out, • = remaining tree.
Data courtesy of University of Wales, Bangor (Arne Pommerening), and Forest
Research (Forestry Commission).

• dbh (diameter);

• height;

• nearest-neighbour distance;

• mean of the distances to the four nearest neighbours;

• mean-direction index IR4�x�;

• dbh dominance, Do4�x� for dbh;

• height dominance, Do4�x� for height (see (5.2.20)).

The clearest relationship between thinning policy and marks was found for dbh
dominance and dbh.

Table 6.1 shows that a large percentage (69) of trees with dbh dominance index
1 were considered as windfirm trees, while a large percentage (57) of trees with
index 0 were thinned out. According to Table 6.2 many trees with small dbh were
thinned out.

6.2.2 Clustering

In a clustering operation every point x in a given point process Np is replaced by a
cluster Nx of points. The clusters Nx are finite point processes and their set-theoretic
union is the cluster point process

N = ⋃
x∈Np

Nx�
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Table 6.1 Percentages of tree types (0 = normal, 1 = windfirm, 2 = thinned out)
for the dbh dominance indices 0, 0.25, 
 
 
 , 1.

0 0.25 0.5 0.75 1

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
42 1 57 58 1 41 67 13 20 45 42 13 29 69 2

Table 6.2 Stem-and-leaf diagram of dbh (thinned trees in bold,
2�4 represents 24 cm)

2 4445
2 667 77777
2 8888 8 99999 999
3 00000000000 000000 111111111 11111111
3 2222 222222222222222 3333333333 333333
3 44444444 4444444444444 55555 55555555555555555555
3 66 666666666666666 7 7777777777
3 88 888888888888888 99 9999999999999999999999999
4 000000000000 1111111111
4 22222222 3 3333333333333333
4 444444444 5555555
4 6 666 7 777
4 8888 999
5 0001
5
5
5 6

In some models the original point x is included in the resulting process Nx, but
usually this is not the case. Figure 6.3 on p. 379 shows a sample from a simulated
cluster point process.

Cluster processes have been used as models for many natural phenomena.
A typical interpretation regards Np as a collection of ‘parent points’, e.g. repre-
senting the locations of plants. The points in the clusters may then be regarded as
the ‘daughters’ of parent points, e.g. representing the locations of dispersed seeds
or young plants. Often, however, the locations of the parent points are unknown or
even fictitious. As a result of this and also because the clusters typically overlap,
statistical methods for cluster processes are rather complicated, perhaps even more
difficult than for Gibbs processes. An important special case is the Neyman–Scott
process, which is discussed in detail in Section 6.3.2.
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In the following, formulas for a slightly more general model are given. Suppose
that the parent point process Np = �x1� x2� 
 
 
 � is stationary with intensity �p and
second-order product density 	�2�

p �r� and that the clusters Nx are of the form

Nxn =Nn + xn
for each xn in Np. The Nn form a sequence of i.i.d. finite point sets centred at
the origin with the same distribution, independent of the parent point process Np.
The +xn term means that Nxn is centred at xn.

The ‘typical cluster’ Nc is a further set with the same distribution. The origin
o is not included in Nc, which has the consequence that the parent points are not
included in N . The random total number of points of Nc is denoted by c, and the
corresponding mean is c. The intensity function of the finite point process Nc is
denoted by �c�x� and its second-order product density by 	�2�

c �x� y�. This approach
is termed homogeneous independent clustering. If Np is a Poisson process the
resulting process N is called a Poisson cluster process.

Irrespective of the form of Np in this model, the intensity � of N is given by

�=�pc� (6.2.9)

The second-order product density 	�2��r� of N is (Felsenstein, 1975; Shimatani,
2002)

	�2��r�=�p

∫
�d

	�2�
c �r + x�x�dx

+
∫
�d

∫
�d

	�2�
p �r − x+ y��c�x��c�y�dxdy� (6.2.10)

Several consecutive clustering operations may be applied to a basis process, for
example mimicking a pattern of plants where the offspring become the parents of
the next generation; see Liemant et al. (1988) and Shimatani (2002).

6.2.3 Superposition

In a superposition operation two or more point processes are superimposed onto
each other such that the resulting process is formed by the set-theoretic union of
these processes.

Let N1 and N2 be two point processes with intensities �1 and �2, pair correlation
functions g1 and g2, etc. Consider the union

N =N1 ∪N2�

assuming that none of the points of N1 and N2 coincide. The pattern in Figure 1.2
may be regarded as an example of a process resulting from the superposition of
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two independent point processes of • and � points, as discussed in Examples 5.5
and 5.6.

The usual point process characteristics can be given analytically. Regardless of
whether N1 and N2 are independent or stationary, the intensity function of the
superposition is

��x�=�1�x�+�2�x� for x∈W�

If N1 and N2 are stationary and stationarily connected (but not necessarily indepen-
dent), then N =N1 ∪N2 is stationary and

�=�1 +�2�

If N1 and N2 are mutually independent, stationary and isotropic the second-order
characteristics of N =N1 ∪N2 are

g�r�= (�2
1g1�r�+�2

2g2�r�+ 2�1�2

)
/��1 +�2�

2�

�K�r�= �1

�

(
�1K1�r�+�2bdr

d
)+ �2

�

(
�2K2�r�+�1bdr

d
)

for r ≥ 0�

The superposition of n i.i.d. stationary and isotropic point processes has the pair
correlation function

gn�r�= ng�r�+ n2 − n

n2
�

For n→ � this converges towards g�r�≡ 1, the pair correlation function of the
Poisson process.

The nearest-neighbour distance d.f. of the superposition of two independent
stationary and isotropic point processes takes the form

D�r�=1−
(
�1

�
�1 −D1�r��

(
1 −Hs�2�r�

)+ �2

�
�1 −D2�r��

(
1 −Hs�1�r�

))
for r ≥0�

and the spherical contact d.f. can be expressed as

Hs�r�= 1 − �1 −Hs�1�r���1 −Hs�2�r�� for r ≥ 0�

6.3 Cluster processes
6.3.1 General cluster processes

In the natural world, clustered patterns are very common, perhaps more common
than regular or random patterns. For example, young trees in natural forests
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and galaxies in the universe form clustered patterns. The point process literature
describes many examples of clustering; see Lawson and Denison (2002) or any book
on point process statistics. In clustered patterns the point density varies strongly
through space. In some areas the point density is very high, i.e. the points form
clusters and these are surrounded by areas of low point density, perhaps even by
empty space.

The definition of a cluster is somewhat subjective: clusters are groups of points
with an inter-point distance that is below the average distance in the pattern.
This local aggregation is not simply a result of random point density fluctuations.
There is a ‘fundamental ambiguity between heterogeneity and clustering, the first
corresponding to spatial variation of the intensity function ��x�, the second to
stochastic dependence amongst the points of the process’, and these are ‘difficult
to disentangle’ (Diggle et al., 2007).

In general, spatial clustering may have been caused by a number of different
processes:

1. The objects represented by the points were originally scattered in the entire
region of interest, but remain only in some subregions that are distributed
irregularly in space. A classical example of this are plants with wind-
dispersed seeds which germinate only in areas where the environmental
conditions are suitable. These patterns are most suitably modelled by Cox
processes (see Section 6.4).

2. The cluster pattern is a result of physical processes which cause objects to
move in space. Physical laws determine the formation of clusters, as in the
case of galaxies. Models for this type of patterns are beyond the scope of
this book.

3. The pattern is a result of a mechanism that involves ‘parent points’ and
‘daughter points’, where the daughter points are scattered around the parent
points, as discussed in Section 6.2. This results in a pattern which is most
suitably modelled by the classical cluster model. A specific type of cluster
model is the Neyman–Scott model where the parent points form a Poisson
process. This model is discussed in detail in Section 6.3.2. It is of course
possible to construct similar models based on non-Poisson parent processes,
but closed-form expressions for summary characteristics might be difficult
to find. Nevertheless, these models are of practical interest, and they may
be simulated in a way that is similar to Neyman–Scott processes. By the
way, the clusters of the final cluster process are usually the single ‘primary
clusters’ (all daughters of the same parent) as expected; however, sometimes
they result from the superposition of primary clusters, in particular when
these are thin and large.

4. There is positive interaction among the points. Over time, the point density
increases in areas where the density was initially slightly higher. In areas
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where the density was initially lower, it decreases further. Inter-species
cooperation among plants may be an example of this.

In each of these cases the behaviour of the summary characteristics is similar and
it is difficult to distinguish the four cases based on statistical approaches alone.

Second-order characteristics

In a clustered pattern more points occur at short distances than would be expected if
the pattern were CSR and hence the summary characteristics take larger values than
a Poisson process at these distances. More specifically, the K-function is greater
than bdr

d, the L-function is greater than r, and the pair correlation function is
greater than 1. Note that even g�0�=� is possible, i.e. that g�r� has a pole at r =0.
The order of such a pole cannot exceed d− 1, i.e. it is only possible that g�r�∝ r−�

with �≤d− 1.

Distance characteristics

The nearest-neighbour distance d.f. D�r� for a clustered pattern takes larger values
than for Poisson patterns with equal intensity. By construction, this d.f. mainly
reflects the form of the clusters: the typical point is likely to be part of a cluster
and its nearest neighbour is frequently in the same cluster. Thus D�r� provides little
more than some information on the cluster geometry.

In contrast, the spherical contact d.f. Hs�r� takes smaller values than both D�r�
and the spherical contact d.f. for a Poisson process with equal intensity. It describes
the empty space between the clusters.

Detection of clusters

In the analysis of clustered patterns one issue concerns the detection of clusters.
This may be easy for isolated clusters, but in general the problem is very hard and
computationally intensive. Okabe et al. (2000, Section 8.6), present an early system-
atic approach to this issue. Simple approaches to cluster detection are described in
Fotheringham and Zhan (1996). These are based on counts of points within test
circles with radii that are systematically varied and centred at either lattice points or
randomly distributed points. Clusters are indicated by extremely large numbers of
points within a circle. A more refined approach is discussed in Stoica et al. (2007).

Many cluster-detection methods may be described in terms of graph theory. A
simple classical method is the so-called friends-of-friends algorithm. It uses the
sphere graph G�N� r� with a distance r chosen according to some idea of inter-
point distances in clusters. The connected components of the graph are the clusters
constructed by the algorithm. More recent algorithms use local point densities
attached to the points, e.g. based on the Voronoi tessellation using (3.3.7). An
example is the HOP algorithm (Eisenstein and Hut, 1998). In this algorithm the
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point with the highest local density is determined among the nearest neighbours of
each point. The point and its ‘nearest’ neighbour are then linked by an edge. Again,
the connected components are the clusters; cluster centres are those points which
are their own nearest neighbour. Neyrinck et al. (2005) improved this algorithm by
eliminating Poisson noise, based on the observation that in a homogeneous Poisson
process, density maxima occur at 1/13.6 of the points.

In some applications, the shape of clusters is analysed, e.g. isolated points,
lineaments or compact clusters are of interest. In the analysis of the highly clustered
system of galaxies one looks for halos, blobs, lineaments and walls.

Modern MCMC-based (Bayesian) approaches are also used to detect clusters or
lineaments. Stoica et al. (2005) present a method for the detection of filaments in
cluster patterns, while Guillot et al. (2006) and Skare et al. (2007) consider clusters
of points along the edges of tessellations.

6.3.2 Neyman–Scott processes

Neyman–Scott processes are the result of a specific type of homogeneous inde-
pendent clustering (see p. 370) applied to a stationary Poisson process. The parent
points form a stationary Poisson process with intensity �p and the daughter points
in the typical cluster Nc are random in number and scattered independently and
with identical distribution around the origin. The parent points are only auxiliary
constructs; they are not observable and do not form part of the final point pattern,
which consists exclusively of the daughter points.

Neyman–Scott processes have been applied in many contexts. They were intro-
duced by Neyman and Scott (1952) to model patterns formed by the locations of
galaxies in space; see the discussion in Section 1.3. The review by Neyman and
Scott (1972) contains further examples: the distribution of insect larvae in fields and
the geometry of patterns reflecting the impact of bombing. In the pattern of insect
larvae the parent points are locations of egg masses and the daughter points are the
locations of the larvae. In the bombing pattern, the parent points represent the target
locations at bomb release and the daughter points are the locations of impact of
individual bombs. Cluster processes of Neyman–Scott type may also be appropriate
models for patterns of trees such as pines in natural forests; see Penttinen et al.
(1992) and Tanaka et al. (2008).

This subsection discusses several general properties of the Neyman–Scott
processes. Due to the distributional assumptions the resulting cluster process N is
stationary. If the scattering distribution is isotropic, then so is N .

An isotropic Neyman–Scott process is based on the following process
parameters: the number of cluster points and the distribution of the distance between
a parent and a daughter point. The first parameter is an integer random variable c
with mean c and probabilities

pi = P�c= i� for i= 1�2� 
 
 
 �
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The p.d.f. of the distances from the cluster centre is denoted by ��r�.
In some formulas, another distance distribution has to be considered, the distri-

bution of the random distance between two independent points in the same cluster.
The corresponding d.f. is denoted by Fd�r�; its p.d.f. is fd�r�. Stoyan and Stoyan
(1994, p. 310) show how Fd�r� may be calculated given ��r�.

General formulas for Neyman–Scott processes

Since Neyman–Scott processes are constructed in a rather simple way based on
Poisson processes and independent clusters, it is possible to derive simple formulas
for first- and second-order characteristics. However, such formulas cannot be
derived for other characteristics such as nearest-neighbour distances.

The general formula (6.2.9) for the intensity discussed in the context of clustering
operations yields

�=�pc�

The K-function, pair correlation function and distance d.f. respectively are given
by

K�r�= bdr
d + 1

�c

�∑
n=2

pnn�n− 1�Fd�r� for r ≥ 0� (6.3.1)

g�r�= 1 + 1
�c

�∑
n=2

pnn�n− 1�
fd�r�

dbdr
d−1

for r ≥ 0� (6.3.2)

D�r�= 1 − �1 −Hs�r��Dcl�r� for r ≥ 0� (6.3.3)

Here Dcl�r� is the probability that there is no other point of Nc in a disc of radius r
centred at an arbitrary (randomly chosen) point of the typical cluster Nc. Since it is
difficult to determine Dcl�r� the last equation is rarely used (for some calculations,
see Stoyan and Stoyan, 1994, p. 313; Tanaka et al., 2008; Daley and Vere-Jones,
2008, Example 15.1 (a) and Exercise 15.1.3). Furthermore,

Hs�r�= 1 − exp�−�pE��Nc ⊕ b�o� r��� for r ≥ 0� (6.3.4)

Thus, in order to calculate Hs�r� the mean area (volume) of the union set of discs
(spheres) of radius r centred at the points of the typical cluster has to be found. This
is an elementary but very difficult problem (again see Stoyan and Stoyan, 1994,
p. 313).

By definition and by (6.3.3) it is clear that the J -function is given by

J�r�=Dcl�r�� (6.3.5)

It is decreasing in r and smaller than 1.
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The distribution of the number N�W� of points in a set W of volume V
may be approximated by

P�N�W�= n�= �V�1 − b�

n! ��V�1 − b�+ nb�n−1 exp�−�V�1 − b�− nb�

for r ≥ 0, with b given by

�1 − b�2 = 1 +�V�2

and

�2 = 1
V
dbd

�∫
0

�W�r�r
d−1�g�r�− 1�dr�

see Sheth and Saslaw (1994).

Two examples of Neyman–Scott processes

In the following models, the representative cluster Nc is an isotropic centred Poisson
process with mean total number c, which implies that c has a Poisson distribution.

Matérn cluster process (Matérn, 1960). Here, the points in Nc are independently
uniformly scattered in the disc (ball) b�o�R�, where R is a further model parameter.
For this model the density function for the distance from the cluster centre is

��r�= drd−1

Rd
for 0 ≤ r ≤R

and

fd�r�=
⎧⎨
⎩

4r
�R2

(
arccos r

2R − r
2R

√
1 − r2

4R2

)
for d= 2�

3
2
r2

R6

(
R− r

2

)2 (
2R+ r

2

)
for d= 3�

for 0<r< 2R; otherwise fd�r�= 0.
Consequently,

g�r�= 1 + fd�r�

�pdbdr
d−1

for r ≥ 0 (6.3.6)

and

g�0�= 1 + 1
�pbdR

d
�
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Figure 6.2 Pair correlation functions of Matérn cluster processes of equal intensity
�=10 for different cluster radii R and mean numbers of points c: (solid line) R=1,
c = 5; (dot-dashed line) R = 1, c = 2; (dashed line) R = 2, c = 20; (dotted line)
R= 2, c= 5.

Figure 6.2 shows the pair correlation functions for four Matérn cluster processes
for varying values of R and c to demonstrate the impact of the parameters R and
c on the form of g�r�. For R= 1, c= 5 and R= 2, c= 20 the point density in the
clusters is the same and thus the values of g�0� coincide; 2R is that value rcorr of r
at which g�r� becomes constant.

Modified Thomas process, planar case (Thomas, 1949). In Thomas processes
the distribution of the daughter points around the parent points is the symmetric
normal distribution with parameter � . Here

��r�= r

�2
exp
(

− r2

2�2

)

and

fd�r�=
r exp

(
− r2

4�2

)
2�2

for r ≥ 0�

Consequently,

g�r�= 1 + 1
4��p�

2
exp
(

− r2

4�2

)
for r ≥ 0

and

g�0�= 1 + 1
4��p�

2
�
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Both the Matérn cluster process and the Thomas process can be generalised by
replacing the Poisson distribution of the random number c of cluster points by any
other discrete distribution; the formulas for fd�r� can be plugged into the general
formula (6.3.2). Tanaka et al. (2008) generalise the model by introducing two types
of clusters with �1 and �2.

Note that many Neyman–Scott processes are also Cox processes, which are
considered in Section 6.4. This is the case if the number of points per cluster has
a Poisson distribution. Examples are the processes considered above, the Matérn
cluster process and the modified Thomas process.

Non-stationary or inhomogeneous variations of Neyman–Scott processes have
also been used in the literature; see Provatas et al. (2000), Fleischer et al. (2006),
Møller and Waagepetersen (2007) and Waagepetersen (2007).

Simulation of Neyman–Scott processes

The simulation of Neyman–Scott processes in a window W is straightforward and
follows the model construction. First, the parent Poisson process is simulated in
the enlarged window W ⊕ b�o�R�, where R is a radius that is large enough for the
influence of parent points outside W on the pattern in W to be (almost) completely
eliminated. In the simulation of a Matérn cluster process, the radius R is the same
as a the model parameter, whereas for other models 99th percentiles of the distance
distribution may be used. For example, for modified Thomas processes, R may be
chosen as R=√−2�2 · ln���, yielding the 1 −� quantile of the parent–daughter
distance. (A more exact way of handling the problem is presented in Brix and
Kendall, 2002, and is based on perfect simulation.)

In the second step, a cluster distributed as Nc is generated for each parent point
x in W ⊕ b�o�R� and shifted towards x. This means that the following quantities
have to be generated:

(1) the number of cluster points, following the pi;

(2) the directions of the daughter points relative to the parent points, following
the uniform distribution;

(3) the distances between parent points and daughter points, following the p.d.f.
��r�.

In the simple cases of a Matérn cluster and a modified Thomas process it is more
efficient to simulate directly from either the uniform distribution in the sphere
of radius R or the bivariate Gauss distribution, respectively. Figure 6.3 shows a
simulated Matérn cluster process.

Conditional simulation is not difficult either. Assume that the aim is to simulate
a sample from a Neyman–Scott process with exactly n points in 1 . This requires
the following steps:
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Figure 6.3 Simulated planar Matérn cluster process in 1 . The intensity is �=200,
the cluster radius is R= 0�05 and the mean number of points per cluster is c= 10.

1. Generate parent points, just as in the unconditional case. Denote their number
by np.

2. Choose a random integer i between 1 and np (following the discrete uniform
distribution).

3. Generate a daughter point for parent point i. If the daughter point is in 1 , it
belongs to the sample, otherwise it is rejected.

Continue steps 2 and 3 until n daughter points have been generated.
The parametric statistics of cluster processes follows the general approach of

Section 7.2; see Examples 7.1 and 7.2, where a Matérn cluster process is fitted to
the pattern in Figure 1.4.

6.4 Stationary Cox processes
6.4.1 Introduction

Cox processes are a class of spatial point process models describing aggregation
or clustering resulting from environmental variability. Finite Cox processes have
already been briefly discussed in Section 3.4.2; this section now considers stationary
Cox processes. Due to their elegant construction, Cox processes are sufficiently
general to be applied to a large variety of different scientific questions but are still
amenable to calculations. Cox processes were first systematically studied in Cox
(1955).
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In the following, the general construction of a Cox process and a number of
examples of specific Cox processes are discussed. Towards the end of this section
a specific Cox process is fitted to the pattern in Figure 1.4.

As a motivation for the construction of a Cox processes, recall the inhomogeneous
Poisson process, based on a non-constant intensity function ��x�. It models point
patterns with variable point density and even clusters in the sense that the pattern is
more clustered in areas of high relative intensity. Hence an inhomogeneous Poisson
process might be regarded as a nice and simple model of spatial pattern formation in
the presence of environmental heterogeneity. However, the inhomogeneous Poisson
process is never stationary since the intensity function is not constant, and hence
many of the methods developed for stationary processes are not applicable.

In a stationary Cox process the intensity function is replaced by a stationary
random field with non-negative values. The realisations of this random field
are functions which are treated as intensity functions of inhomogeneous Poisson
processes. All distributional properties of the point process generated are inherited
from the stationary random field, which is called here the intensity field, yielding a
stationary point process model.

Formally, the Cox point process model is defined in two steps:

• Consider a stationary non-negative valued random field ���x��.

• Given a realisation of the random field, i.e. given that ��x�= ��x� for all
x∈�d, the points of the corresponding realisation of the Cox process form
an inhomogeneous Poisson process with intensity function ��x�.

The resulting process N is called a Cox process and sometimes also a doubly
stochastic Poisson process due to the construction described above. By construc-
tion, a Cox process is a hierarchical point process model with two levels. The
stationary random field forms the bottom level and in applications typically repre-
sents unobserved (environmental) local heterogeneity. The second level is formed
by the points, which are independently scattered given the intensity function. Thus
a Cox process is a clever construction in which independence (as in the Poisson
process) is replaced by conditional independence.

Note that Cox processes can be also constructed based on more general random
processes than random fields (see p. 383 and Example 6.8).

There are many ways of constructing the random field underlying Cox processes.
As a consequence, the class of Cox processes is very flexible yet yields computa-
tionally tractable models; the following provides several examples of Cox process
models in which this flexibility is well reflected.

Examples of Cox processes

Mixed Poisson process. The mixed Poisson process is a very simple example of
a Cox process, presented here only for the sake of exposition. It may be regarded as a
stationary Poisson process with randomised intensity parameter. More specifically,
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the intensity � is now a non-negative random variable rather than a fixed value.
An individual sample from this process looks like a sample from a stationary
Poisson process, but the intensities differ from sample to sample. It is not possible
to investigate the Cox nature of the process based on a single sample; it can be
analysed only as a sample from a Poisson process.

Matérn cluster process. Let Np be a homogeneous Poisson process with inten-
sity �. Each point x in Np is used as the centre of a disc (ball) b�x�R� with radius
R, and a finite Poisson process with intensity �c is generated within the disc (ball).
The superposition of all these circular (spherical) clusters is the Matérn cluster
process as discussed in Section 6.3.2. For this process the random field is

��x�=�c · ∑
y∈Np

1b�y�R��x��

It is a shot-noise field as introduced in Section 1.8.3 and considered further in
Section 6.9.

Log-Gaussian Cox process. A random field �Z�x�� is Gaussian if, for any finite
collection of locations x1, …, xk, any linear combination b1Z�x1�+ · · · + bkZ�xk�
with real b1, …, bk has a one-dimensional normal distribution; see Lantuéjoul (2002)
and Wackernagel (2003). If �Z�x�� is stationary and isotropic, its distribution is
determined completely by the mean � and the (spatial) covariance function k�r�.
However, this type of field cannot be used as the intensity field of a Cox process
since it can take negative values. Thus, a suitable transformation has to be applied
to the field �Z�x�� to yield a Cox process. A very elegant transformation, resulting
in a mathematically tractable model, is

��x�= exp�Z�x�� for x∈�d�

The corresponding process is termed a log-Gaussian Cox process. It was first
described in Rathbun (1996) and Møller et al. (1998) and has been widely used
in the modelling of environmental heterogeneity. It was independently defined in
astronomy; see Coles and Jones (1991). The log-Gaussian Cox process can be seen
as a link between point process statistics and geostatistics. A simulated realisation
of an LGC process is presented in Figure 6.4(a).

Poisson-gamma random field Cox process. This model is based on an intensity
field which is generated by a homogeneous Poisson process Nl of impulse centres
in �d, a sequence of i.i.d. gamma-distributed impulses �wi� for marks of the points
in Nl, and a d-dimensional p.d.f. (kernel function) ks�x�, leading to a shot-noise
random field as described in Section 1.8.3, i.e.

��x�= ∑
xi∈Nl

wi ks�x− xi��



382 Modelling and Simulation

(a) (b)

Figure 6.4 Two simulated patterns generated from Cox processes. (a) A sample
from a log-Gaussian Cox process. The (unobservable) intensity field is indicated
by the grey shading in the background. Note that in applications usually only the
points can be observed. (b) A sample from a random-set generated Cox process
where the intensities in the two phases determined by the random set differ. Again,
typically only the points can be observed.

This model was introduced in Ickstadt and Wolpert (1997) and Wolpert and Ickstadt
(1998). Note the difference from the Matérn cluster process seen as a shot-noise
random-field-generated Cox process, where the impulses are constant (= �c) and
the kernel function is the uniform distribution in b�o�R�.

The Matérn cluster and Poisson-gamma random field Cox processes are examples
of so-called shot-noise Cox processes; see Brix (1999), Møller (2003), Møller and
Waagepetersen (2004) and Møller and Torrisi (2005).

Random-set-generated Cox process. A stationary random closed set X divides
�d into two parts or phases: the set X and its complement Xc. In both phases, a
Poisson process is generated with intensities �1 and �2, respectively. This process
was first introduced for a data set of a pattern of seedling locations in a commercial
tree plantation where the soil had been treated in two different ways. The random
set reflects these two different soil treatments (Penttinen and Niemi, 2007). The
random intensity of this Cox process is simply

��x�=�11X�x�+�2�1 − 1X�x���

where 1X�x� denotes the indicator function of the set X. A simulated example is
shown in Figure 6.4(b).
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Fibre-process-generated Cox process. Assume that S =⋃l Sl is a so-called
stationary fibre process, i.e. a mathematical model for a random system of fibres
or curves (see Stoyan et al. 1995), where Sl is a randomly located, oriented and
shaped fibre in �d, for example a line segment. Construct a Poisson process on
each fibre. The number of points on the fibre Sl follows the Poisson distribution
with mean �f��Sl�, related to the fibre length ��Sl�, and the points are uniformly
and independently distributed along the fibre. This point process is also a Cox
process, which may be used to model alignments of points. Fibre-process generated
Cox processes may also be applied in the statistics of random fibre systems (see
Section 6.11.3). This example shows that Cox processes can be more general than
in the construction introduced above that uses an intensity field; see Stoyan et al.
(1995, p. 155).

Thinning of Poisson processes. In this case the random process is generated
from a Poisson process with intensity � through random independent thinning,
where the location-dependent retention probabilities are based on a random field
�P�x��, with values in the interval �0�1�. Note also that independent thinning of a
Cox process yields a new Cox process.

6.4.2 Properties of stationary Cox processes

General formulas

Due to the construction and its close relationship to the Poisson process, rela-
tively simple formulas can be derived for Cox processes. Assume that the intensity
field ���x�� is a second-order random field. Then the first-order and second-order
intensity functions of the Cox process are, respectively,

��x�= E���x��

and

	�2��x1� x2�= E���x1���x2���

The latter can be generalised to the kth-order intensity in a straightforward way.
If the generating random field is stationary the Cox process is also stationary,

and if the field is isotropic the process is also isotropic. The intensity of the Cox
process is

�= E���o��=�� (6.4.1)

where � is the mean of the intensity field.
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In the stationary and isotropic case the second-order product density may be
written as

	�2��r�=�2 + k�r� (6.4.2)

with r = �x− y�, and the pair correlation function is

g�r�= 1 + k�r�

�2
� (6.4.3)

where k�r� is the covariance function of the random field,

k�r�= cov���x����y�� for r = �x− y��

If the random field has positive autocorrelations, then g�r�≥ 1, i.e. the resulting
point pattern is clustered.

The void probability of a Cox process is

vK = P�N�K�= 0�= E
(

exp
(

−
∫
K
��x�dx

))

for any (compact) set K of �d. Here the expectation is with respect to the intensity
field ���x��.

Formulas for some specific models

Of the many Cox process models the log-Gaussian Cox process and Poisson-gamma
random field Cox process are perhaps the most widely applicable processes. The
random-set-generated Cox process is also a natural model in many applications. The
following lists some important point process characteristics for these three models.

Log-Gaussian Cox process. Suppose that �Z�x�� is a stationary and isotropic
Gaussian random field with mean �Z, variance �2

Z and covariance function kZ�r�.
Recall that the random intensity is ��x�= exp�Z�x��. Then the first- and second-
order point process characteristics are

�= exp
(
�Z + 1

2
�2
Z

)

and

g�r�= exp�kZ�r�� for r ≥ 0�
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Poisson-gamma random-field Cox process. The generating shot-noise random
field has the following parameters: intensity �p for the Poisson process locations of
the impulses, gamma distribution with shape � and inverse scale parameter � for
the random impulses, and smoothing kernel ks�x�. Then the intensity and the pair
correlation function of the generated Cox process are

�=�p�/�

and

g�r�= 1 + 1 +�

�

∫ ∫
ks�u�ks�u+ x�du

with r = �x�; both integrals are over �d.

Random-set-generated Cox process. The first- and second-order characteristics
of a stationary and isotropic random set X are area fraction (volume fraction in �3)

p= P�o∈X�

and (non-centred) covariance

C�r�= P�o∈X and x ∈X� for x ∈�d with r = �x��

These two characteristics, together with the Poisson process intensities �1 and �2

of the two phases, determine the intensity and pair correlation function, which are

�=p�1 + �1 −p��2

and

g�r�= 1
�2

(
C�r���1 −�2�

2 − 2p��1 −�2��2 +�2
2

)
for r ≥ 0�

Simulating Cox processes

Since samples from a Cox process are samples from inhomogeneous Poisson
processes given a realisation of the intensity field, the main issue concerns the simu-
lation of the intensity field model. Once this is achieved the algorithm is the same
as for the inhomogeneous Poisson process. For example, a simulation algorithm for
the log-Gaussian Cox process can be found in Møller and Waagepetersen (2002,
2004), and conditional simulation is discussed in Lantuéjoul (2002). A detailed
discussion of these methods is beyond the scope of this book.
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6.4.3 Statistics for Cox processes

For the estimation of the parameters of Cox processes the standard methods
described in Section 7.2 can be used, i.e. the minimum contrast method and like-
lihood methods, based on either MCMC (Møller and Waagepetersen, 2004) or the
approximate method of Tanaka et al. (2008). Also goodness-of-fit tests follow the
usual pattern in Section 7.4.

Example 6.2. Phlebocarya pattern: fitting a log-Gaussian Cox process
The statistical analyses in Chapter 4 for the Phlebocarya pattern suggest analysing it
with methods for stationary point processes and using models with spatially variable
point density. Thus, a Cox process is fitted to the data here. (In Example 7.1 a
cluster process is also used to model the data.)

The minimum contrast method explained in Section 7.2 based on the pair corre-
lation function yields the following estimates:

�̂Z = 0�428� �̂2
Z = 1�89�

and

k̂Z�r�= 1�89 exp�−�r� with �= 6�89�

Figure 6.5 shows the empirical and model pair correlation functions, which are
close together. Simulation tests based on D�r� and Hs�r� also indicate that the
log-Gaussian Cox model is acceptable (see Figure 6.6).
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Figure 6.5 The empirical (solid line) and model (dashed line) pair correlation
function for the Phlebocarya pattern. Additionally, envelopes resulting from 99
simulations of the log-Gaussian Cox model are shown (dotted lines).
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Figure 6.6 Results of simulation tests for the log-Gaussian Cox process for the
Phlebocarya pattern based on (left) D�r� and (right) Hs�r�. In both cases a good fit
is indicated, since the empirical curve is well between the simulated envelopes.

6.5 Hard-core point processes
6.5.1 Introduction

A hard-core point process is a point process in which there are no points at
a distance smaller than a specific minimum distance denoted by r0. Hard-core
processes describe patterns representing the locations of centres of non-overlapping
objects, typically circles or spheres with radius R≤ r0/2. Consequently, the pair
correlation function g�r� and the nearest-neighbour distance d.f. D�r� satisfy

g�r�= 0 and D�r�= 0 for 0 ≤ r ≤ r0�

In reality, of course, there are hard-core distances in all point patterns, since the
objects represented by the points take up some space themselves. However, the
space around the objects is often large enough that the objects’ size can be ignored.
The measurement process itself may also lead to patterns with a hard core, for
example if the point coordinates are measured on a grid; see Section 1.2.3.

Hard-core processes are typical examples of processes with a tendency towards
regularity, which results from repulsion among the points. A number of suitable
models have been considered, which can be simulated. However, formulas for
summary characteristics have been derived only for the simplest and least interesting
ones. Hence, in most applications simulation approaches have been used to find
these characteristics.

There are two main types of hard-core processes:

• Processes resulting from thinning operations. These operations may remove
points that are close to other points or eliminate points in clusters to producing
a pattern of isolated points. Consider, for example, ecological processes in
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plant communities, where dense patterns of seedlings develop into hard-core
patterns as a result of competition. Different thinning rules generate different
patterns and models.

• Processes resulting from interaction of hard objects. Here the objects repre-
sented by the pattern are hard and non-penetrable such that if they are
randomly distributed in space they cannot be closer together than permitted
by their sizes. These objects can exist either simultaneously from the very
beginning or can appear over time.

This section describes some common hard-core models which have been used in
many applications. The first of these processes are the Matérn hard-core processes,
for which explicit formulas have been derived. These models are based on very strict
thinning rules resulting in rather sparse processes, which are of particular interest
in biological applications. The simple sequential inhibition or RSA models result
in less sparse patterns which are generated in an iterative way. Gibbs hard-core
processes as discussed in Section 6.6.1 and the packing models discussed below
may result in rather dense patterns.

6.5.2 Matérn hard-core processes

Matérn (1960, 1986) suggested two hard-core models. Here the model (of his type
2) yielding a higher final intensity of points is described along with two other
models which generalise Matérn’s original idea.

Matérn hard-core process

The model is essentially based on dependent thinning applied to a stationary Poisson
process Nb with intensity �b. The points in Nb are marked independently by random
numbers uniformly distributed in �0�1�. The dependent thinning retains a point x
in Nb with mark m�x� if the sphere b�x� r0� contains no points in Nb with marks
smaller than m�x�.

In applications, the points in Nb may be the locations of seeds, while the marks
are points in time at which they germinate. Then N consists of the locations x
of those plants the seeds of which were the earliest to germinate within an area
b�x� r0�, the area the plants need for nutrient uptake.

The intensity � of N is given by

�=p�b�

Here p is the Palm retention probability of the ‘typical point’ in Nb, which is
given by

p=
1∫

0

r�t�dt= �1 − exp�−�bV�� /��bV� for V = bdr
d
0 �
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where r�t�= exp�−�bVt� is the probability of retention of a point with mark t with
0 ≤ t≤ 1 . This formula results from the observation that the sub-point process of
Nb that consists of the points with a mark smaller than t is simply a t-thinning of a
Poisson process, which is itself a Poisson process of intensity �bt. Hence r�t� is the
probability that a sphere of radius r0 contains no points in the t-thinned process.
Consequently,

�= �1 − exp�−�bV��/V� (6.5.1)

If r0 = 1 the maximum intensity � is approximately 0.318 if d = 2, and 0.239 if
d= 3. These maxima result from letting �b tend to infinity.

The second-order product density 	�2��r� is

	�2��r�=
{

0� for r ≤ r0�
2�r0 �r��1−e−�bV �−2V�1−e

−�b�r0 �r�
�

V�r0 �r���r0 �r�−V�
for r> r0�

(6.5.2)

where

�r0
�r�= �b�o� r0�∪ b�r� r0��= 2V −�r0

�r� for r> r0� (6.5.3)

in which r is any point with �r�= r; �r0
�r� is the area (volume) of the intersection

of two discs (spheres) of radius r0 and midpoint distance r.
In the important low-dimensional cases for r ≤ 2r0,

�r0
�r�=

{
2r2

0 arccos r
2r0

− r
2

√
4r2

0 − r2 for d= 2�
4�
3 r3

0

(
1 − 3r

4r0
+ r3

16r3
0

)
for d= 3�

Clearly, �r0
�r� vanishes for r> 2r0.

These formulas result from using 	�2��r�= �2
b��r� where ��r� is the two-point

Palm probability that two points in Nb a distance r apart are both retained. It is
straightforward to check that 	�2��r�= �2 for r ≥ 2r0. Refer to Stoyan and Stoyan
(1985) for a mathematical derivation of the formulas.

The following two models have variable hard-core radii and may be regarded as
generalisations of the Matérn hard-core process.

Random competition model

Månsson and Rudemo (2002) study the following model. Each of the points x in
a basic Poisson process Nb with intensity �b are assigned two independent marks,
r�x� and c�x�, by independent marking, where r�x� is a radius mark and c�x� a
competition mark. The r�x� follow the p.d.f. f�r� and d.f. F�r�, whereas the c�x� are
uniformly distributed on (0,1); points with small c-marks are regarded as strong.
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For this model the thinning rule is as follows. The point x in Nb is deleted if
there is another point y in Nb with

�x− y� ≤ r�x�+ r�y� and c�y�≤ c�x��

In other words, x is eliminated if its sphere b�x� r�x�� intersects with the sphere of
a stronger point y.

The intensity of the thinned process N is

�=�b

�∫
0

p�r�f�r�dr (6.5.4)

with

p�r�=
⎛
⎝1 − exp

⎛
⎝−�bbd

�∫
0

�r + y�df�y�dy

⎞
⎠
⎞
⎠
/⎛
⎝�bbd

�∫
0

�r + y�df�y�dy

⎞
⎠ �

Furthermore, the radius (or mark) distribution of the resulting process is

F��r�= 1 −
�∫
r

p�s�f�s�ds

/ �∫
0

p�s�f�s�ds for r ≥ 0�

This distribution function usually differs from F�r�, since those points in the marked
Poisson process that have larger radius marks are less likely to survive. Therefore,
F�r� is called the ‘proposal’ d.f. and F��r� ‘resulting’ d.f. For the pair correlation
function only complicated formulas can be given which contain multiple volume
integrals.

Dominance competition model

Stoyan (1988) studies the following model: the points in a Poisson process Nb with
intensity �b are independently assigned radius marks r�x�, which follow the p.d.f.
f�r� or d.f. F�r�.

The point x in Nb is deleted if there is another point y in Nb with

�x− y�< 2r�y� and r�y�> r�x��

In other words, x is eliminated if it is within the distance 2r�y� of a point with
larger mark r�y�, i.e. points with larger marks are less likely to be deleted.

The intensity of the thinned process is

�=�b

1∫
0

r�t�dt (6.5.5)
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with

r�t�= exp�−�bV�t��

and

V�t�= 
({

�x� y� z� �
√
x2 + y2 ≤ 2F−1�z�� t≤ z≤ 1

})
�

where F−1�z� is the inverse of F�r�. The mark d.f. is

F��r�= 1 −
1∫

F�r�

r�t�dt

/ 1∫
0

r�t�dt �

Stoyan (1988) also presents a formula for the pair correlation function g�r� as well
as several examples.

Simulation of the Matérn models

In general, the simulation of a classical Matérn hard core process is straightforward.
First, a Poisson process with intensity �b is simulated in W ⊕ b�o� r0� and the
points are marked independently with random uniform marks in �0�1�. Second, the
specific thinning rule is applied to each pair of points. Note that points deemed
to be deleted still cause the deletion of other points. This means in practice that
those points that are not contained in the final pattern are initially marked as ‘to be
deleted’ but are removed only after all points have been considered; the points in
W that have not been deleted form the final sample. Figure 6.7 shows a simulated
sample of a Matérn hard core process. For models with random radii an analogous
procedure may be applied, replacing r0 by some quantile of F�r�.

For the pattern of gold particles, Glasbey and Roberts (1997) use a hard-core
model which modifies a Poisson process by shifting particular points: if points are
too close together, they are pushed apart.

6.5.3 The dead leaves model

Matheron (1968) introduced an interesting model of non-overlapping discs or
spheres, discussed here for the planar case. Place discs (with constant or random
radii) randomly and uniformly on the plane for a long time, within the time interval
�−��0�, such that

(1) a new disc may cover discs that have already been placed in the plane, and

(2) infinitely many discs are placed in any subset of the plane of positive area.
This generates a pattern as shown in Figure 6.8. The pattern may be inter-
preted as a layer of circular dead leaves seen from above, from the air (or,
equivalently, from below, e.g. from the point of view of a mole).
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Figure 6.7 A simulated sample from a planar Matérn hard-core process in 1 .
The intensity � is 200 and r0 = 0�039.

Figure 6.8 A simulation of Matheron’s dead leaves model with identically sized
discs. The intact discs form the sample of the dead leaves model. Data courtesy of
C. Lantuéjoul.

Now consider the non-intersecting or intact discs in the uppermost layer; their
centres form a hard-core process that has the same distribution as Matérn’s hard
core process of Section 6.5.2 in the limit as �b → �.

For the case of constant radii R= r0/2, the formulas are

�= 1/�bdr
d
0 �� (6.5.6)
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Figure 6.9 Pair correlation functions of two planar hard-core processes with r0:
dead leaves model (dashed line); RSA model (solid line).

g�r�=
{

0 for r ≤ r0�
2bdr

d
0

�r0 �r�
for r> r0�

(6.5.7)

with �r0
�r� as in (6.5.3); see also Figure 6.9.

Note that the simulation of the dead leaves process (also called ‘falling leaves
process’) is sometimes used as an illustration of the application of the idea of
exact or perfect simulation; see Kendall and Thönnes (1999). In order to generate
a sample in the window W the process of falling leaves is simulated in W⊕R until
the whole window is covered by discs. At this point the simulation can be stopped
and the sample may be considered as resulting from a simulation with infinitely
many steps. This is because infinitely many other invisible discs may be assumed
underneath the layer that is currently visible.

6.5.4 The RSA process

RSA is an abbreviation for ‘random sequential adsorption’, a term used in physics
and chemistry. The RSA process is known as the ‘simple sequential inhibition’
model in the statistical literature. Since the model is used much more frequently in
physics and chemistry, the name RSA is used here.

The RSA process is usually considered within a finite set W and is hence a finite
point process model (see Figure 3.9). The pattern is constructed by placing itera-
tively and randomly spheres in W with radii following the d.f. F�r�. If a new sphere
intersects with an existing sphere, the new sphere is rejected and another sphere,
with a different centre and radius, is generated etc. (Note that the process may be
modified by generating a new sphere after rejection with a different centre but the
same radius.) The process is stopped if either the required number of spheres is
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placed or if it is impossible to place any new sphere (termed jamming). The pattern
formed by the sphere centres is a sample of the point process to be generated, and
the radii may be considered as marks.

This book only discusses this finite RSA process, but note that Stoyan and
Schlather (2000) discuss a stationary version of the model. They show that for
constant radii the intensity of the RSA process is higher than for the dead leaves
model. In the case of random radii, a proposal and a resulting d.f. have to be
distinguished; see details in Stoyan and Schlather (2000). All numerical information
for the RSA process, (see Evans, 1993), has been obtained by simulation.

The intensity of the RSA process is usually expressed in terms of the area or
volume fraction, AA or VV , of space occupied by the spheres. For a process with
constant radii the maximum values are

AA = 0�547 and VV = 0�382�

Figure 6.9 shows the pair correlation function for a sample from a particular RSA
process, which was obtained by simulation. The RSA process is simulated along
the lines of the model description. For an efficient simulation close to jamming, the
search for potential locations for new spheres should be organised with an efficient
search algorithm; see Döge (2001).

Statistical methods for the RSA process are described in Van Lieshout (2006c).
Provatas et al. (2000) consider closely related models where the spheres are replaced
by fibres.

Remarks. For the simulation of random systems of hard spheres, the RSA process
is a popular simple ad hoc choice, but much better models with higher area or
volume fractions exist and will be discussed in the following sections. Note also
that in the RSA process the spheres never touch.

6.5.5 Random dense packings of hard spheres

This subsection describes simulation methods for generating random dense packings
of spheres; only the three-dimensional case is considered. It is assumed that these
methods correspond to unknown but correct point process models.

Sedimentation algorithm

This algorithm simulates the process of sedimentation of hard and heavy spheres, as
introduced by Jodrey and Tory (1979). It generates a random system of hard spheres
in a parallelepipedal container. Periodic boundary conditions in the horizontal direc-
tion ensure that the simulated sphere system may be considered a sample with
a statistically homogeneous structure, if the container is large enough. A typical
implementation of the concept of sedimentation is as follows.
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First, some initial configuration of spheres is generated, a layer of spheres at
the bottom of the container. Every subsequent iteration puts a new sphere into the
system. It moves downwards (following ‘gravitation’) until it hits another already
existing sphere in the system. Then, the sphere rolls across the surface of the
existing packing until it reaches a stable position, usually given by contact with
three spheres. (If a stable position cannot be found after a long time, the algorithm
starts another attempt with a new sphere.) This process of filling the container with
new spheres continues until all spheres that were intended to be placed have been
packed or until the container has been filled up.

Typically, the packings obtained with this method are not as dense as natural
random dense packings of hard spheres. With identical spheres the maximum
volume fraction is VV =0�58. Some gradient, i.e. some inhomogeneity in the vertical
direction, can be observed in the packing.

Force-biased algorithm

This algorithm generates very dense random packings of hard spheres with constant
or random radii. It has, similar to other algorithms with the same aim, little to do
with the real processes leading to packings of hard spheres.

The algorithm is based on an old idea due to Jodrey and Tory (1985) and was later
refined and generalised to random radii; see Moscinski et al. (1989), Bargiel and
Moscinski (1991) and Bezrukov et al. (2002). Its main idea may also be applied to
non-spherical objects such as ellipsoids (Bezrukov and Stoyan, 2006) or polyhedra.
The name of the algorithm originates from physical terms such as ‘force’ and
‘potential’.

The initial configuration of the algorithm is a system of n spheres b�xi�start� ri�start�.
The number n is fixed for the entire simulation. The centres xi�start are uniformly
distributed in the parallelepipedal container, while the radii ri�start are independent
random numbers generated from the radius d.f. In the initial configuration, the
spheres may overlap and this configuration is the only stochastic aspect of the
algorithm; the rest is completely deterministic.

While the algorithm is running, the centres and radii are changed and denoted
by xi and ri. At every step of the algorithm, all ri are uniformly reduced by
multiplication with some factor smaller than 1; this ensures that the proportions
between them remain fixed; for identical ri the radii of all spheres are identical but
decrease with the number of iterations. A process parameter 	 describes the current
radii, given by

	= ri/ri�start�

the parameter is 1 at the start and decreases gradually.
The xi are changed in order to reduce overlapping. To avoid the size of the

spheres being reduced more quickly than necessary, the overlapping is reduced
faster than the radii. In the end, only one pair of spheres is in direct contact, while
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many others are very close together, so close that the small gaps between them
can be considered numerical errors. However, the algorithm also produces some
‘rattlers’, i.e. completely isolated spheres; for systems with random radii these are
typically small spheres.

At each iteration step of the algorithm all xi and ri are recalculated and then
simultaneously replaced by the new values. The new centre of the ith sphere is
given by

xi ← xi +
1
ri

∑
j �=i

Fij� (6.5.8)

i.e. results from a small shift. The Fij are so-called ‘repulsion forces’ acting between
two spheres b�xi� ri� and b�xj� rj� if these overlap. They are written as

Fij =�1ijpijeij� (6.5.9)

where � is a scaling factor, 1ij is 1 if b�xi� ri�∩ b�xj� rj� �= ∅ and 0 otherwise, pij

is a ‘potential value’ and eij the unit vector pointing from xi to xj ,

eij =
xj − xi

�xj − xi�
�

The pij depend on the degree of overlapping of b�xi� ri� and b�xj� rj�. In Bezrukov
et al. (2002) the form

pij = rirj

(�xi − xj�2

�ri + rj�
2

− 1
)

(6.5.10)

is recommended. (If the spheres overlap, pij is negative and the spheres are moved
further apart.) This explains why it is much more difficult to model non-spherical
particles as it is not a trivial matter to determine analogues of 1ij and pij .

The radii shrink according to

	←	− 2−��� (6.5.11)

where � is another scaling factor and

�= − log10�VV�nom −VV�act�� (6.5.12)

Here

VV�nom = 4
3
�

N∑
i=1

r3
i

/
(volume of container)
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and

VV�act =�3VV�nom�

where � is the largest number (<1) such that all spheres b�xi��ri� do not intersect.
The system formed by these spheres is already a random system of non-overlapping
spheres with the right radius proportions, but perhaps of minor quality, since VV�act

is smaller than the target value. The aim of the choice of � in (6.5.12) is to adapt
the radius reduction to the current quality of the packing.

The algorithm stops if during the simulation VV�act ≥VV�nom (or �≥ 1) or after a
fixed number of steps have been carried out; in the latter case the spheres b�xi��ri�
are the output.

Bezrukov et al. (2002) discuss the choice of � and � in detail. If one wishes to
generate very dense packings, an iterative procedure may be useful: the packing
resulting from one iteration step (a run of the force-biased algorithm) is used as the
starting configuration for the next step, with the same xi but increased ri, cri → ri,
with c> 1 (such that again spheres overlap).

Figure 6.10 shows a random packing of 10 000 spheres with lognormal radii.
Figure 6.11 shows the corresponding pair correlation function, which looks like
the pair correlation function of a soft-core process, along with the pair correlation
function for a case of constant spheres; see also Figure 4.27.

Collective rearrangement algorithms

The force-biased algorithm is part of a larger family of algorithms used to generate
systems of non-overlapping spheres, called collective rearrangement or concurrent

Figure 6.10 A random dense packing of 10 000 spheres with lognormal radii in a
cubic container. The ratio � �� of the parameters of the basic Gauss distribution is
� � � = 4 � 1, and the volume fraction of the packing is VV = 0�7.
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Figure 6.11 Pair correlation functions for the system of sphere centres in
Figure 6.10 (solid line) and for a system corresponding to a packing with constant
radii and VV = 0�7 (dashed line).

algorithms. Here the number of spheres is fixed for the entire simulation, and many
spheres are moved, i.e. the sedimentation algorithm is not a collective rearrange-
ment algorithm. A successful algorithm of this type is the Stillinger–Lubachevsky
algorithm, where the spheres grow during the simulation and move more frequently
and more strongly than in the force-biased algorithm; see Stillinger et al. (1964)
and Lubachevsky and Stillinger (1990).

Another very important approach is molecular dynamics where the spheres
do not change size, but move randomly in space, following Newton’s laws of
motion, having contact with other spheres (assuming elasticity) and the container’s
boundaries. A successful algorithm of this type is the SPACE algorithm; see
Stroeven and Stroeven (1999, 2001).

6.6 Stationary Gibbs processes
6.6.1 Basic ideas and equations

In Section 3.6 finite Gibbs processes were discussed, which form an important class
of point processes that model the interaction among points in an elegant way. This
section now considers their stationary analogue, stationary Gibbs processes. These
have infinitely many points, distributed over the whole of �d. They may be used
to adequately model large point patterns with interesting forms of interaction, if an
approximation by a finite Gibbs process is considered unsuitable. Again, similar to
Section 3.6, the following exposition only considers a subclass of Gibbs processes,
those with pairwise interaction. The reader is advised to read Section 3.6 prior to
embarking on this section.
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The formal mathematical definition of stationary Gibbs processes is more
complicated than that of Gibbs processes with a finite number of points. It was
developed by the mathematicians Georgii, Glötzl, Kallenberg, Kerstan, Matthes,
Mecke, Nguyen, Warmuth and Zessin; see the references in Stoyan et al. (1995,
Section 5.5.3) and Georgii (1976). Note that in these theories the process definition
is not based on limit procedures with W ↑�d where the window increases to the
whole space (physicists term this the ‘thermodynamic limit’).

Two basic facts are important for this section. First, stationary and isotropic
Gibbs processes are based on two characteristics, the chemical activity � and the
pair potential ��r�. The latter plays the same role as in the finite case, determining
the character of the point distribution (i.e. exhibiting hard cores, soft cores, weak
clustering, …), whereas � influences the intensity � of the process. For a fixed
pair potential, � increases with decreasing �. (Note that � can also have negative
values.) In the context of stationary Gibbs processes, the number of points in the
window W is assumed to be the realisation of a random variable.

The conditional intensity of the process is

��x�N�= exp

(
−�− ∑

y∈N\�x�
���x− y��

)
� (6.6.1)

the term �+∑y∈N ���x− y�� is often referred to as the ‘local energy’.
Second, the distribution of a stationary and isotropic Gibbs process satisfies two

important mean-value relations. The first of these is the Georgii–Nguyen–Zessin
formula:

E

(∑
x∈N

h�x�N \ �x��
)

= E

(∫
h�x�N� exp

(
−�−∑

y∈N
���x− y��

)
dx

)
� (6.6.2)

where h�x�N� is any function that assigns a non-negative number to a point x and
the point process N . The second relation concerns a function f�N� that depends
only on N :

�Eo�f�N \ �o���= E

(
f�N� exp

(
−�−∑

x∈N
���x��

))
� (6.6.3)

The left-hand side contains a Palm mean, as introduced in Section 4.1, and the
right-hand side a normal mean with respect to the process distribution. An example
of such a function is f�N�=N�b�o� r��, the number of points in N contained in the
ball b�o� r�.

It is quite difficult to calculate the summary characteristics discussed in Chapter 4
for Gibbs processes in terms of � and ��r�. Much work has been done in



400 Modelling and Simulation

this context by physicists, who are particularly interested in the pair correlation
function g�r� for patterns in �3. One well-known result is the Percus–Yevick
approximation:

��r�≈ g�r�

g�r�− c�r�
for r ≥ 0 (6.6.4)

(see Hansen and McDonald, 1986; Diggle et al., 1987). Here, c�r� is a further
function, the so-called ‘direct correlation function’, which is defined implicitly as
the solution of the Ornstein–Zernike equation,

c�r�=h�r�−��c∗h��r�� (6.6.5)

with h�r�= g�r�− 1 and

�c∗h��r�=
2�∫

0

�∫
0

c�s�h
((
r2 + s2 − 2rs cos�

)1/2
)

dsd��

Combining (6.6.4) and (6.6.5) yields an integral equation for g�r�, which may be
used to approximate the pair correlation function.

To get a better idea of the nature of the problem, refer to (3.6.4) and (6.6.7) for
the pair potential of the Gibbs hard-core process and the pair correlation functions
shown in Figures 4.27 and 6.11. (Note that these functions have been computed for
random dense packings of hard spheres, which are not samples of Gibbs processes,
since in three-dimensional Gibbs hard-core processes the hard spheres do not touch.
Nevertheless, the global behaviour of the pair correlation functions of both process
classes is quite similar.) The pair potential ��r� is a simple step function, but g�r�
has many waves and no formula is known.

Stoyan–Grabarnik residuals

The issue of model diagnostics in the context of point processes is discussed in
Section 4.6.5. As in classical statistics, the suitability of a model for a particular
data set is assessed based on residuals, which describe deviations between model
and data.

Equation (6.6.3) may be used to define ‘residuals’ based on constructed marks,
which may be used both for model and simulation diagnostics. To do so, Stoyan
and Grabarnik (1991b) mark the stationary Gibbs process with ‘exponential energy
marks’ defined by

m�x�= 1

��x�N�� (6.6.6)
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The mean mark corresponding to m�x� is �, the intensity. This is a direct conse-
quence of (6.6.3), since for

f�N�= 1
��o�N� = exp

(
�+∑

x∈N
���x��

)

the right-hand side of (6.6.3) is 1, and the left-hand side is �× mean mark.
These constructed marks have two main applications. First, the marks may be

used to control iterative simulation algorithms such as those discussed in Section 3.6.
As indicated, these algorithms generate samples from a point process model only
after a certain number of iterations, the burn-in period. The number of iterations
required for burn-in is typically found by experimentation. However, the marks
defined above may be used to check whether the Monte Carlo chain has reached the
end of the burn-in phase. One can simply take a sample, compute the exponential
energy marks m�x� as in (6.6.6) and determine their sum for all x in W , which
should be approximately �W� if the burn-in phase is over.

The second use of the constructed marks is in model-fitting. With �̂ and �̂�r�
estimated from the data, the marks

m̂�x�= exp

(
�̂+∑

y∈W
�̂��x− y��

)

are used as residuals which should approximately sum to �W� if the model is
correct.

Note that these residuals have the disadvantage that ��x�N� must be positive.
This causes a problem with Gibbs hard-core processes for which ��x�N� can be
zero so that the residuals above cannot be defined.

Gibbs hard-core process

Stationary Gibbs processes with the very simple pair potential

��r�=
{� for r ≤ r0�

0 for r> r0�
(6.6.7)

form another class of hard-core point processes, called Gibbs hard-core processes.
These processes and their variations have been extensively investigated in statistical
physics; see Löwen (2000). If the intensity is very high (or the chemical activity �
‘very negative’ ) these processes are similar to random dense packings of identical
spheres, but, as mentioned above, the spheres do not touch. Corresponding pair
correlation functions are shown in Figures 4.24 and 6.11.

Note that all finite Gibbs process models discussed in Section 3.6 have stationary
counterparts; the pair potentials on pp. 141–142 can also be used in the stationary
case. In Example 6.3 two interesting pair potentials are used.
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6.6.2 Simulation of stationary Gibbs processes

In practice, stationary Gibbs processes, like all stationary processes, can only be
simulated within a finite window. This can be done by applying methods derived
for finite Gibbs processes with the pair potential ��r� of interest. There are two
main approaches:

• Simulate a finite Gibbs process in an extended window Wsim, which is much
larger than W such that the influence of the edge of W is negligible. Of
course, the number of points in W is variable, determined by � and ��r�. To
achieve this, the algorithm described in Section 3.6.3 with a variable number
of points is applied in Wsim.

• Simulate a finite Gibbs process with periodic boundary conditions in W , if W
is a rectangle or parallelepiped. This is usually done with a birth-and-death
or Metropolis-Hastings algorithm with a variable number of points.

Note that the simulation of Gibbs hard-core processes of high intensity is a
particularly difficult problem; Mase et al. (2001) and Döge et al. (2004) present a
suitable approach to this issue.

6.6.3 Statistics for stationary Gibbs processes

As noted, in applications the patterns that could be regarded as samples from
stationary point processes are often treated as samples from finite Gibbs processes
and thus the methods introduced in Section 3.6 are applied. Diggle et al. (1994)
show that this approach yields acceptable results for the pair potential ��r�, while
estimation of � is beyond this approach.

Stoyan and Grabarnik (1991a) apply the cusp-point method as discussed in
Section 3.6.4, which is appropriate for stationary processes if Kfin�r� is replaced by
K�r�. While this can only be applied to hard-core Strauss processes, the following
method may be used for all Gibbs processes.

The Takacs–Fiksel method (Takacs, 1986; Fiksel, 1984, 1986) is a general para-
metric estimation approach that is based on (6.6.3) in the spirit of the method of
moments. It yields estimates of the parameter � as well as of parameter  in the
pair potential ��r�  �. For example, in the case of a hard-core Strauss process,
 = �r0��� rmax�.

The basic idea of the approach is to find values for � and  such that estimates
L̂k���  � and R̂k���  � of the left- and right-hand side of (6.6.3) for suitable test
functions f = Tk are as similar as possible. In other words, one seeks to minimise
the sum of squared differences

S��� �=
m∑

k=1

(
L̂k���  �− R̂k���  �

)2
�
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The number m of these test functions should be larger than the number of parameters
of the pair potential, i.e. the dimension of  . Note that for stationary Gibbs processes
� is an additional parameter, which can be estimated by the Takacs–Fiksel method
in the same way as the pair potential parameters. For finite Gibbs processes,
however, the number of points n is typically known and does not have to be
estimated.

Since Takacs’ first paper in 1983, various test functions Tk have been considered.
Two versions appear to be particularly useful:

T ′
k�N�=N�b�o� rk�� exp

(
�+∑

x∈N
�� ��x��

)

and

T ′′
k �N�=N�b�o� rk��= number of points in b�o� rk��

where the rk are suitable radii.
For planar patterns, Lk��� � and Rk��� � are estimated as follows. If T ′

k is used,
R̂k���  � has the simple form

Rk��� �=��r2
k �

Thus there is no (direct) dependence on � and  . The estimator is simply

R̂k���  �= �̂�r2
k � (6.6.8)

An estimator of the left-hand side of (6.6.3) is then

L∗
k���  �= 1

�W�

n∑
i=1

N�W ∩ b�xi� rk� \ �xi��

× exp

⎛
⎝�+

n∑
j=1
�j �=i�

�� ��xi − xj��w�xi� xj�
⎞
⎠ � (6.6.9)

Here n=N�W� is the number of points observed and

�i =
�r2

k

�W ∩ b�xi� rk��
�

whereas w�xi� xj� is defined as on p. 188.
For the second test function T ′′

k , Lk��� � is

�2K�rk��
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since

�Eo�N�b�o� rk� \ �o���=�2K�rk��

where K�r� is Ripley’s K-function. It can be estimated by the methods described
in Section 4.3.3. To estimate Rk��� � use a point lattice �yj� for j = 1, 2, …, l in
W and calculate:

R̂k���0�= 1
l

l∑
j=1

N�b�yj� rk��cj exp

(
−�−

n∑
i=1

���xi − yj��  �w�xi� xj�
)
�

with

cj =
�r2

k

�W ∩ b�yj� rk��
�

It is also possible to use cj = 1 if all lattice points are far away from the
boundary of W . (For example, if ��r�= � for r ≤ r0 the distance of the yj from
the boundary of W should be at least r0.)

As far as the choice of test function Tk is concerned, experience shows that T ′′
k

yields better results for ‘repulsive’ pair potentials, i.e. if ��r� is non-negative. For
a pair potential that models attraction, i.e. ��r� is negative for some r, T ′

k�N� is
preferable.

The radii rk should be chosen as

rk = k
R

m
for k= 1� 
 
 
 �m�

where R is a relatively large number with R ≈ 1�3rmax and rmax is the range of
interaction, i.e. the smallest r-value such that

��r�= 0 for all r> rmax�

Tomppo (1986) has developed a variant of this method based on nearest-
neighbour distances. It may be used when data on the coordinates of the
objects’ location is not available but the distances among them have be recorded.
Ripley (1988), Särkkä (1993) and Goulard et al. (1996) show that a specific
choice of Tk yields estimation equations where the Takacs–Fiksel and so-called
pseudo-likelihood estimation equations coincide. This extends the use of the pseudo-
likelihood method; see Särkkä and Tomppo (1998).

Example 6.3. Estimation of a pair potential for trees in a spruce forest
This example considers the pattern of 134 Norwegian spruce trees shown in
Figure 6.12. The data were collected in a forest research area in the Tharandter
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Figure 6.12 Pattern formed by 134 Norwegian spruce trees in a 56 × 38 m rect-
angle in the Tharandter Wald. The black dots represent the pair of points with a
small inter-point distance and largest difference in their marks.

Wald (near Dresden, Germany) and the trees were 60 years old at the time of data
collection done by G. Klier in the 1960s.

They were originally planted and were later thinned by the forester with the aim
of obtaining a stand of trees of similar size; in particular, those trees that were
dominated by other trees were removed. Since this stand is part of a larger forest,
a stationary point process model seems to be preferable; the trees close to the
window’s boundary are influenced by trees outside the window.

In the following, these data are analysed on the assumption that they are a subset
of a sample from a stationary Gibbs process. The pattern formed by the trees in
the stand as well as in the entire forest has been influenced by growth, thinning by
foresters and natural competition, such that interactions among the trees are difficult
to interpret. Fitting a Gibbs model to the data is a form of data analysis. It leads to an
estimated pair potential, which can be regarded as a further summary characteristic.
Furthermore, it enables simulation of such patterns. Unlike the approach taken in
Møller and Waagepetersen (2007) the marks are ignored here since they appear to
be independent (see Example 6.4) and do not show large fluctuations. (Without the
forester’s work the marks would probably be strongly correlated since the trees that
have previously been suppressed would still be present in the plot.)

Following Fiksel (1984, 1986), two families of pair potentials are considered:

�1�r�=�h1���R1
�r��

the hard-core Strauss potential as on p. 142, and

�2�r�=
⎧⎨
⎩

� for r ≤h2�
a−!r for h2 <r ≤R2�
0 for r>R2�
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Here rmax is denoted as Ri. The parameters are estimated as

ĥ1 = 1 m� R̂1 = 2�7 m� �̂= 0�85 m

and

ĥ2 = 1 m� R̂2 = 3�5 m� â= 1�47 m� !̂ = 1�0 m−1�

and the chemical activities are estimated as

�̂1 = 0�99� �̂2 = 1�89�

The estimates were obtained by the Takacs–Fiksel method with the test functions
T ′′
k �N�=N�b�o� rk�� for

rk = 0�0�25�0�50� 
 
 
 5�00

and suggest inhibition among trees up to a distance of approximately 3 m.
Testing the goodness-of-fit of both models shows that the second model is better.

The inhibition between the trees is slightly stronger at distances between 1 and
2 m than that for the points in the model, as can be seen in Figure 6.13. (A
goodness-of-fit test using D�r� yielded the same result.) Another pair potential leads
to a better result.

The pair potential �2�r� may be interpreted in the following way in forestry
terms: the pattern may be assumed to result from two thinning operations. The
aim of the first of these was to obtain a pattern with 1600 trees per hectare,
which corresponds to an inter-tree distance of 2.5 m, but shorter distances close

L(r)

0.0 2.5 5.0 7.5 10.0

2.5

7.5

5.0

0.0

10.0

r (in m)

Figure 6.13 Empirical L-function for the spruces with envelopes derived from 99
simulations of the stationary Gibbs process model with pair potential �2�r�.



Modelling and Simulation 407

to gaps. The aim of the second was to obtain 600 trees per hectare, which is
approximately the intensity of the final spruce forest.

Note that r̂max = 2�7 m for the hard-core Strauss potential and 3.5 for �2�r� mark
the ranges of interaction of the pair potentials, while the range of correlation rcorr

corresponding to the pair correlation function is close to 8 m.

6.7 Reconstruction of point patterns
6.7.1 Reconstructing point patterns without a specified

model

Simulation is an important tool in point process statistics as it may be used to test
statistical hypotheses, to visualise patterns, to evaluate statistical procedures (e.g.
assess estimation variances) and to continue an empirical point pattern beyond the
edges of the original observation window W (see p. 185).

All simulation methods discussed so far generate samples from explicit parametric
point process models. These models are elegant since they are based on a small
number of numerical parameters only. However, the underlying mathematical theory
and methodology are rather complicated, which may make them less popular among
applied researchers. Fortunately, a simple and universal simulation method has been
developed which can be used in many situations, when point patterns similar to an
empirical pattern have to be generated in some window. In other words, based on
an empirical point pattern in an observation window W , one would like to simulate
an irregular pattern with a similar point distribution in a new window Wrec which
may be different from W .

The main idea underlying the approach described in this section is to generate a
simulated pattern such that appropriate summary characteristics of the simulated and
the empirical pattern are as similar as possible. Note that in some theoretical studies
the summary characteristics may be known analytically. Note also that this recon-
struction approach yet again demonstrates the power of summary characteristics to
extract important features in spatial point pattern data sets.

Different summary characteristics may be used in the algorithm, e.g. the intensity
�, the L-function L�r�, the pair correlation function, the spherical contact distribu-
tion function Hs�r� or some of the indices discussed in Sections 4.2.4 and 5.2.4.
The algorithm tries to find point patterns that minimise the difference between the
summary characteristics of the simulated and the empirical pattern.

The patterns resulting from the algorithm may be regarded as having been derived
from a general class of point processes that are similar to Gibbs processes. However,
these have rather unusual or intractable energies, which cannot be motivated from
the geometry of the pattern or from background knowledge on the pattern formation,
but are simply treated as an empirical phenomenon. Fortunately, and despite the
fact that the true form of these unusual energies might be very complicated, the
reconstruction algorithm is actually rather easy to understand.
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Note, however, that the approach has its clear limitations. As discussed in
Section 4.3.6, different point processes might have the same intensity and the
same L-function. They might also have the same intensity and the same Hs�r�, or
even different �, L�r� and Hs�r�. In other words, rather different patterns might
be generated based on the algorithm, which might sometimes be similar to those
generated from one specific point process model and sometimes to another point
process model. In many cases, the simulated pattern might be somewhere ‘in
between’ the two proesses. All these patterns, though, always yield almost the
same estimates of �, L�r� and Hs�r�. Note also that it is sometimes impossible
to construct a point process based on specific presribed parameters, if these yield
contradicting characteristics which cannot be satisfied simultaneously. (A simple
example is a process with a large hard-core distance r0 and an intensity � that is
too high.)

It is very important to carefully choose the summary characteristics such that
the variability among the generated patterns is as small as possible. This will be
discussed in the theoretical example below.

This approach was originally developed in physics by Rice in 1945, and refined
by Joshi, Quiblier and Adler, who used it to simulate two-phase structures such as
random media; see Torquato (2002, p. 295). To the authors’ knowledge the idea of
applying the method to point processes was first discussed in Tscheschel (2001).

The reconstruction algorithm

The algorithm starts with an arbitrary pattern in the window Wrec. This pattern has
n points, where n is

� · �W�

rounded to the nearest integer. This is done to fix the correct point density as a
minimum requirement.

The number of points n does not change during the simulation. (That is to say, the
algorithm in some way simulates a Gibbs process with a fixed number of points.)
The initial pattern may be, for example, a sample from a binomial process with n
points in Wrec.

In each of the simulation steps, one point in the current pattern is randomly chosen
and a new candidate point is generated, to potentially replace the chosen point.
The values of the summary characteristics, e.g. L�r� and Hs�r�, are determined
for both the pattern without the chosen point and with the candidate point and
compared to those for the empirical pattern. If the values for the modified pattern
are closer to these than for the old pattern, the candidate point replaces the chosen
point. Otherwise a new candidate is chosen. The following text and the subsequent
examples describe the method in more detail.

The terminology used to describe the algorithm is derived from physics, and hence
the deviation of the characteristics for a simulated pattern from the characteristics
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for the empirical pattern is measured by an energy E�X� (with arguments X =N ,
Nk, etc.). The aim of the algorithm is to simulate a pattern with as small an energy
as possible.

Let the summary characteristics be some functional summary characteristics
fi�r� for i= 1, 2, � � � , I , and some numerical summary characteristics nj for j = 1,
2, � � � , J . For example, f1 may be the L-function and f2 the spherical contact
distribution function, and n1 may be some numerical index. (Note that the intensity
is not used in this way as it is directly included and fixed in the simulation.) As
mentioned above, the fi�r� and nj result from statistical analysis of an empirical
point pattern in the original window W . For the sake of the exposition, the text
below considers the case where a theoretical model is known and hence explicit
formulas for the summary characteristics may be used.

Note further that even though fi�r� and nj are statistical estimates, the ‘hats’ ,̂
which usually indicate estimation, are omitted, to simplify the notation.

During the reconstruction, a series �Nk� of point patterns in Wrec is generated.
For each Nk statistical estimates of the fi�r� and ni, denoted by f

�k�
i �r� and n

�k�
i , are

determined. Then the energy of the pattern Nk is

E�Nk�=
I∑

i=1

E
�k�
f�i +

J∑
j=1

E
�k�
n�j (6.7.1)

with

E
�k�
f�i = ki

Ri∫
0

(
fi�r�− f

�k�
i �r�

)2
dr for i= 1�2� 
 
 
 � I (6.7.2)

and

E
�k�
n�j = cj · �nj − n

�k�
j �2 for j = 1�2� 
 
 
 � J� (6.7.3)

where the Ri are suitably chosen limits of the integrals and the ki and cj are positive
weights.

The energy controls the simulation. Assume that Nk is given and let N ′
k be the

pattern in which one of the points has provisionally been randomly chosen to be
deleted and a candidate point has been uniformly placed in the window Wrec. Note
that ‘randomly chosen’ means that each of the n points in Nk has the same chance
1/n of being selected. If

E�N ′
k�<E�Nk�� (6.7.4)

the candidate point is now part of the pattern and the chosen point is definitely
deleted and N ′

k becomes Nk+1. Since the energy has been reduced, the algorithm
has produced an improved pattern.
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The algorithm can be modified such that candidate points may also be accepted
in the main simulation step with some probability if the energy increases as a
consequence of this. Then this simulation step resembles the Metropolis-Hastings
step in Gibbs process simulation as described in Section 3.6.3. If the acceptance
rate of candidates which result in a higher energy is decreased in each step until
it is almost 0, the simulation follows the principle of the well-known simulated
annealing algorithm, which is a global optimisation method. Tscheschel (2001)
and Tscheschel and Stoyan (2006) compare the simulated annealing method with
the (faster) algorithm that only accepts points that reduce the energy as described
above. They find some evidence that the latter is sufficient for good point pattern
reconstruction, although it usually finds only a local minimum. Note that all these
approaches are based on modern heuristic optimisation algorithms as discussed in
Winkler and Gilli (2004) and that the particular choice of algorithm is not important.

However, it is very important to calculate the f
�k�
i �r� and n

�k�
j efficiently. Rather

than completely recalculating the estimators at each step only some ‘minor pieces’
of the estimators should be recalculated. The example below outlines an approach
for L�r� and Hs�r�.

The iteration Nk →Nk+1 is carried out until

E�Nk�−E�Nk+1�<"

for some chosen small ". Note, however, that this might actually never happen in
some cases. If so, it is possible that there is no point process which has the specific
‘parameters’ – recall that it is possible to choose summary characteristics which
are contradictory.

It is not unlikely that the energy as a function of point patterns has many local
minima. Different starting configurations will lead to different local minima of
the energy functional and so the output of the reconstruction algorithm will be
additionally randomised. If different models have the same summary characteristics,
different models may relate to different local minima.

6.7.2 An example: reconstruction of Neyman–Scott
processes∗

By way of illustration, this subsection describes the reconstruction of a theoretical
pattern. Readers who are mainly interested in applications may want to skip most
of this section but should read the conclusions on p. 415.

Consider a model for which the summary characteristics are theoretically known
and such that it is possible to assess the quality of the results of reconstruction.
To this end, a planar Neyman–Scott process is used. The reconstruction procedure
is applied twice, each time with different sets of summary characteristics; a third
approach is described in Tscheschel and Stoyan (2006).
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In the first case only the L-function is considered (in addition to the intensity �),
i.e. I = 1 and J = 0 with

f1�r�=L�r��

The L-function is derived from the K-function, which is known for Neyman–Scott
processes and has the general form

K�r�=�r2 + Fd�r�

�c

�∑
i=2

pii�i− 1� for r ≥ 0� (6.7.5)

where Fd�r� is the distribution function of the distance between two random points
in the typical cluster (see p. 376). Furthermore, the intensity � is the intensity of
the cluster process, which is given by

�=�p · c� (6.7.6)

where �p is the intensity of the parent Poisson process and c the mean number of
points in the typical cluster. The distribution of the number of points in the cluster
is given by �pi�, where pi is the probability that the cluster consists of i points.

For the example considered here, Fd�r� is given by

Fd�r�= 1
2�R3

(
4R3 arcsin

( r

2R

)
+ 4Rr2 arccos

( r

2R

)

−r�2R2 + r2�

√
1 − r2

4R2

)
(6.7.7)

for 0 ≤ r < 2R and Fd�r�= 1 for r ≥ 2R. Formula (6.7.7) corresponds to the case
of a Matérn cluster process (see p. 376); however, not only this case is considered.
The text below also discusses cases where the number of points per cluster does
not follow a Poisson distribution.

The intensity of all cluster processes considered here is assumed to be

�= 100

and the equality

�∑
i=2

i�i− 1�pi

/
c = 3

always holds. Three possible variations of cluster processes which all result in the
same intensity and L-function are

�p = 25 with p4 = 1 and pi = 0 for i �= 4�
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�p = 70 with p1 = 20
21

� p10 = 1
21

and pi = 0 for all other i

and

�p = 100
3

with pi =
3i

i! e
−3 for n= 0�1� 
 
 
 �

The first variant corresponds to the fixed number of cluster points (= 4) in every
cluster, whereas in the second variant most clusters consist of one point and a small
number of clusters have 10 points. In the third variant the number of daughter points
is Poisson-distributed, i.e. this is a Matérn cluster process with mean number c= 3
of cluster points and cluster radius R. Figure 6.14 shows two simulated patterns to
illustrate the first and the second variants.

What type of pattern will result from the reconstruction in the first approach,
which uses only the L-function and is therefore unable to discriminate between the
two Neyman–Scott processes? Simply a cluster pattern with an empirical L-function
similar to that constructed by (6.7.5), (6.7.7) and the combinations of �p and �pi�
above. However, it is not clear which geometry the patterns constructed from the
algorithm will have, i.e. whether the resulting patterns are similar to one of the two
variants shown in Figure 6.14 or have yet another behaviour.

Simulations in the window Wrec = �0�2�× �0�2�, i.e. a square of side length 2 with
periodic boundary conditions and a start configuration of 400 uniformly distributed
points, produced the following results.

Figure 6.14 Samples from two different Neyman–Scott processes with the same
K- and L-function as explained in the text. In the pattern on the left all clusters
consist of exactly four points, whereas on the right the clusters usually consist
of one point only and with a small probability there are 10-point clusters. The
simulations were performed using the usual cluster process simulation algorithm.
Reproduced by permission of Elsevier Publishers.
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Figure 6.15 Start configuration (left) used in the reconstruction, consisting of
400 points randomly scattered in the 2 × 2 square. Result of the reconstruc-
tion (right) based on the intensity and the L-function only. Because the two
models have the same intensity and L-function, the same reconstruction is obtained
for each. Compare with Figure 6.14. Reproduced by permission of Elsevier
Publishers.

After k = 40 000 steps the pattern shown in Figure 6.15 (right) was obtained.
This looks very much like a cluster process. Of course, the number of points per
cluster is random, and one might say that the pattern is somewhere ‘in between’ the
patterns in Figure 6.14. Hence, the algorithm worked well, as well as might have
been be expected. The final energy E�L� is very small, less than 5 · 10−7.
Remarks on the implementation. The integral in (6.7.2) was replaced by a sum,

E�L�=
50∑
i=1

(
L�k��ri�−Lth�ri�

)2
(6.7.8)

with ri = 0�004, 0.008, …, 0.196, 0.2 and

Lth�r�=
√
Kth�r�

�
�

where Kth�r� is given by (6.7.5). For the estimation of the K-function an estimator
adapted to the torus conditions and fixed number of points is used:

K̂�r�= �Wrec�

n2

n∑
i=1

n∑
j=1�j �=i

1��xi − xj� ≤ r�� (6.7.9)

The distances are redefined based on the torus (see p. 184). No edge-correction is
necessary.

Note that when moving from point pattern Nk to Nk+1 only one point is deleted
and replaced by a new one. Thus only a small part in the double sum (6.7.9) has to
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be recalculated: the partial sums related to those two points. If the deleted point is
xl and the new point xm then the following term has to be added to the double sum:

−2
n∑

i=1�i �=m

1��xm − xi� ≤ r�+ 2
n∑

i=1�i �=m

1��xl − xi� ≤ r��

Consider now the second case, which uses a larger number of summary
characteristics. Because the L-function does not discriminate the point processes
corresponding to the two patterns shown in Figure 6.14, an additional functional
characteristic has to be considered which differs for the two Neyman–Scott
processes. In order to realise this aim, the spherical contact distribution func-
tion Hs�r� is included as a second functional summary characteristic f2�r�, for
two reasons:

(a) The nature of L�r� and Hs�r� is rather different, L�r� is point-related, while
Hs�r� is location-related.

(b) It is well known that Hs�r� is a good summary characteristic for cluster
processes.

If only two functional summary characteristics are used, the nearest-neighbour
distance d.f. D�r� would be a bad choice for f2�r�, as it is also point-related and is
not very informative for cluster processes, see also Section 4.2.6.

Figure 6.16 shows the result of the reconstruction with two functional
summary characteristics and weights k1 = k2 = 1 obtained after 40 000 itera-
tions. The spherical contact distributions differ and correspond to the two cases

Figure 6.16 Results from the reconstruction based on L-function and spherical
contact d.f. Hs�r�. Two different patterns corresponding to different spherical
contact d.f.s are obtained for the two models. The reconstructions resemble the
simulated point patterns in Figure 6.14. Reproduced by permission of Elsevier
Publishers.
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in Figure 6.14, and indeed different patterns are obtained. The similarity of
the simulated patterns to both the left- and the right-hand side of Figure 6.14
is apparent.

The energies E�L� and E�Hs� are both smaller than 6 · 10−6 for the final patterns;
in the simulated pattern the L- and Hs-functions of the original and simulated
patterns almost coincide. Thus, the reconstruction algorithm worked very success-
fully in both cases.

Clearly, a reconstruction based on L�r� and Hs�r� is not the only possibility. In
a third approach, Tscheschel and Stoyan (2006) successfully tried the d.f.s of the
distance to the kth neighbour Dk�r� for k= 1, 2, …, 17. This led to an excellent
reconstruction. Other energies can also be used. For example, Pommerening (2006)
used some of the indices discussed in the Sections 4.2.4 and 5.2.4 to reconstruct
forest patterns.

Conclusions

The reconstruction should be based on summary characteristics which either
describe different aspects of the distribution of the point pattern or yield a very
precise description if large numbers I and/or J of summary characteristics are used.

6.7.3 Practical application of the reconstruction algorithm

Non-marked point processes

The example discussed in the previous section is of a theoretical nature. In prac-
tical applications, the aim is to reconstruct empirical patterns. In these cases, the
reconstruction is based on estimates from an empirical pattern, rather than on
known theoretical functions and parameters. For instance, the empirical L-function,
the empirical spherical contact distribution function, or estimates of Dl�r� for
l= 1, 2, 
 
 
 may be used. Thus it is not necessary to find explicit formulas for L�r�,
Hs�r� and other summary characteristics.

Figure 6.17 shows a reconstruction of the amacrine cell point pattern of Figure 1.2.
Here the marks (‘on’ and ‘off’) have been ignored. Whereas the original pattern of
294 points was given in a rectangular window of side lengths 1060 and 662�m,
the window size is now chosen to be 1060 × 1060�m and the resulting number of
points is n= 470.

The reconstruction is based on the L-function and the spherical contact distri-
bution function, where the L-function was reconstructed for r = 5�3, 10.6, …,
100.7, 106�0�m and the spherical contact distribution function for r = 4�6, 9.2, …,
88.1, 92�7�m. The energy of the final configuration after 47 000 steps shown in
Figure 6.17 is rather small, E�L�= 1�8 × 10−7 and E�Hs�= 8�4 × 10−7.

Of course, simulated point patterns such as those shown in Figure 6.17 can also
be obtained from the Gibbs process model constructed by Diggle et al. (2006), i.e.
based on a classical point process that depends on a small number of parameters
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with a clear probabilistic interpretation. Thus theoreticians may prefer this model,
which is very elegant and straightforward to interpret. However, it requires a lot
of statistical expertise, and those who simply want to generate a realistic series of
‘amacrine cell patterns’ in windows different from 1060 × 662�m might prefer the
reconstruction method.

Note that the pattern shown in Figure 6.17 is not a ‘complete’ reconstruction
of the amacrines cell pattern. The original pattern in Section 1.2.1 is marked with
• (off) and � (on). Therefore, the reconstruction should also assign marks to the
points. An approach to this is sketched in the following.

Marked point processes

Marked point patterns may be reconstructed in a similar way. One approach simply
considers the marked points as points in a higher-dimensional space and uses the
same method as above, with adapted summary characteristics which also include
the marks. Another approach reconstructs the pattern in two steps. The first step
yields the point positions as described above and the second the marks, where the
locations generated in the first step are fixed. The marks are reconstructed in a
similar way as the locations, based on mark-related summary characteristics such as
Lmm�r�, Lij�r� and pij�r�. These characteristics are used to construct mark energy
functions, which depend only on the marks, and then the marks are changed in a
stepwise fashion to find minima of the deviation energy.

Pommerening (2006) considers marked point patterns of forests, where the
marked points correspond to trees. The trees carry marks m= �l� s�, where the l
are qualitative (discrete) marks characterising tree species and the s are quanti-
tative (real-valued) marks, which characterise tree size, e.g. stem diameter (dbh).

Figure 6.17 The original amacrine cell pattern (left) and the result of a reconstruc-
tion (right) based on L�r� and Hs�r�. The window Wrec is now a square. Reproduced
by permission of Elsevier Publishers.
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(a) (b)

Figure 6.18 Conditional reconstruction of amacrines patterns based on L�r� and
Hs�r�. The points in (a) the inner rectangle and (b) the inner disc are fixed, whereas
the others were generated with the reconstruction algorithm. The window Wrec is
now a square. Reproduced by permission of Elsevier Publishers.

Pommerening carries out the simulations in three steps: construction of the posi-
tions; construction of the l-marks; and, finally, construction of the s-marks. Note
that this approach should be considered as a recipe that works well rather than as
a general principle that one has to adhere to in all applications.

Evaluation of summary characteristics

Pommerening (2006) uses the reconstruction idea to evaluate summary character-
istics, specifically some of the indices mentioned in Section 5.2.4, with the aim of
finding out which characteristics describe the distribution of trees in forests partic-
ularly well. Characteristics which provided a good reconstruction of given forest
patterns were considered as ‘good’ and ‘informative’.

Conditional reconstruction

Figure 6.18 shows the results of two conditional reconstructions for the amacrines
pattern. The points in the small rectangle (a) and in the disc (b) are fixed, while
the other points are reconstructed as above. The positions of the fixed points have
some influence on the new points.

6.8 Formulas for marked point process models
6.8.1 Introduction

Chapter 5 was entirely dedicated to marked point patterns but, apart from a short
treatment of marking models at the beginning of the chapter (Section 5.1.3), it
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mainly focused on exploratory data analysis based on summary characteristics.
This section now discusses three types of marked point process models. The first
model is a model with independent marks, which may be regarded as a null
model. The next model, the random field model, considers dependent marks, but
point density and marks are still uncorrelated. In the last model, a marked Cox
process, these are correlated; the marks depend linearly on local point density.
Clearly, other more complex models may be constructed – in particular, models with
marks constructed in relation to the neighbourhood configurations of the points, as
sketched towards the end of Section 5.1.3. These, however, are not considered here
any further.

6.8.2 Independent marks

It is important to know the behaviour of the various summary characteristics for
marked point processes if the marks are independent. The independent marking
model serves as a null model, and empirical patterns may be classified as patterns
with positive and negative correlation of the marks relative to this null model.
However, the model is also interesting in its own right as the correlations among
marks may be rather weak in some applications.

In Chapter 5 formulas for many summary characteristics were given, along with
the values for independent marks. These values are repeated here for some of the
summary characteristics.

• Coefficient of segregation (p. 314):

S= 0�

• Mingling index (p. 314, bivariate case):

Mk = 2p1p2�

• Nearest-neighbour-correlation indices (p. 317):

nmm = n·m = n� = 1�

• Mark correlation functions (Section 5.3.3):

kmm�r�≡ 1�

km·�r�≡ 1�

�m�r�≡�2
��
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Figure 6.19 The empirical mark correlation functions kmm�r� (solid line), km��r�
(dashed line) and �m�r� (in normalised form, dotted line) for the spruce pattern,
obtained with bandwidth h= 1 m.

Example 6.4. Correlation of spruce diameters
This example continues the analysis of the pattern of Norwegian spruce trees shown
in Figure 6.12 and now also considers the dbh marks. Figure 6.19 shows the
empirical mark correlation functions; the nearest-neighbour correlation indices are

n̂mm = 0�99� n̂·m = 1�00� n̂� = 1�13�

The behaviour of the functions kmm�r� and km·�r� and the indices nmm and n·m is
similar to that for independent marks, which is not surprising in view of the history
of the forest stand. The behaviour of the nearest-neighbour variogram index n� and
�m�r� is different: the mark variogram �̂m�r� has large values for small r and thus
its shape deviates from that of a geostatistical variogram, and n̂� is clearly larger
than 1. This behaviour indicates large mark differences for trees at close distances.
However, inspection of the marks shows that there are a few pairs of trees (the
most important one is shown as filled circles in Figure 6.12) which have caused this
behaviour. Whereas the mean mark is �̂= 25�0, the marks of the extreme tree pair
are 18 and 35. If the smaller mark of that pair were increased to 25, �̂m�r� would
clearly decrease for small r and n̂� would become 1.08, while kmm�r�, km·�r�, nmm

and n·m would not change much.
The estimated dominance index for the diameters is D̂o4 = 0�493, whereas the

dominance index for independent marks would be 0.466. The difference is rather
small, which might indicate that there are very few dominating trees in the stand.
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The conclusion of the statistical analysis is that the stand may be regarded as a
sample from an independently marked point process; a formal test is presented in
Example 7.8. The fact that the variation of the mark of a single point changes n̂�

and �̂m�r� so drastically shows that the sample is rather small, perhaps too small
for a serious correlation analysis.

6.8.3 Random field model

The random field model was introduced in Section 5.1.3. In this model, the points xn
of a non-marked point process N are allocated marks from a random field �Z�x��,
which is independent of the points, by

m�xn�=Z�xn��

i.e. the mark of point xn is simply the value of the random field at the location
of xn. This type of marking is termed geostatistical marking. The mean, variance
and variogram of �Z�x�� are denoted by mZ, �2

Z and �Z�r�.
In this marking model the marks are correlated, i.e. marks of points close together

are typically similar. However, there is no correlation between marks and point
density. The mean mark and mark variance are

�=mZ and �2
� =�2

Z�

The mark d.f. F��m� is the same as the one-dimensional d.f. of the random field.
Thus point process estimates �̂, �2

� and F̂��m� can be used to determine the random
field characteristics.

Due to the independence between N and �Z�x�� the relevant correlation charac-
teristics exhibit rather simple behaviour. The mark correlation functions discussed
in Section 5.3.3 are

km·�r�≡ 1� (6.8.1)

kmm�r�= 1 +�2
�/�2 −���r�/�

2� (6.8.2)

�m�r�=�Z�r�� (6.8.3)

Thus, estimates of kmm�r� and �̂m�r� both separately yield estimates of �Z�r�.
Due to its simple form k̂m·�r� is an attractive candidate use in for testing the

hypothesis that a marked point process follows the random field model as suggested
by Schlather (2001a) and Schlather et al. (2004); it is applied in Section 7.5. The
mark variogram �m�r� is the same as the random field variogram �Z�r�, which
means in particular that �m�r� is a geostatistical variogram as in Appendix C. This
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is an important property since if the points and marks do interact, i.e. in situations
where the random field model is not suitable, mark variograms can differ strongly
from geostatistical variograms; see Wälder and Stoyan (1996).

An interesting example was discussed in Dimov et al. (2005). In a forestry
application geostatistical variograms only resulted from the correlation analysis
after suppressed trees had been removed. Trees close to dominant trees, i.e. in
short-range interaction, result in large values of �̂m�r� for small r, which in turn
produce non-geostatistical variograms like that in Figure 6.19.

The nearest-neighbour correlation indices are

nmm =
�∫

0

kmm�r�d�r�dr� (6.8.4)

n·m = 1 (6.8.5)

and

n� =
�∫

0

��r�d�r�dr/�2
�� (6.8.6)

where d�r� is the p.d.f. of nearest-neighbour distance as defined in Section 4.2.6.

6.8.4 Intensity-weighted marks

As an example of a model with correlations between point density and marks the
intensity-weighted log-Gaussian Cox (ILGC) model introduced in Ho and Stoyan
(2008) is considered. Here, the point process is a stationary log-Gaussian Cox
process as introduced in Section 6. 4. This means that the local density ��x� of the
point process is

��x�= exp�S�x���

where �S�x�� is a Gaussian field with mean mS , variance �2
S and variogram �S�r�.

Then ���x�� is also a random field with mean

m� = exp
(
�S + �2

S

2

)
�

Clearly, the intensity � of the log-Gaussian Cox process is

�=m��
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The points xn of the log-Gaussian Cox process are assigned marks m�xn�
according to

m�xn�= a+ b��x�+ "�xn� (6.8.7)

to yield the ILGC process. Here a and b are real-valued model parameters and
"�xn� is normally distributed with mean 0 and variance �2

" ; for different xn the
"�xn� are independent. For positive b, the marks are large in areas of high point
density and small in areas of low point density. For negative b the marks are small
in regions of high point density and vice versa.

The relationship between the characteristics of ���x�� and those of the ILGC
process is not as simple as between �Z�x�� and the random field model; therefore
it is not true that �= a+ b�. This is because the marks are big in regions of high
point density if b>0, which increases the mean mark. The mean mark of the ILGC
process is

�= a+ b� exp��2
S �� (6.8.8)

which is larger than � for b> 0 and smaller for b< 0.
The mark correlation functions are as follows:

kmm�r�=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2 + 2ab� exp��2
S +�2

S	S�r��+ b2�2 exp�2�2
S + 3�2

S	S�r��

�a+ b� exp��2
S ��

for r> 0�

a2 + 2ab� exp��2
S �+ b2�2 exp�3�2

S �+�2
"

�a+ b� exp��2
S ��

2
for r = 0�

km·�r�=
⎧⎨
⎩

a+ b� exp��2
S +�2

S	S�r��

a+ b� exp��2
S �

for r> 0�

1 for r = 0�

�m�r�=

⎧⎪⎨
⎪⎩

b2�2 exp�2�2
S + 2�2

S	S�r��

×�exp��2
S �− exp��2

S	S�r���+�2
" for r> 0�

0 for r = 0�

In patterns generated from this model, the ranges of correlation corresponding to the
points (described by g�r�) and the marks (described by kmm�r�, km·�r� and �m�r��
are equal; all correlation functions depend on �S�r�, the variogram of the Gaussian
field �S�x��.

Myllymäki and Penttinen (2007) study intensity-weighted marks which allow
also the mark variance to depend on the intensity.
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6.9 Moment formulas for stationary shot-noise
fields

Shot-noise fields were introduced in Section 1.8.3. This section provides some
formulas for this important class of models. Stationary shot-noise fields are
constructed from a marked point process M and an impulse function s�x�m�. In the
stationary case the mean, variance and variogram can be derived analytically for
these random fields, but the relevant equations are unfortunately only simple for the
mean. Despite their complexity the reader may get an impression of the structure
of these equations by considering the volume integrals for the second-order char-
acteristics in this section, taken from Cox and Isham (1980) and Schmidt (1985).

In order to avoid excessively complex formulas, assume that the marks are
quantitative (real-valued) and independent, that the point process N is motion-
invariant and that the impulse function is rotation-invariant with respect to o, which
is in some cases used to replace s�x�m� by s�r�m�.

With these assumptions the field �S�x�� is stationary and isotropic,

S�x�= ∑
�xn�m�xn��∈M

s�x− xn�m�xn�� for x∈�d�

This means that the value of the random field at location x is a sum of impulses
s�x− xn�m�xn�� at the points xn and depends on their marks m�xn�.

The mean value at x= o is given by

E�S�o��=�
∫
�d

e�x�dx (6.9.1)

with

e�x�=
�∫

0

s�x�m�f��m�dm�

where f��m� is the mark p.d.f. Due to stationarity, the mean of S�x� is the same
for all x∈�d, therefore only the value for x=o has to be considered. This equation
is a simple consequence of the Campbell theorem for marked point processes.

Example 6.5. Adler competition field
Adler (1996) discusses the following shot-noise field in the context of ecological
competition modelling in plant communities using the impulse function

s�x�m�=m� exp
(

−�
�x�
m�

)
�
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where �, � and � are model parameters, the points are plant locations and the marks
size parameters. In this planar case, the mean E�S�o�� of the competition field can
be derived based on polar coordinates as

E�S�o��= 2��

�∫
0

�∫
0

m�r exp
(
−�

r

m�

)
drf��m�dm

= 2��
�2

E
(
��+2�

)
�

where E
(
��+2�

)
denotes the ��+ 2��th moment of the marks.

The variance, again at x= o, is

var�S�o��=�
∫
�d

e�2��x�dx+�2
∫
�d

∫
�d

e�x�e�x+h�dx��dh�

− �E�S�o���2 (6.9.2)

with

e�2��x�=
�∫

0

�s�x�m��2 f��m�dm�

Here � is the reduced second-moment measure of the point process N (i.e. M
without the marks), as introduced on p. 224. For a homogeneous Poisson process,
(6.9.2) simplifies to

var�S�o��=�
∫
�d

e�2��x�dx� (6.9.3)

since then � = . For the Adler field in Example 6.5,

var�S�o��= 2��
4�2

E
(
�2��+��

)
�

The variogram is given by

��r�= var�S�o��+ �E�S�o���2 −�
∫
�d

er�x�dx

−�2
∫
�d

∫
�d

e�x�e�x+h− r�dx��dh� (6.9.4)
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with

er�x�=
�∫

0

s�x�m�s�x− r�m�f��m�dm�

where r is any point at a distance r from the origin o.

Mean value of the shot–noise field at the typical point

In ecological modelling, the mean competition load at the typical point is of substan-
tial interest, since it reflects, for individuals in the community, the strength of
competition from other individuals, while ES�o� is a spatial mean reflecting the
strength of the competition faced by a potential individual at an arbitrary position.
In the planar case, again based on polar coordinates,

Eo�S�o��= 2��

�∫
o

rg�r�

�∫
o

s�r�m�f��m�dmdr� (6.9.5)

For the Adler example (Example 6.5)

Eo�S�o��= 2��

�∫
0

�∫
0

m�rg�r� exp
(
−�

r

m�

)
f��m�dr�

For a homogeneous Poisson process the pair correlation function g�r� is equal to
one and consequently

E�S�o��= Eo�S�o���

which is again a special case of the Slivnyak–Mecke theorem (see p. 78).

6.10 Space–time point processes
6.10.1 Introduction

So far, this book has only discussed patterns observed at just one point in time or
where temporal changes are not taken into account. The space–time point processes
which are now considered are models for time-dependent, dynamic point patterns.
The ‘points’ in these pattern represent events which take place at random times and
at random locations (such as earthquakes), or objects which move through space or
objects which appear at random instants at random locations and remain there for
a random length of time (such as trees in a forest or forest fires).

From the point of view of time-dependent processes, classical spatial point
processes are merely snapshots, and a space–time description of a phenomenon
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typically provides much more information and a deeper understanding of underlying
biological and physical processes.

In fact, ignoring time dependence may result in serious misinterpretations, when
the pattern formed by all points that appear in some time interval is analysed.
For example, within a specific short time interval, points (e.g. individuals from a
specific plant species that mainly occurs in spring) may be clustered in a certain
area. Within another short time interval (e.g. in summer), however, there might be
a gap in the same area. As a consequence, aggregating the point pattern over a
longer time interval that includes both these shorter time intervals may ‘cancel out’
the clusters and the gaps. This provides the wrong impression on the phenomenon.

Section 1.4 has already shown that collecting point process data can be rather
laborious. On top of this, space–time data have to be collected over time, by defi-
nition, aggravating the situation even further. This is particularly difficult when
phenomena are being analysed that change only very slowly over time, such as
developments in forests or ecosystems. This, along with the computational prob-
lems arising in the analysis of the huge data sets for space–time point patterns, may
explain the fact that the methodology for space–time point processes is still under-
developed. No systematic theory has been developed so far, which may be also
explained by the large number of different types of time dependence. Therefore,
this section can only try to give some ideas and examples.

The following five cases are perhaps particularly important:

1. The points �ti� xi� represent events of zero (or negligible) duration at random
instants ti at random locations xi and form spatial point patterns if the process
is observed within a time interval T1 ≤ ti ≤T2. A typical example of this case
are earthquakes.

2. At the start, at some point in time, the space–time process is a dense
pattern of points representing objects with random lifetimes. Over time the
pattern gets thinner and thinner, because the objects die and are not replaced.
A planted forest without self-reproduction may serve as typical example of
this. Similarly, the opposite situation may occur which starts with no points.
Subsequently, new points appear and remain in the pattern. Examples include
activated fault points in fracture processes or the points in a simulation of
an RSA process.

3. The two situations described in 2 are two extremes in a class of space–time
processes in which the points appear randomly, remain within the pattern for
a random length of time and subsequently disappear. Forest fires and plant
communities with self-reproduction and competition may be considered as
examples.

4. The points are moving in space, with or without interaction. They may
represent physical particles or objects such as rainfall cells, storm centres or
animals.
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5. The point pattern of interest develops in discrete time-steps. An example may
be a sequence of cluster patterns, where the offspring of the last generation
become parents of the new one, etc.

In the following, processes as described in 1 are referred to as event processes
(Figure 6.20) and the resulting spatial point processes collected over time as
�T1� T2�-summary processes. Furthermore, the processes discussed in 2 or 3 are
called birth-and-death processes (Figure 6.20), the examples in 2 being pure birth
or pure death processes. (Note that in this book the term ‘birth-and-death process’
usually refers to time-dependent processes that are used for simulating Gibbs
processes; see p. 144. These processes are interesting space–time processes as well
and can be used as models in statistical analyses.) All points of these processes that
exist at time t form a t-snapshot, which is a spatial point process as considered in
the other chapters of this book.

Space–time processes can have various invariance properties such as time station-
arity, space stationarity or homogeneity, and complete stationarity. Definitions will
be given for the special case of space–time Poisson processes in Section 6.10.2. In
Section 6.10.3 second-order characteristics are considered for the case of complete
stationarity. Finally, two applications are sketched, which present ideas from earth-
quake statistics and ecological modelling. More information can be found in Daley
and Vere-Jones (2008), Vere-Jones (2009) and Diggle (2007). Spatio-temporal
extensions of log-Gaussian Cox processes are considered in Brix and Møller
(2001) and Brix and Diggle (2001), and Gibbs processes with a time compo-
nent in Renshaw et al. (2007). Brix and Møller (2001) consider a birth process
(to describe the spread of weeds in a plot) backwards in time, by assuming that
the pattern at time t1 results by independent thinning of the pattern at time t2,
where t1 < t2.
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Figure 6.20 Illustration of an event process (left) and a birth-and-death process
(right). The figures show the entire histories of the processes. The abcissa is the
time axis, and the ordinate shows the locations, which are one-dimensional in these
examples. In the event process the open circles show the (0,10) summary. In the
birth-and-death process the 4-snapshot consists of seven points (filled circles) on
the vertical line, and it is a point process.
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6.10.2 Space–time Poisson processes

Event processes

Space–time Poisson processes are defined in a similar way to inhomogeneous
Poisson processes in Section 3.4.1. While the latter processes live in �d, the points
�t� x� of space–time processes live in �×�d, where t is the instant and x the
location. They have the following properties:

(1) Poisson distribution of point counts. The number of points of the process
N in any bounded set B in �×�d has a Poisson distribution with mean∫
B

∫
��t� x�dtdx, where ��t� x� is a non-negative function called the intensity

function. A special case is B = T ×A with T a time interval �T1� T2� and
A a bounded subset of �d. The mean then represents the number of points
appearing between T1 and T2 in the set A.

(2) Independent scattering. The random numbers of points of N in k disjoint
subsets of �×�d are independent random variables, for arbitrary k.

Any �T1� T2�-summary of a space–time Poisson process is an inhomogeneous
Poisson process; the corresponding intensity function is given by

�T1T2
�x�=

T2∫
T1

��t� x�dt� (6.10.1)

Analogously, the instants ti at which the points �ti� xi� appear with xi in a fixed
bounded set A form a (temporal) one-dimensional Poisson process with intensity
function

�A�t�=
∫
A

��t� x�dx� (6.10.2)

Space–time Poisson processes may be time-stationary, which means that ��t� x�
depends only on x, ��t� x� = ��x�. This is equivalent to the property that the
point process consisting of time points ti of the points �xi� ti� with xi in any fixed
bounded subset of �d is time-stationary. (The latter property is ‘stationarity’ in the
sense defined in Section 1.6, but now for the one-dimensional point process of ti.)
The �T1� T2�-summaries of time-stationary Poisson processes are inhomogeneous
Poisson processes with intensity function

�T1T2
�x�= �T2 −T1���x�� (6.10.3)

Space-stationary (or homogeneous) processes, i.e. processes for which ��t� x�=
��t�, may be defined similarly as above, this is equivalent to the property that
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the point process of locations xi of the points �xi� ti� with ti in any fixed time
interval is stationary in the sense as defined for spatial point processes, but now in
the �d+ 1�-dimensional case. The �T1� T2�-summaries of space-stationary Poisson
processes are homogeneous Poisson processes with intensity

�T1T2
=

T2∫
T1

��t�dt� (6.10.4)

The combination of both invariance properties results in complete stationarity,
��t� x�≡�. Then

�T1T2
= �T2 −T1��� (6.10.5)

The statistical analysis follows Section 3.3.3, for �d+ 1�-dimensional processes.
For time-stationary processes the points xi of the �T1� T2�-summary in some

window W are recorded and the corresponding estimator �̂�x� is calculated, e.g. by
means of (3.3.6). Then the intensity function estimator of the space–time process is

�̂�t� x�= �̂�x�

T2 −T1

� (6.10.6)

Analogously, for space-stationary processes the instants ti for the points �ti� xi�
with xi in some space window W are recorded in the time interval of interest. The
corresponding estimator �̂�t� is calculated e.g. by means of (3.3.6) with t and ti
instead of x and xi. Then the intensity function estimator of the space-time process
is

�̂�t� x�= �̂�t�

�W�
� (6.10.7)

Birth-and-death processes

Pure death process. Consider a homogeneous Poisson process N0 at time t= 0
with intensity �0. The points in N0 have i.i.d. lifetimes with d.f. L�t�. Then the
point process Nt, the t-snapshot, is a homogeneous Poisson process with intensity

�t =�0�1 −L�t��� (6.10.8)

The process Nt is a result of p-thinning, with p= 1 −L�t�. If the starting process
is an arbitrary stationary and isotropic point process with intensity �0 and pair
correlation function g�r�, then (6.10.8) holds and g�r� is the pair correlation function
of Nt for all t. In any of these cases, the intensity of the death process decreases
towards zero with increasing t.
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Pure birth process. At time t = 0 the process has no points, but new points
appear with intensity function ��t�. This means that the random number Nt�B� of
points in any bounded subset B of �d at time t has a Poisson distribution with
mean

��t�=
t∫

0

��s�ds · �B� (6.10.9)

and the numbers of points in disjoint sets are independent. Thus the point process
Nt formed by the points that are present at time t is a Poisson process with intensity

�t =
t∫

0

��s�ds.

Birth-and-death process. This model is based on a completely stationary event
process with intensity �. Each of its points �t� x� represents a point at position x,
which exists for a specific length of time, �t� t+ l�. l is a random lifetime and all
random lifetimes are assumed to be i.i.d. with d.f. L�t� and mean mL.

This model may be regarded as a spatial version of the M/G/� queue, a system
with infinitely many servers and thus no waiting times; see Tijms (2003). The
properties and formulas for the M/G/� queue imply that

• the snapshot process at any time is a stationary Poisson process with intensity
�mL;

• the covariance of Nt�B� and Nt+u�B�, i.e. of the numbers of points in a fixed
set B at times t and t+ u, is given by

cov�Nt�B��Nt+u�B��=�mL

⎛
⎝1 − 1

mL

u∫
0

�1 −L�s��ds

⎞
⎠ � (6.10.10)

using a result due to Beneš (1957). If the lifetimes are bounded by l0 (i.e.
L�l0�= 1), then Nt�B� and Nt+u�B� are uncorrelated for u≥ l0.

The statistical analysis of these three processes is not difficult if the entire history
of the processes has been observed for a sufficiently long time in a large window.

6.10.3 Second-order statistics for completely stationary
event processes

The classical statistical methods developed for stationary processes may often be
straightforwardly generalised to space–time processes. In order to illustrate this, this
section discusses an example of a statistical method for space–time processes – an
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estimator for the pair correlation function of a completely stationary event process
is derived. By way of illustration, the method is applied here to seismological data.

A space–time point process N = ��t1� x1�� �t2� x2�� 
 
 
 � is called completely
stationary (‘homogeneous and stationary’) if, for all x∈�d and all real t,

N
d=Nt�x� (6.10.11)

where Nt�x is the translated process Nt�x = ��t1 + t� x1 +x�� �t2 + t� x2 +x�� 
 
 
 �. The
definition is an analogue of the stationarity definition in (1.6.1).

Note the difference from the case of marked point processes, where the marks
remain unchanged in translations but the times do not. Furthermore, event processes
may also be treated as point processes in �d+1. Nevertheless, the explicit notation of
x and t is typically preferred due to the different roles of time and space including
different scaling of spatial and temporal coordinates and the fact that there is no
concept in time that is equivalent to the concept of isotropy.

As stationary point processes, completely stationary point processes have an
intensity � as first-order characteristic that does not vary in time or space. It is
defined as

�= E�N� 1 × 1 ��� (6.10.12)

i.e. � is the mean number of points per unit area (volume) and time unit. The first
1 denotes the unit square (cube) and the second the unit interval.

The intensity � is best estimated along the lines of (4.2.10),

�̂= N�W ×T�

�W��T�
� (6.10.13)

where W is the spatial observation window and T the temporal observation window.
N�W ×T� is the total number of points �t� x� with x∈W and t∈T . Note that it does
not make sense to define a spatial or temporal intensity, since completely stationary
point processes have infinitely many points in space and time; for example, the
total number of points �x� t� with x∈ 1 is infinite.

The second-order structure of completely stationary point processes can be
described in a similar way to that of stationary point processes. It is possible to
define K- and L-functions of type K�r� t� (see Diggle et al., 1995) and L�r� t�,
but in the following only the corresponding product density and pair correlation
function are considered for the special case where N is spatially isotropic. Then the
second-order product density is a function 	�r�u� where r denotes spatial distance
as before and u is the time lag. The quantity

	�r�u�dxdydtds



432 Modelling and Simulation

may be interpreted heuristically as the probability that there is a point of N in each
of the two infinitesimally small sets with volumes dxdt and dyds with distance r
and time lag u. The corresponding pair correlation function is defined by

g�r� u�=	�r�u�/�2 for r ≥ 0 and u≥ 0� (6.10.14)

An estimator for 	�r�u� and g�r� u� is derived analogously to the stationary case
(cf. (4.3.29)):

	̂�r� u�= 1
2dbdrd−1

∑
�x�t���y�s�∈W×T

ksp�r − �x− y��kti�u− �t− s��
�Wx ∩Wy��Tt ∩Ts�

� (6.10.15)

where ksp�z� and kti�z� are kernel functions with bandwidths hsp and hti. (Experience
with pair correlation function estimation recommends box kernels, see Section
4.3.3.) The estimator is unbiased in the same sense as 	̂�r� in (4.3.32).

The pair correlation function is estimated by

ĝ�r� u�= 	̂�r� u�
/
�̂2 � (6.10.16)

This estimator can probably be improved by the use of adapted intensity estimators.

Example 6.6. Earthquakes with a magnitude of more than 4.5 in central Japan
Figure 6.21 shows the positions of earthquakes with a magnitude of more than 4.5
in central Japan in the years 1926–2005. There are 2646 of them in total. The pattern
looks like a sample from a stationary point process and is here initially analysed
with methods for those processes. This is done despite an apparent large-scale
inhomogeneity in the pattern since the aim is to analyse short-range correlation
(spatial as well as temporal). However, the approach produces invalid results for
large distances. (The point density in the north–east corner is clearly smaller than
average and for a larger window the spatial inhomogeneity would become even
more pronounced. This is indicated further by the fact that the spatial pair correlation
function ĝ�r� for the pattern in Figure 6.21, shown in Figure 6.22, exceeds the value
of 1.1 even for very large r.)

To simplify the statistical analysis, the spherical quadrangle is approximated
by a planar rectangle W of side lengths 543 km and 556 km. The time interval
T of observation has a length of 29 100 d. This leads to the estimate �̂ = 3 ×
10−7 km−2 d−1 for the intensity �. Figure 6.22 shows the estimate ĝ�r� u� of the
space–time pair correlation function. The bandwidths have been chosen as hsp =
100 km and hti = 100 d. The pair correlation function shows the strong clustering
of earthquakes in space and time. It is greater than 2 (a value of 1 would have been
expected for random patterns) for distances r ≤ 40 km (and time lags up to 200 d)
and time lags u≤ 50 d (and distances up to 100 km).
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Figure 6.21 Positions of earthquakes in central Japan in the years 1926–2005 with
a magnitude of more than than 4.5. Data courtesy of Y. Ogata.
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Figure 6.22 Empirical pair correlation function ĝ�r� for the positions of Japanese
earthquakes, ignoring the time dependence (left), and logarithm of empirical time-
dependent pair correlation function ĝ�r� u� (right).
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6.10.4 Two examples of space–time processes

Statistics for earthquake data

Point process methods have frequently been used in the statistical analysis of
earthquakes. Typically, enough data are available to justify a space–time analysis.
In order to illustrate some of the methods and to encourage the reader to apply
these to other event processes in different scientific contexts, the following sketches
one successful approach. For more details, see Zhuang et al. (2006) and Daley and
Vere-Jones (2008, Chapter 15).

Earthquakes appear in clusters in both space and time and are usually understood
as resulting from superposition of background seismicity and earthquake clusters.
These two cases correspond to objectives in the statistical analysis, i.e. long-term
prediction (zoning and earthquake hazard potential estimation) and short-term earth-
quake prediction, respectively.

The approach, which is now standard, applies a point process model, more
specifically a marked space–time process (an event process) with points �t� x�m�,
where t is time, x is position, and m is a real-valued mark representing magnitude.
It is based on the conditional intensity ��t� x�m��t�, given by

��t� x�m��t�dtdxdm= E�N�dtdxdm���t�� (6.10.17)

where �t is the observational history up to time t (excluding t). Similarly to ��x�N�
on p. 28, the right-hand side can be interpreted as the probability of observing a
point around time t and location x with mark around m, given the history �t.

A model of shot-noise nature is the epidemic-type aftershock sequence (ETAS)
model (Ogata, 1998). Here

��t� x�m��t�=�0�t� x�J�m� (6.10.18)

with

J�m�=� exp�−��m−m0��� for m≥m0�

where � is a seismic parameter, m0 a magnitude threshold and

�0�t� x�=��x�+ ∑
i�ti<t

k�mi�h�t− ti�f�x− xi�mi�� (6.10.19)

in which ��x� is the background intensity, which is assumed to be time-independent
but location-dependent, k�m� is the mean number of aftershocks resulting from
an event of magnitude m, h�t� the p.d.f. of the occurrence times of aftershocks
following an event at time point 0, and f�x�m� is the p.d.f. of the locations of
events following an event at location o. Explicit equations have been derived
from seismological theory for all of these functions. These equations depend on
parameters which have to be estimated statistically.
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The data for the statistical analysis are marked points

�ti� xi�mi� for i= 1� 
 
 
 � n�with T1 ≤ ti ≤T2 and xi ∈W�

If ��x� is given in the form ��x�=�0u�x� with known u�x�, the parameters in a
vector  (which includes �0) can be estimated by means of the maximum likelihood
method. The log-likelihood is of the form

logL� �= ∑
j�T1≤tj≤T2�xj∈W

log�0�tj� xj�−
∫
W

T2∫
T1

�0�t� x�dtdx (6.10.20)

and has to be maximised with respect to  .
Zhuang et al. (2006) describe an approach of ‘stochastic declustering’, which

aims to separate background and cluster points. This may be used to estimate ��x�
iteratively. Zhuang et al. (2006) apply this method to earthquake data from the Japan
and Taiwan regions. Furthermore, they describe a method of testing the goodness
of fit of their model which uses residuals.

Self-thinning through local competition

Consider an even-aged plant community without self-reproduction such that only
growth and mortality are important for community dynamics. Both processes
are controlled by local competition: plants experiencing strong competition grow
more slowly and have higher mortality. These processes and their modelling are
discussed extensively in the literature; the following sketches only one of many
possible approaches which follows the ideas of Adler (1996) and Berger and
Hildenbrandt (2000).

The behaviour of the plant community may be described as a pure death process,
with some Markov structure, i.e. it is enough to consider a t-snaphot to predict the
further development. Any t-snaphot Mt is assumed to be a stationary marked point
process ��xi�m�xi���. Here the mark m�xi� is a size parameter of the plant at xi at
time t. The competition pressure on a plant at location x is

c�x�= ∑
xi∈Mt�xi �=x

f�x− xi�m�xi�� (6.10.21)

with some ‘impulse’ function f�z�m� such as

f�z�m�=m� exp
(

−��z�
m�

)
�

where �, � and � are model parameters. Equation (6.10.21) means that the competi-
tion pressure results from additive superposition of individual competition pressures
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from the other plants, as in a shot-noise field; for plants with many close neighbours
the pressure will be larger than for isolated plants.

The growth rate r�x� of a plant at x is

r�x�=h�m�x����o −�c�x��+� (6.10.22)

where � and �0 are further model constants and h some function of the mark. x+
is equal to x if x > 0 and 0 otherwise. Formula (6.10.22) has been derived from
biological theory of plant growth; r�x� decreases with c�x�, i.e. growth decreases
with increasing local competition.

Finally, a plant at x dies if its growth rate is too small, e.g. if

r�x�<"Eo�r�o�� (6.10.23)

for 0 < " < 1 (in Berger and Hildenbrandt, 2000, " = 1
2 ). Eo�r�o�� is the mean

growth rate in the point process.
This model can be easily simulated and hence the process of self-thinning can be

conveniently studied. Figure 6.23 shows six steps of such as process which aims

Initialization N = 4000 50 years       N = 774 100 years       N = 300

150 years       N = 236

0.1 ha

200 years       N = 195 250 years       N = 182

Figure 6.23 Simulation of the development of a mangrove tree cohort with an
initial density of 1000 individuals per hectare. The panels show the distribution of
trees for six consecutive time-steps. Data courtesy of U. Berger.
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to model the growth of a mangrove forest. The underlying model is more complex
than the model described above.

Note that the means Eo�c�o�� and Eo�r�o�� are of the same nature as Eo�S�o��
in (6.9.5) for shot-noise fields and estimated in a similar way to the point-related
indices in Section 5.2.4.

Similar, more general models, which also include immigration, are discussed in
Särkkä and Renshaw (2006), Renshaw et al. (2007) and Comas and Mateu (2007).

The statistical methodology for this type of model is still in its infancy. These
days, the model parameters are usually determined by trial and error with the aim
to carry out simulations which yield plausible results. Least-squares methods are
the natural numerical approach.

Spatio-temporal processes in the context of disease spread are studied in Diggle
(2007). One of the main focuses in these studies is the detection of spatial clustering.

6.11 Correlations between point processes and
other random structures

6.11.1 Introduction

Often a point process N is controlled by or correlated with another random structure
S. For example, the local point density of N may depend on a covariate. The tree
density in a forest may depend on a spatially varying soil property. Or the marks
of the points in N may depend on the distances to curves scattered in space, e.g.
the diameters of trees in a forest may depend on the trees’ distances from a river.
The aim of this section is to present non-parametric methods that may be used to
detect and quantify these correlations. Acquiring knowledge on these correlations
may be of interest in its own right, and, in addition, it may be used as a starting
point for more complex spatial modelling. The approach includes three cases where
the partner structure S may be a random field, random set or fibre process. This
section does not discuss the case where S is a point process itself. Methods covered
in Section 5.2 for discrete marks may be applied, by considering the union of N
and S and marking the points of N by 1 and those of S by 2. Then the correlation
functions for bivariate point processes, such as g12�r�, L12�r�, D12�r� etc., may
be used.

A rigorous general theory for the corresponding correlation analysis based
on the theory of random measures is detailed in Stoyan and Ohser (1982,
1984). In its original form, geometrical measurement of areas, curve lengths and
angles are necessary. In 1982 this was still done manually but today comput-
erised image analysis and geographical information systems techniques simplify
the work.

This section presents two approaches which can be applied with standard soft-
ware. The first of these exclusively uses point process methodology and exploits
the information contained in the data very well. The structure S is replaced by a
point process, more specifically a Cox process the points of which are scattered



438 Modelling and Simulation

on the segments of S. Methods for bivariate point processes can then be applied,
where the points of N are marked by 1 and those of S by 2.

The other approach can be applied in the case where S is a random field or a
regionalised variable. Then N is also regionalised, by one of the methods discussed
in Section 1.8.3, to obtain a second random field such as �ZN �x�� given by (1.8.2)
or (1.8.3), and the correlations between the two fields are analysed by geostatistical
methods. Note that, as a result of the regionalisation, some loss of information has
to be accepted. Both approaches have the advantage of being easy to understand
and of being based on standard software.

In the following, methods for stationary and isotropic processes are used,
assuming that N and S are both stationary and isotropic and stationarily connected.
As before, the intensity of the point process N is denoted by �.

6.11.2 Correlations between point processes and
random fields

Consider the situation where S is a random field Z= �Z�x��. Its mean E�Z�o�� is
denoted by mZ. Note that the case of a random set can be treated as a special case,
where Z�x� is the indicator function of the set.

The correlation between a point process N and a random field Z can be described
by various summary characteristics. Here only a point-process statistical approach is
described, and the partial pair correlation function g12�r� is applied as the summary
characteristic.

The basic idea is to replace Z by a point process the intensity of which is
determined by Z, i.e. the point density is high in regions of large values of Z, etc.
If Z is positive (and this is often the case in applications), it can be used as the
intensity field function of a Cox process, perhaps multiplied by a scaling factor
f . If Z is derived from values Zi at the points yi in a grid G, the point densities
within the grid cells Ci are chosen to be constant, i.e. fZi in Ci. Based on this, it is
straightforward to simulate the corresponding Cox process.

Now, the given points of the empirical point process N are assigned the mark 1,
and the constructed Cox points are assigned the mark 2. This yields a bivariate point
process, which can be analysed by the methods in Section 5.3.2. In particular, the use
of the corresponding partial pair correlation function g12�r� can be recommended.

What information does g12�r� provide about the relationship between N and Z?
Values larger than 1 indicate positive correlation, i.e. there are large values of Z at
a distance r from the typical point in N . In other words, in areas where Z has large
values the point density of N is high, and for values of Z less than 1 it is low.

An alternative to the point-process-based characteristic g12�r� is the geostatistical
cross-variogram �12�r�. The idea is to regionalise N , i.e. to replace it by a random
field ZN and then to analyse the correlations of both fields. This approach is recom-
mended when correlations among long-range fluctuations of Z and of the point
density in the window W are of primary interest, and the short-range interactions
of points are negligible or meaningless.
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The new point-process-related random field �ZN �x�� (or ZN for short) can simply
be constructed as in (1.8.2), i.e.

ZN�yi�=N�b�yi�R�� for yi ∈G� (6.11.1)

where the same grid G as for Z is used. The value of the random field ZN at
location yi is simply the number of points of N in the sphere b�yi�R� centred at
yi; the radius R is a numerical parameter which plays a role similar to that of the
bandwidth h in kernel estimators.

An alternative is to set

ZN�yi�=N�C�yi�� for yi ∈G�

where C�x� is the cell associated with grid point yi, i.e. C�yi� is one of the cells Ci

above. Thus ZN�yi� is now the number of points in this cell.
The data set

Z�yi��ZN �yi� for yi ∈G�

can be analysed by geostatistical software, i.e. by estimating the cross-variogram
given by

�12�r�= 1
2

E ��Z�o�−Z�r���ZN �o�−ZN�r��� for r ≥ 0� (6.11.2)

Here, as before, r is any point at distance r from o.
Some of the properties of �12�r� for the case of stationary fields Z and ZN are

as follows:

�12�0�= 0�

�12���= cov�Z�o��ZN �o���

�12�r�≡ 0 if Z and ZN are independent�

Correlations between point processes and random fields may be also assessed
with parametric methods. In the case of a Cox process with random intensity
function ��x�, the random field may control ��x�, e.g.

log��x�=�Z�x�+ "�x��

where � is a model parameter and the "�x� are i.i.d. with mean 0 and variance �2;
see Møller and Waagepetersen (2007) and Waagepetersen (2007).

Example 6.7. Correlation among flowers, stoniness and coverage by another plant
Figure 6.24 shows 341 positions of the arctic-alpine flower glacier buttercup
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Figure 6.24 Positions of glacier buttercup in a 10 × 4 m rectangle and, in the
same rectangle, stoniness (%) in 1 × 1 m squares and coverage (cm2) of mountain
sorrel in 0�5×0�5 m squares; dark grey squares correspond to high values. The data
were collected in 1982 at Mount Saana in Lapland (Finland). Data courtesy of A.
Järvinen (Kilpisjärvi Biological Station, University of Helsinki).

(Ranunculus glacialis) in a 10 × 4 m rectangle. The figure also shows two covari-
ates in discretised form: the stoniness (percentage of area covered by stones) in
1 × 1 m squares and the coverage (cm2) of area by mountain sorrel (Oxysia diguna)
in 0�5 × 0�5 m squares.

Visual inspection of Figure 6.24 reveals irregular fluctuations with no clear spatial
trend in any of the three patterns; and it seems sensible to assume similar fluctuations
outside the sampling rectangle. The small number of flowers near the point (1,1)
may be interpreted simply as a random fluctuation. Based on these assumptions and
findings, methods for stationary and isotropic structures as discussed above may be
applied. In other words, the point pattern is regarded as a sample from a stationary
and isotropic point process and the covariates are samples of two stationary and
isotropic random fields.

However, it is rather difficult to draw any conclusions on the correlation between
point density and covariates based on visual inspection alone. Biology might suggest
some negative correlation in the sense that in areas of high stoniness (or coverage
by mountain sorrel) there are few buttercups, as around the point (1,1), but this
may just be a misleading subjective impression.

The correlation analysis for the relationship between flower distribution and
the two covariates uses both approaches described above. Before reporting the
result, simple methods from classical statistics are applied to avoid unreasonable
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Figure 6.25 Partial pair correlation function estimates ĝ12�r� for flower density
and stoniness (solid line) and coverage (dashed line). The bandwidth is h= 1 m.
Both curves indicate independence between flower density and covariates. The
empirical pair correlation function for the flowers (dotted line) shows the cluster or
Cox process nature of the pattern.

expectations on the magnitude of a potential effect. Consider the values of the
covariates in the grid squares and the corresponding numbers of flowers. The
coefficients of correlation are −0�146 for stoniness and −0�116 for coverage,
indicating a very weak negative correlation. Perhaps the resolution of the covariates
is simply too low. Nevertheless, the statistical analysis is continued here.

Figure 6.25 shows the Cox ĝ12�r� for both covariates, stoniness and coverage.
The bandwidth h of the box kernel in (5.3.51) is chosen as 1 m, and the scaling
factor f on p. 438 is 0.40 for stoniness and 0.15 for coverage. This resulted in 1226
and 1297 points in the simulated samples, the results of which are discussed here.

Both curves are decreasing in r, with values larger than 1 for very small r,
and then are close to 1. The conclusion of this part of the analysis is that there
is no significant correlation between the buttercups and either stoniness or sorrel
coverage, since the large values for small r are interpreted as statistical artefacts.

In the analysis of the correlation between point density and the covariates
coverage and stoniness, one may be prepared to accept the idea that the locations
of individual flowers are not very relevant and thus it makes sense to regionalise
the point field of buttercup positions.

This yields the cross-variograms for ZN and Z (coverage or stoniness). The grid
G is different for coverage and stoniness, adapted to Figure 6.24. Figure 6.26 shows
the resulting cross-variograms, where ZN was constructed using the numbers of
points in the grid cells. In agreement with the negative correlation coefficients,
the �̂12�r� are also negative. For stoniness it is close to zero for small r and for
larger r approximately equal to the estimated covariance (which can be derived
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Figure 6.26 Cross-variograms for flower density and stoniness (solid line) as well
as coverage (dashed line). These are based on the numbers of points in grid cells
and indicate a weak negative correlation between point density and covariates.

from the correlation coefficient and the sample variances of Z and ZN ), which is
−12�0. This may indicate independence between stoniness and flower density.

For sorrel coverage �̂12�r� is also close to the estimated covariance for small r,
which is −24�1. This may indicate a weak negative correlation, which has, however,
no spatial component.

Formal simulation tests discussed in Section 7.5 show that none of these corre-
lations is significant; see Table 7.2. Hence it may be assumed that there is no
correlation between flower density and the two covariates, which may appear some-
what surprising.

6.11.3 Correlations between point processes and fibre
processes

A fibre process F is a mathematical model for a random system of curves or line
segments in space; see Stoyan et al. (1995). Examples include water courses in a
forest or geological lineaments in a landscape. The locations of these ‘fibres’ and the
points in a point process N may be correlated. For example, the objects represented
by the points are attracted by the fibres in the sense that there are more points in
the vicinity of the fibres than further away from them. In Stoyan and Ohser (1982)
these correlations are analysed based on an extensive use of geometrical methods,
including measurements of lengths and of angles between the fibres and test circles.
Here, a simpler approach is presented which is based on an approximation of the
fibres by points and F by a point process NF and applies statistical methods for
bivariate point processes.

The approximation is discussed here for the case where the fibres are line
segments, certainly a common method for the digitalisation of the fibres. Points are



Modelling and Simulation 443

distributed either regularly or randomly on these line segments. Due to the varying
length of the line segments, a regular distribution may be problematic, and therefore
a completely random distribution is considered here. In other words, points in a Cox
process are constructed where the so-called leading measure is the length measure
of the fibre process, as discussed on p. 383. This means the following: a scatter
intensity �s is chosen and nl points are scattered on a line segment of length l,
where nl is a random number with a Poisson distribution with mean �sl. These nl

points are independently and uniformly scattered on the line segment. This is done
for all line segments and yields a second (constructed) point pattern, in addition
to the sample of N , the empirical point pattern. The intensity �s should be chosen
high enough that the essential details of the fibre system are reflected by NF ; visual
comparison of F and NF is recommended.

Both point patterns are now analysed as one qualitatively marked point process;
the original points are assigned the mark 1 and the fibre points the mark 2. This
bivariate pattern can then be analysed by the methods discussed in Sections 5.3.2
and 5.3.4 (discrete marks). In particular, g12�r� and D12�r� are useful in this context.

The function g12�r� is interpreted along the lines of Section 5.3.1. It is g12�r�=1 if
N and F are independent. Values of g12�r� larger than 1 indicate attraction between
the fibres and points, values smaller than 1 repulsion. D12�r� is an approximation
of the d.f. of the nearest distance from the typical point to a fibre point.

Example 6.8. Copper deposits and lineaments
Figure 6.27 shows the pattern of 57 copper deposits (black dots) and 90 geological
lineaments (sequences of small points) in Queensland (Australia). The potential
correlation between the point and line segment pattern has been studied in various
papers; see Berman (1986) and Baddeley and Turner (2006). Based on several
models and nearest-neighbour distance summary characteristics such as the distance
from deposit to nearest lineament, these authors conclude that there is no correlation.
This example presents the results of a second-order analysis based on the ideas
above.

In the analysis, the line segments are approximated by sequences of points;
the intensity �s is 30 km−1. A simulation is used to estimate g12�r� and 1724
points represent all line segments. Thus a pattern of a total of 1781 points is

Figure 6.27 Copper ore deposits (large dots) and lineaments (sequences of small
dots) in a rectangular region of central Queensland of side lengths 35.335 km and
158.043 km. Data courtesy of A. Baddeley and J. Huntington.
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Figure 6.28 The empirical partial pair correlation function for the copper data.
The curve indicates a weak positive yet non-significant correlation (attraction).

analysed, 57 with mark 1 (deposits) and 1724 with mark 2. Figure 6.28 shows the
corresponding estimated partial pair correlation function ĝ12�r�. It indicates a weak
positive correlation between deposits and lineaments, as ĝ12�r� is around 1.2 for
4 ≤ r ≤ 20. Some deposits very close to lineaments cause the very large values of
ĝ�r� for small r.

Since ĝ12�r� is not far away from 1, the value for independent patterns, the
correlation might be just an artefact and was therefore tested more rigourously.
A formal test using the methods in Section 7.5 shows that the correlation is not
significant; see Table 7.2. However, some doubts do remain as several of the
deposits are on the lineaments. This contradicts any stochastic model of indepen-
dence between a point process and a fibre process, where the probability of an
event like this is zero.



7

Fitting and testing point
process models

Once a point pattern has been successfully analysed by the exploratory
methods and the analysis has suggested a class of suitable models, in
the last step these results are synthesised, i.e. a model is fitted to the
data. This includes ‘model criticism’, consisting of various forms of
model evaluation – in particular, formal goodness-of-fit testing. This
final chapter presents methodology that may be used for this purpose.
First, fundamental methods for parameter estimation are covered, the
maximum likelihood method in an approximate form and the method
of moments. Second, the use of simulation tests for testing distribu-
tional hypotheses is discussed, which includes tests of the hypotheses
of independent and geostatistical marking.

7.1 Choice of model
One of the most important steps in the statistical analysis of a point pattern or
a series of patterns is constructing and fitting a model. In some ways this is the
synthesis of the knowledge gained from a thorough exploratory analysis. Due to
the strong link between the methods for model fitting and the material covered

Statistical Analysis and Modelling of Spatial Point Patterns J. Illian, A. Penttinen, H. Stoyan and D. Stoyan
© 2008 John Wiley & Sons, Ltd
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in previous chapters of this book, this chapter assumes that the reader is familiar
with such methods, in particular with exploratory data analysis and point process
models.

This section briefly discusses those properties that make a good model and then
provides some advice on a suitable strategy for identifying a suitable model for a
data set.

In most cases, the aim of fitting a model to empirical data is to gain an under-
standing of the pattern(s). Of particular interest are the nature and spatial extent of
the interaction or correlation between the points, the influence of the marks and the
relation of covariates to the (marked) point pattern. A good statistical model is one
that is easy to understand and interpret. In other words, a good model depends on
only a small number of parameters but is still complex enough to suitably reflect
those aspects in the data that are of scientific interest. It is important that the model
is simple enough that both estimation and simulation are still feasible – models that
are too complex easily result in algorithms that are prohibitively expensive to run.

However, it is not obvious how to identify a suitable model for a specific data
set. Usually the data will originally have been collected with the aim of proving
or disproving some hypotheses about the spatial distributions of the objects that
are represented by the points, i.e. in the analysis of a spatial pattern the model is
directly linked to some scientific question. In other cases, however, the aim is simply
to describe the spatial behaviour in the pattern without reference to underlying
mechanisms.

In most applications, some a priori knowledge is available, which often supports
the choice of model. For example, seed dispersal may suggest that a cluster process
model is suitable for a data set describing a plant pattern. However, further analysis
may indicate that the modelling approach has to be refined. For example, airborne
seeds disperse over large distances. Seeds within the observation window might
stem from mother plants that are far away from the observation window but also
from mothers close to or within the window. Hence, a superposition with a Poisson
process to model global dispersal in addition to local dispersal may be more
suitable.

Sometimes the structure of the model and the structure of the underlying process
that formed the pattern are not directly linked. These models are fitted to merely
describe or explain the statistical fluctuations and to use this information for the
simulation of similar point patterns or to determine the precision of statistical
estimates – in particular, of the intensity. However, these models do not explain
any true natural mechanisms underlying the data. An example of this is the Matérn
cluster process, which may be used to model clustering (around randomly located
centres) or, alternatively, environmental heterogeneity. The variation of local point
density can be suitably modelled with this process, but the structure of the model
deviates strongly from the true structure in any realistic pattern.

As indicated in Section 2.7, the first step in the analysis of a spatial point
pattern should be a test of the CSR hypothesis. Accepting the CSR hypothesis
may be a disappointing result since it rules out any interesting correlations in the



Fitting and Testing Point Process Models 447

pattern. On the other hand, modelling and further scientific calculations are clearly
simplified and can be based on the elegant Poisson process model.

Only once the CSR hypothesis has been rejected, a suitable class of models
should be sought. Often, visual inspection and experience from the CSR test aid
decision-making on more fundamental questions such as whether the pattern is
finite or not finite, stationary or non-stationary, and clustered or regular.

In the exploratory analysis below, the methods discussed in Chapters 3–5 are
applied using some of the summary characteristics described there. Quite often, this
may be sufficient since these characteristics reveal details on the range and strength
of correlation in the pattern. If one wishes to gain a deeper understanding of the
pattern, one should look for a suitable model based on the results of the exploratory
analysis.

If the data can be considered stationary, the pair correlation function g�r� is
probably the best exploratory tool. The detailed discussion of this function and its
interpretation in Section 4.3.4, along with the description of the models in Chapter 6,
can help the reader to identify appropriate classes of models. Recall, for example,
that large values of g�r� for small r indicate clustering and small values of g�r�
for small r indicate regularity. This simple information on clustering or regularity
at different scales, combined with a priori knowledge, may already indicate which
classes of models are more suitable than others. As a general rule, in the first
instance every modelling approach should start with basic classical models such
as Cox, Neyman–Scott or Gibbs processes, since these can easily be fitted and
simulated. Cox and Neyman–Scott processes are suitable for modelling fluctuating
point density, while Gibbs processes may be used to describe interesting repulsive
interactions between the points. If these models turn out not to be suitable, they can
be modified by relaxing some of the underlying Poisson process assumptions, such
as by choosing a non-Poisson parent process for a cluster process or by including
hard cores, i.e. minimum inter-point distances. Any of these modifications should
still be simple enough that the model can be simulated.

Once a suitable model has been identified, the next step involves the estimation
of model parameters. These model parameters, such as � (for the Poisson process),
�, � and R (for the Matérn cluster process) or � and rmax (for the Strauss process),
are of course of a different nature for different models. However, to simplify the
notation and language, the general symbol � is used throughout this chapter to
represent any of these parameters. Note that parameter estimation is based on the
same principles as the estimation of � and �2 in classical statistics, even if it
appears to be more complicated in the context of point processes.

Researchers often consider the analysis as finished once a model has been fitted to
the data, supported by good agreement of some graphics of theoretical and empirical
summary characteristics. However, a goodness-of-fit test should be performed to
formally assess the suitability of a model. It is not difficult to do so if it is possible
to simulate from the fitted model. The goodness-of-fit test may on the one hand
confirm that the model is suitable, but on the other hand it may help to identify and
eliminate any weaknesses of the model.
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The following sections describe approaches to parameter estimation and discuss
model tests, assuming that a model has been identified for a particular data set.
All model tests considered here are simulation tests, which are very common in
point processes statistics. Note that, unfortunately, classical tests such as the t-test
or 	2 goodness-of-fit test cannot be applied here. Other approaches to assessing the
model fit use, for example, residuals; see Section 4.6.5 and Baddeley et al. (2005).
Mathematically more sophisticated tests (e.g. likelihood-ratio tests) can be found in
Geyer (1999) and Møller and Waagepetersen (2004).

7.2 Parameter estimation
Anumberofdifferentapproaches toparameterestimationhavebeenused in thecontext
of spatial point processes. These are based on the same ideas as in classical statis-
tics. Which estimation method is used for a specific data set depends on the model
and the nature of the parameters and is to a certain extent also a matter of taste.

As far as the performance of the estimators is concerned, these are usually
required to be unbiased, and to have a small mean squared error (mse). Another
requirement is that the estimators are consistent, i.e. that their increases with
increasing window size. This is the case for many parameter estimators of stationary
point processes if these are ergodic.

7.2.1 Maximum likelihood method

Maximum likelihood methods are widely used in classical statistics, and many
statisticians believe that they should also be preferred in point process statistics.
Indeed, famous theorems by Fisher, Rao and Cramér show that in classical statistics
maximum likelihood estimators represent the ‘hard currency’ among the estimators
as they are efficient, sufficient and consistent. Those readers familiar with esti-
mation methods in classical statistics may know that maximum likelihood method
techniques can only be applied if the likelihood function – describing the probability
of observing the data given the model – is known. This probability is maximised
(with fixed data and variable parameters), yielding parameter estimators that best
fit the data. However, often and particularly for stationary point processes, it is
extremely difficult, even impossible, to find the likelihood function. As a result,
the maximum likelihood method can only be applied to specific classes of models.
These are Poisson processes (pp. 80 and 121), Cox processes (with approximative
likelihoods; see Møller and Waagepetersen, 2004, and below) and finite Gibbs
processes (p. 161). In addition to the models’ flexibility and interpretability in appli-
cations, this might account partly for the popularity of finite Gibbs (and Markov)
point processes in the statistical point process literature.

It is possible to apply the maximum likelihood method to spatial point patterns
where the likelihood function is not known explicitly by (heuristically) approxi-
mating the likelihood function. This can be done in many ways.



Fitting and Testing Point Process Models 449

An interesting example of this approach is a method developed by Tanaka et al.
(2008) for stationary point processes. It is based on the model pair correlation
function g�r� and works well if g�r� is known explicitly and contains the parameters
of interest. The idea is to analyse the finite point process N
 in addition to the
original point process N . N
 consists of all the difference points


 = x − y for x �= y�

where x and y are the points of the process N in the window W , which is assumed
to be convex. If the original pattern has n points then the difference pattern N
 has
n�n − 1� points. N
 is central-symmetric in W ⊕ W̌ = �z  z = x − y� x ∈ W�y ∈ W�
since it contains x − y as well as y − x. Figure 7.1 shows an example of a small
point pattern and the corresponding pattern of difference points.

For the intensity function of the difference pattern a formula can be given in
which � and g�r� appear. Consider the mean number �
�r� of points of N
 in the
disc b�o� r�. The derivative �′


�r� = �
�r� can be calculated as

�
�r� = �2�W �r�g�r� for r ≥ 0�

where �W �r� is the set covariance of the window W .
Tanaka et al. (2008) then assume that N
 can be approximated well by an

inhomogeneous Poisson process with intensity function �
�r� ��. This function
depends on � through g�r�, and the authors use the maximum likelihood approach for
inhomogeneous Poisson processes to estimate �. Using (3.4.4) and polar coordinates,
the corresponding log-likelihood function becomes

ln L��� = ∑
x�y∈N∩W

ln ��
��x − y�� ��� −
R∫

0

�
�r� ��dbdrd−1dr

Figure 7.1 A pattern of 10 points and the corresponding pattern of difference
points.
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for R = min�r  �W �r� = 0�. Tanaka et al. (2008) simplify the likelihood function
further and use numerical methods to compute the integral and find the maximum.
They show that the method works well for Neyman–Scott cluster processes, for
which the exact maximum likelihood method usually cannot be applied. The same
approach can also be used for other Cox processes.

Other approximate likelihood methods include the pseudo-likelihood method (see
Besag, 1975, 1978; Møller and Waagepetersen, 2004, p. 171) and its improvement
by Huang and Ogata (1999); see also Section 3.6.

In classical statistics as well as in point process statistics often several potential
models with different parameters and numbers of parameters may initially be consid-
ered appropriate for a specific data set. A common approach to the comparison
of different models where parameter estimation has been done using maximum
likelihood methods is the Akaike information criterion (Akaike, 1974). The AIC is
defined as

AIC = −2 · ln�L��̂�� + 2k�

where L��̂� is the likelihood function evaluated at the maximum likelihood estimator
�̂, and k is the number of independently fitted parameters. Tanaka et al. (2008) use
the AIC for model comparison.

7.2.2 Method of moments

The method of moments has not been very popular in classical statistics in general
as it lacks some of the desirable properties of the maximum likelihood method.
Nevertheless, it often provides very good estimators that are unbiased or ratio-
unbiased and consistent. It has many applications in the context of spatial point
processes, especially when the likelihood function is not available.

Note that the term ‘method of moments’ is used here somewhat loosely since the
approaches described here are all based on the same general idea but this idea is
applied to moments or moment-measure-related characteristics as well as to other
summary characteristics that are not moment-related. The general idea is to find
parameters that minimise the difference between a ‘suitable’ summary characteristic
S that is known analytically (or from simulations) and the summary characteristic Ŝ
as estimated from the data. It is important that S depends on the unknown parameter
�; to emphasise this dependence, the characteristic is denoted by S�. The methods
discussed in Chapter 3, 4 and 5 are then applied to the data to yield an empirical Ŝ.
The value � for which S� and Ŝ are ‘as similar as possible’ is used as an estimator.
The term ‘as similar as possible’ means here ‘similar in the sense of a specific
approximation method’, such as the least-squares approach.

As indicated by the vague expression ‘suitable’, different summary characteristics
S may be used. Which of these is deemed suitable depends on the context. A first
criterion for the choice of summary characteristics is often whether a formula for
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S� is known. However, if this is not the case simulation approaches may be used
instead. Another criterion should be that S� is sensitive to variation in �.

In its simplest form, the method of moments is applied to numerical summary
characteristics. If, for example, the intensity � is a model parameter, �̂ is its
estimator as in (4.2.10). Similarly, if the hard-core distance r0 is a model parameter,
as in Gibbs hard-core or Matérn hard-core processes, the estimator is simply the
minimum inter-point distance in the sample pattern, see (4.2.46).

In many other examples the method of moments is based on a functional summary
characteristic, i.e. the S above is a function S�r�. Sometimes it is enough simply to
plot Ŝ�r� and identify specific points, e.g. cusp points or points where S��r� becomes
constant. This approach may be used to find estimators of particular distances such
as rcorr. In the context of Neyman–Scott processes the radius of the clusters may be
found in this way. The parameters r1 and � of a Strauss process may be estimated
using the cusp-point method.

Typically, however, the method of moments for functional summary characteris-
tics usually applies a least-squares approach that is often referred to as the minimum
contrast method. This is based on the simple idea of minimising

���� =
s2∫

s1

	Ŝ�r� − S��r�	�dr (7.2.1)

with respect to �. The value of � that yields the minimum is the estimator �̂.
Here, the parameters s1, s2 and � as well as the summary characteristic S�r�

can in principle be chosen arbitrarily; often � = 2 is used. In the literature most
applications use either

S�r� = L�r� or S�r� = Hs�r��

For these summary characteristics, the integral limits can be chosen as s1 = 0 and
s2 = s where s is some suitable maximum distance as on p. 95. In Stoyan and Stoyan
(1996), Møller and Waagepetersen (2004, p. 183) and Taylor et al. (2001) the pair
correlation function g�r� is used as the summary characteristic S�r�. The reader is
advised to follow this example in order to avoid dependence among the residuals
in the sum of squares. However, because of the well-known inaccuracy of ĝ�r� for
small r , a positive value for s1 should be chosen, somewhere in the region of m̂D,
the estimated mean nearest-neighbour distance, or of r̂0, the estimated hard-core
distance. For finite point processes Lfin�r� (see p. 131) may be a good choice for
S�r�.

In practice, the integral in (7.2.1) is replaced by a sum,

s2∫
s1

	Ŝ�r� − S��r�	�dr ≈
k∑

i=0

	Ŝ��i� − S���i�	� (7.2.2)
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with �0 = s1, �i = r1 + i
, �k = s2 and 
 = s2−s1
k

for some integer k.
Jolivet (1986) and Heinrich (1992, 1993) investigate the statistical properties of �̂

for special cases. In reasonable cases the minimum contrast estimator is ‘consistent’
in the sense of probability theory, i.e. it converges to the true value as the size of
the window W increases until it is the whole space.

7.2.3 Trial-and-error estimation

If all else fails, parameters can be estimated by trial and error, as demonstrated by
Ripley (1977), even if there is a possibility that the results it yields are of dubious
quality. The idea is to try several estimates �̂1, �̂2, � � � , and use a goodness-of-fit test
from Section 7.4 with each of these. The first estimate �̂i for which the hypothesis
that the model containing �̂i fits the data is accepted, is used as the estimate. An
extension of this method may even be used to construct confidence intervals for �,
using the well-known duality between significance tests and confidence intervals:
the set of all �i for which the test leads to acceptance determines such an interval.

Clearly, the dimension of �, i.e. the number of parameters, should be small.

Example 7.1. Phlebocarya pattern: fitting a cluster process model
After a successful statistical analysis of the pattern of 207 Phlebocarya filifolia
plants in a 22 × 22 m square (see Figure 1.4) in Chapters 4 and 6, a cluster process
model is now fitted to the data. Indeed, the pattern looks like a sample from a
cluster process and the pair correlation function in Figure 4.19 also suggests this.
The fact that in Example 6.2 a Cox process could be fitted to the pattern may trigger
the idea of also trying a simpler cluster model. This model is rather primitive and
likely to be too simplistic. It is discussed here mainly as an illustration. If such a
model could really be fitted to the data this may lead to a clearer statement on the
range of correlation in the pattern. Figure 4.19 does not give a clear answer on the
question of the range of correlation: it may be that the range is smaller than 1 m
and that the values of g�r� larger than 1 for r > 1m have to be considered irrelevant
or that the range is large, up to 10 m, but for distances between 1 and 10 m the
correlations are very weak.

In this example, a Matérn cluster process is used as the cluster process model,
which depends on the parameters cluster radius R, mean number of points c̄ per
cluster, and intensity �, as explained on p. 376. Two estimation methods are applied:
the minimum contrast method with S�r� = g�r�, s1 = 0 and s2 = 3�0, yielding the
estimates R̂ = 0�12 m, ˆ̄c = 0�078; and approximate maximum likelihood method,
yielding R̂ = 0�19 m, ˆ̄c = 0�134. For both models the intensity estimate is �̂ =
0�428 m−2.

Although the methods yield similar results, in the following the minimum contrast
estimates are preferred as their behaviour in goodness-of fit tests is a little better.
Figure 7.2 shows the empirical pair correlation function and envelopes from 99
simulations of the fitted model, which show good agreement. This was to be
expected since a second-order characteristic was used for parameter estimation. So
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Figure 7.2 Empirical pair correlation function for the Phlebocarya pattern and the
envelopes from 99 simulations of the fitted Matérn cluster process corresponding
to the minimum contrast estimates.

using a similar characteristic to assess the fit of the model is likely to indicate a
(potentially spurious) fit and should not be considered a useful goodness-of-fit test,
but see Example 7.2.

Note that for this example the estimates of R deviate greatly from values which
visual inspection of the empirical pair correlation function in Figure 4.19 may
suggest.

In many applications, different estimation methods are combined: different
components of the parameter vector � are estimated by different methods, often
in an iterative way. Consider, for example, a pair potential parameter � = ��1� �2�
where �1 is the range of interaction and �2 determines the strength of interac-
tion. Then �1 may be estimated by the cusp-point method and �2 by the partial
maximum likelihood method given �1. Another example is the profile likelihood
method explained on p. 167 in Section 3.6.

7.3 Variance estimation by bootstrap
In all areas of statistics, parameter estimates are difficult to interpret without addi-
tional information on their accuracy. Accuracy is usually characterised by mse,
estimation variance or confidence interval, but in point process statistics it is rather
difficult to calculate these. Simulation and resampling methods are often used in
practice to overcome this problem. A very popular method is the bootstrap; see
Davison and Hinkley (1997) and Manly (2004) for details.

The bootstrap approach is based on empirical data, but in some cases simulated
data are also used for the same purpose. The method typically does not make any
distributional assumptions. In classical statistics, a large number of new artificial
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samples are resampled from the data x1, x2, � � � with replacement. These samples
are analysed separately and the fluctuations of the estimates are considered and
used in order to characterise the variability of the estimator of interest.

The analogue of the artificial data in point process statistics are independent
point pattern samples, rather than samples that consist of points from one original
pattern as this is a misuse of the bootstrap idea; see the discussion in Martínez and
Saar (2002, p. 91) and Snethlage (1999). Methods discussed in the point process
literature, where new patterns are constructed by ‘block resampling’, i.e. random
subsamples of the pattern in W are taken and combined to form new patterns within
W , may be useful for data on the real axis, in time series analysis. However, for
spatial patterns these are unsuitable as they ignore existing correlations along the
edges of the subwindows and generate configurations that do not exist or may even
be impossible in the original pattern.

Therefore, in point process statistics bootstrapping can only be successfully used
in the context of replicated patterns, where a series of point patterns are given
in windows W1, � � � , Wk, which are of equal size and shape and k is not very
small; see Diggle et al. (2000) and Schladitz et al. (2003). These windows may be
subwindows of a large window or separate windows which observe the same spatial
phenomenon. It is important that the patterns in the Wi are (practically) independent.

This section provides a sketch of bootstrapping for the estimation of the variances
of estimators of the intensity � and the pair correlation function g�r� of replicated
stationary point processes.

The intensity estimator (4.2.10) yields the values �̂i for i = 1, 2, � � � , k for the
windows Wi. Equation (4.7.1) then yields the global value �,

� = 1
k

k∑
i=1

�̂i�

The aim of bootstrapping is to evaluate the precision of � based on the values �̂i.
A new sample of k �̂i-values is generated by randomly resampling from the �̂i with
replacement. If k = 5, it may for example consist of the values �̂2, �̂2, �̂4, �̂5, and
�̂5 or �̂1, �̂2, �̂3, �̂3 and �̂3. These values are used to calculate a new global �. The
whole procedure is repeated m times to obtain m global means �1, �2, � � � , �m. The
corresponding sample variance s2

� is used as an approximation of the estimation
variance �2

� of the intensity.
A confidence interval for � results from rearranging the values �1, �2, � � � , �m in

increasing order and using the values with indices closest to �
2 m and �1 − �

2 �m as
the bounds of a confidence interval for � of level 1 − �. (If � = 0�05 and m = 200
the numbers are 5 and 195.)

Using a similar approach, the hypothesis H0  �1 = �2 i.e. that the intensities of
two point processes are the same, can be tested by simulation. If the null hypothesis
H0 is rejected the data show evidence against the hypothesis of equal intensities.

Consider k1 windows which yield the intensity estimates �̂11, � � � , �̂1k1
and k2

with �̂21, � � � , �̂2k2
corresponding to �1 and �2 yielding �1 and �2 respectively as
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well as �� = �1 − �2. This �� is compared to m values ��1, � � � , ��m which are
obtained by resampling. Both samples of �̂1i and �̂2j are merged to form a unique
sample of k1 + k2 values. Then m new pairs of samples of k1 and k2 values are
generated from this sample, by randomly resampling with replacement, and labelled
as 1 and 2 even though they have been drawn from the same set of �-values. Then
the differences of �1- and �2-estimates are calculated, yielding ��1, � � � � ��m. H0 is
rejected if �� has an extreme position in the series of ordered values ��i. If the
error probability is �, then values at positions smaller than �

2 m and larger than
�1 − �

2 �m are considered extreme.
The same procedure as for � may be applied for all r separately to the pair

correlation function g�r�, i.e. instead of �̂i the ĝi�r� are used now for all values of
r of interest.

Another common method is based on Monte Carlo simulation of models with
estimated parameters. It is sometimes called the parametric bootstrap, although
it is not a conventional bootstrap method. Assume that � and �̂ are the model
parameter and its estimator, respectively. The model with parameter �̂ is simulated
m times independently, and the estimators �̂∼

k are determined for k = 1, 2, � � � , m
for the resulting data. The variance of these values is used as an approximation
of the variance of the estimator �̂; see Efron and Thibshirani (1993) and Givens
and Hoeting (2005). This method can be applied regardless of the method that was
used to derive �̂. The parametric bootstrap is clearly computationally intensive, as
it requires both simulation and parameter estimation for a large number of samples.

7.4 Goodness-of-fit tests
This section discusses goodness-of-fit tests for point processes, i.e. tests that are
analogues of the Kolmogorov–Smirnov test familiar from classical statistics. For
all these tests, the null hypothesis is simply H0: ‘the model fits the data’. In point
process statistics these tests are usually based on simulations, with the exception
of some tests that are used in the context of the Poisson process, as discussed
in Section 2.7. These tests are special cases of Monte Carlo tests as described in
Chapter 4 of Davison and Hinkley (1997); see also Ripley (1988) and Robert and
Casella (2005).

Two main approaches are discussed here. The first is a method that has been very
popular since its introduction in Ripley (1977), even though it does not produce
a formal significance test with known and predefined error probability �. For this
reason, Loosmore and Ford (2006) refer to the method as ‘incorrect’. However, this
book warmly recommends the approach in applications.

7.4.1 Envelope test

This method is based on some functional summary characteristic S�r� such as g�r�,
L�r�, Lfin�r�, Hs�r� or D�r�, as discussed in Chapters 3, 4 and 5. The idea of the
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test is to compare the empirical summary characteristic estimated from a point
pattern in the observation window W to estimates of the summary characteristic for
simulations from the model using the estimated parameters generated in the same
window. The model is simulated k times and the estimate of S�r�, Ŝi�r� for i = 1,
2, � � � , k, is determined for each sample. Then the extreme values

Smin�r� = min
�i�

Ŝi�r� and Smax�r� = max
�i�

Ŝi�r�

are determined. Finally, three curves showing Smin�r�, Ŝ�r� and Smax�r� are plotted,
as in Figure 7.3 as well as in many other figures in this chapter. Since Smin�r� and
Smax�r� are envelopes of the Ŝi�r�, the name ‘envelope method’ is often used, which
leads to pointwise confidence bands.

The values k = 19 and k = 99 are often used for k, where k = 19 may appear to
be rather small. On the other hand, the choice k=999 might be considered as rather
large. In the literature, values of k satisfying �k ≥ 5 are recommended, where � is
the error probability.

If the inequality

Smin�r� ≤ Ŝ�r� ≤ Smax�r� (7.4.1)

holds for all r , the model is accepted, otherwise it is rejected. If the model is
rejected, the values r for which (7.4.1) is violated provide some information on the
nature and reason for the deviations of the data from the model.

This test is often regarded and interpreted as a significance test. Indeed, if a fixed
r = r∗ has been chosen prior to the simulation, the test which rejects the model if
the inequality (7.4.1) is not satisfied for r = r∗ is a correct simulation test. Its error
probability in one-sided testing is 1/�k + 1�. Thus k = 19 corresponds to � = 0�05
and k = 99 to � = 0�01. In a two-sided test these values of � should be multiplied
by 2. However, since ‘all’ r are considered simultaneously, the probability of
rejecting H0 is increased and the true error probability is larger than 0.05 and 0.01,
respectively. On the other hand, it is to be expected that a test based on single r∗ is
rather conservative, i.e. the null hypothesis is rather unlikely to be rejected. This is
because the model is simulated with parameters that have been estimated from the
same data as those that were used for the test. Note that this problem has also been
discussed in classical statistics in the context of the Kolmogorov–Smirnov test; see
Conover (1999, pp. 443 and 448) and Armitage et al. (2001, p. 373).

To address this issue it is recommended to carefully choose the summary
characteristic Stest�r� used in the test. It should be of a different nature than Sest�r�,
which is used to estimate the model parameters. A suitable approach, for example,
is to estimate � through Sest�r� = g�r� (by the minimum contrast or approximate
maximum likelihood methods) and to use D�r� or Hs�r� as Stest�r� for the test rather
than another second-order characteristic; see the discussion in Diggle (2003, p. 89).
The rejection of a null hypothesis that is based on a test that applies the same
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summary characteristic as for parameter estimation casts particular doubt on the
null hypothesis.

This book suggests accepting that the classical choices of � = 0�05 and 0.01
are only conventions and are not given by first principles. In other words, in the
context of point processes a point process convention may be to work with k = 19
and k = 99 and to interpret these as ‘� = 0�05’ and ‘� = 0�01’, respectively.

Note that the test above can be modified and larger or smaller values can be
used, rather than the minimum and maximum values. For � = 0�05, k = 999 may
be chosen and Smin is replaced by the 25th of the ordered Ŝi�r� values and Smax by
the 975th.

7.4.2 Deviation test

Simulation tests with an exact error probability � can be constructed based on the
general recipe described on p. 54.

Each simulated pattern l is assigned a global deviation measure �l, by analogy
with Dl on p. 54, i.e.

�l = max
0≤r≤s

	S�̂�r� − Ŝl�r�	

or

�l =
s∫

0

	S�̂�r� − Ŝl�r�	�dr for l = 1� 2� � � � � k�

where S�̂�r� is the theoretical S�r� with the estimated parameter �̂ and s a maximum
r-value as on p. 96. In practice, the integrals are of course replaced by finite sums.

The values �l and the �-value for the original data,

� = max
0≤r≤s

	S�̂�r� − Ŝ�r�	

or

� =
s∫

0

	S�̂�r� − Ŝ�r�	�dr�

are arranged in increasing order. If � has an extremely high position among these
values, H0 is rejected. For � = 0�05 and k = 19, 99 and 999 the critical positions
are those larger than 19, 95 and 950, respectively; for �= 0�01 and k= 99 and 999
they are 99 and 990.

Summary characteristics commonly chosen as S�r� are L�r�, Lfin�r�, D�r� and
Hs�r�. In accordance with common practice in classical statistics the density func-
tions g�r�, d�r� and hs�r� are not used here, because the estimation of L�r�, D�r� and



458 Fitting and Testing Point Process Models

Hs�r� is more standardised than that of g�r�, d�r� and hs�r�. Again, as mentioned
in the discussion of the envelope approach, a deviation test should be based on a
different summary characteristic Stest�r� than the one that was used as Sest�r�.

The observed P-value of the deviation test can be approximatively calculated as

p̂ = 1 +∑k
l=1 1��l > ��

k + 1
� (7.4.2)

Loosmore and Ford (2006) discuss the variation of p̂ as a function of k.
Practical experience has indicated that the deviation test is probably less powerful

than the envelope test. To rectify this, the deviation test may be improved by using
two summary characteristics, S1�r� and S2�r�, of different nature (e.g. L�r� and
D�r�) and constructing a combined deviation measure, given here for the max case,

� = max
0≤r≤s

	S1��̂�r� − Ŝ1�r�	 + max
0≤r≤s

	S2��̂�r� − Ŝ2�r�	�

Deviation tests based on simulation approaches as before may be also applied if
an explicit formula for S�̂�r� is not known. Then m additional independent patterns
with the parameter �̂ are generated, the corresponding Sl�r� are calculated and
averaged over l. Diggle (2003, p. 89), recommends using the k samples above to
also derive an estimate S�̂�r�.

Example 7.2. Phlebocarya pattern: testing a Matérn cluster process hypothesis
This example continues the analysis of the Phlebocarya pattern in Example 7.1
and tests the hypothesis that the Matérn cluster process with the minimum contrast
estimates given in Example 7.1 fits the data.
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Figure 7.3 Empirical nearest-neighbour distance d.f. D̂�r� (solid line, left) and
spherical contact d.f. Ĥs�r� (solid line, right) for the Phlebocarya pattern and
envelopes from 99 simulations of the Matérn cluster process with minimum contrast
estimates (dashed lines).
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Since the parameter estimation is based on the second-order characteristic K�r�,
different summary characteristics are used for the test, D�r� and Hs�r�. Figure 7.3
shows the empirical d.f. D̂�r� and the envelopes resulting from 99 simulations of
the Matérn cluster process with the two parameter sets derived in Example 7.1. The
empirical nearest-neighbour distance d.f. D̂�r� is completely within the envelopes
for both sets and the test confirms that the models with the very small values of R̂
fit the data. For the spherical contact d.f. Hs�r� the situation is the same.

The result of the test is that the Matérn cluster model is also acceptable. However,
the log-Gaussian Cox process performs better and seems to be a more realistic
model. The Matérn cluster models suggest a very short range of correlation of
20 cm. This may show that the pattern is globally close to a Poisson process;
however, an L-test of the CSR hypothesis leads to rejection.

Example 7.3. Testing a Gibbs process hypothesis for the Spanish towns
This example continues the analysis of the Spanish town pattern in Example 3.14
and tests the hypothesis that the hard-core Strauss process with the parameters
obtained via the maximum likelihood method given in Example 3.14 fits the data.
Since parameter estimation was not based on second-order characteristics the test
applies the finite L-function. The parameters of the model are r̂0 = 0�83 miles,
r̂max = 3�5 miles, �̂ = 2�08 and �̂ = 0�76. Here the simulation is performed using
the random variable N�W� and that particular value of �̂ which corresponds to
the mean value E�N�W�� = 69, the number of towns in W . (The value of �̂ was
found by trial-and-error and simulation.) Figure 7.4 shows the empirical L-function
and the envelopes resulting from each 99 simulations of the Strauss process. Since
the empirical L-function is completely within the envelopes, the Strauss process
hypothesis is accepted. By the way, for the distance summary characteristics the
result is the same.
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Figure 7.4 The empirical finite L-function for the Spanish towns pattern (solid line)
and the envelopes from 99 simulations of the hard-core Strauss process (dashed lines).
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7.5 Testing mark hypotheses
7.5.1 Introduction

The discussion in Section 7.4 has not explicitly covered examples with marked
point patterns, but in the context of marked point processes similar tests to those
described above may also be used, based on suitable summary characteristics for
marked point processes. Two fundamental hypotheses are particularly important:

(1) the marks are independent;

(2) the marks result from geostatistical marking, i.e. the random field model of
Section 5.1.3 and 6.8 can be applied.

In the first case, the aim may be to find out whether the marks are positively
or negatively correlated and in the second case, whether marks and points are
correlated, e.g. whether marks depend on local point density. In some applications,
the analysis may reveal that the marks can be considered independent. This might
appear to be an unexciting result and be disappointing in a specific context where
scientific theory would have suggested some correlations. Nevertheless, showing
independence among the marks is also an important and useful result. If the marks
turn out to be spatially correlated, a further question concerns the interaction among
points and marks or whether the simple random field model without interaction is
suitable.

The test procedures discussed in the following are all non-parametric approaches.
They use functions of the type Lt�r� with a suitable test function t as introduced in
Section 5.1.3, e.g. Lmm�r�, Lm·�r� or Lij�r�.

7.5.2 Testing independent marking, test of association

All tests of independence hypotheses for marked point processes apply some form
of resampling. This means that k new samples of marked point patterns with
‘independent’ marks are generated and the corresponding summary characteristics
are compared to those of the original pattern. This is explained here in detail for
Lt-functions as defined in Section 5.4.1.

Qualitative marks

Tests for qualitative marks are discussed here only for the most important bivariate
case. This implies that, in a specific pattern, two marks i and j are selected from
among the m different qualitative marks for an analysis of the correlation of the i-
and j-marks, and points of type i a assigned the new mark 1 and points of type j the
mark 2. Or, more generally, two groups of marks �i1� � � � � im1

� and �j1� � � � � jm2
� are

selected and all points of the first group get mark 1 and those of the second group
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mark 2. For example, in a forest conifers and deciduous trees may be considered,
while the individual species are ignored.

The test considered here is based on the L12-function as introduced in Section 5.3.
Note that there are two different interpretations of the null hypothesis of ‘indepen-
dent marking’. These need to be carefully distinguished and are discussed below:
random labelling, and random superposition or population independence.

Random labelling means that the points in an originally non-marked point process
are independently marked 1 or 2. Goreaud and Pélissier (2003) therefore refer to
this as a posteriori marking. Typical examples of this may be forests in which the
trees are infected by some disease or damaged by wind or frost (mark 1) or not
(mark 2).

Random superposition means that a priori there are two independent point patterns
in the same window W , one consisting of points of type 1, the other of type 2.
These two patterns are combined, yielding the bivariate pattern. Typical examples
include plant communities where the locations of plants from the different species
within W result from different dispersal mechanisms.

The summary characteristics for the two cases show a different but characteristic
behaviour, as shown in Table 7.1. The quantities mentioned in the table are mainly
defined in Section 5.3.2. D12�r� is the d.f. of the random distance from the typical
type 1 point to its nearest type 2 neighbour and Hs�2�r� is the spherical contact d.f.
of the subprocess of type 2 points.

If the hypothesis of ‘independent marking’ is to be tested, the right null hypothesis
has to be chosen first. In some cases, one of the two null hypotheses is completely
inadequate (see Example 7.4) and thus can never be accepted. In many cases the
choice is clearly determined by the study question and the origin and nature of
the data. Below, a number of examples are used to illustrate this point. In more
complicated cases where it is not clear which one of the two hypotheses seems
more appropriate, statistical estimates of the pair correlation functions g11�r�, g22�r�
and g12�r� may be helpful. Certainly, L11�r�, L22�r� and L12�r� may also be used,

Table 7.1 Summary characteristics with index ‘12’ and
simulation method for random labelling and random super-
position. This table and the structure of the text referring to
it were inspired by Goreaud and Pélissier (2003).

Random labelling Random superposition

L�r� = L11�r� = L22�r� = L12�r� L12�r� = r
g�r� = g11�r� = g22�r� = g12�r� g12�r� ≡ 1
p12�r� ≡ 2p1p2 p12�r� ≡ 2p1p2

pii�r� ≡ p2
i pii�r� given by (5.3.18)

D12�r�: (5.2.30) D12�r� = Hs�2�r�

reallocation shifting
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but due to the cumulative nature of the L-functions their use is not recommended
for exploration; see the discussion in Section 4.3. Further, it is important also to
assess g11�r� and g22�r�, and not just g12�r�.

Under the null hypothesis of random labelling, all three functions are equal and
their estimates will be similar. For random superposition, however, g12�r� ≡ 1 but
g11�r� and/or g22�r� may differ substantially and this should be also reflected in
statistical estimates of the three functions. If it is not clear which of the hypotheses is
suitable for a given data set, both null hypotheses may be tested and the above func-
tions may be used for clarification. Note that the two cases cannot be distinguished
for Poisson processes.

Once the appropriate choice of null hypothesis has been determined, a test of this
null hypothesis may be carried out. This is again a simulation test, where k marked
point patterns are generated with new marks for each of these. If the null hypothesis
is a random labelling hypothesis, random reallocation is used to generate these new
marks, i.e. the marks are permuted while the points are fixed. This implies that for
all simulated patterns the numbers of points of type 1 and type 2 are the same as
for the data.

If the null hypothesis is a random superposition hypothesis, random shifts are
used. Assume that W is a rectangle or parallelepiped. The pattern of points of type
1 is fixed and the entire pattern of points of type 2 is shifted. If these points, which
are xi with m�xi� = 2, are re-denoted by y1, ys, � � � , ym, a ‘shift’ implies

yi → yi + u�

where u is a random uniform location in W , the same for all i, but different
for different l. The operation yi → yi + u is based on an idea similar to periodic
edge-correction (see p. 184).

Envelopes L12�min�r� and L12�max�r� are constructed based on the k simulated
patterns. If the empirical L12-function derived from the data L̂12�r� is not completely
within the envelopes or the corresponding confidence band the respective indepen-
dence null hypothesis is rejected.

If one or both null hypotheses have been rejected one should reconsider the
three partial pair correlation functions g11�r�, g22�r� and g12�r� in order to find
the right explanation. Considering only L̂12�r� and the envelopes may be risky, as
demonstrated in Goreaud and Pélissier (2003). It can lead to wrong conclusions as
to the reason for rejection, i.e. on the nature of correlations among the two types
of points.

Example 7.4. Testing the independence of amacrine on- and off-cells
Figure 1.2 shows the bivariate pattern of on- and off-cells (type 1 and type 2 points)
and Figure 5.5 the partial pair correlation functions gij�r�. The functions g11�r�
and g22�r� are quite similar and seem to correspond to point processes with some
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Figure 7.5 The envelopes L12�max�r� − L̂12�r� and L12�min�r� − L̂12�r� resulting
from 99 simulations obtained by random reallocation (solid lines) and random shifts
(dashed lines), for the amacrine cells. Since the null line is outside the confidence
band corresponding to random reallocation for many values of r, the hypothesis
of random marking is rejected. The fact that the null line is completely within the
confidence band corresponding to random shifts suggests that the two subpatterns
of type 1 and type 2 points are independent.

tendency towards regularity. In contrast to this, g12�r� fluctuates randomly around
1. The statistical analysis in Example 5.5 suggests that the random superposition
model is appropriate.

Here, the random labelling hypothesis is also considered, but only to point out
the difference between the two hypotheses. In this particular context it is clear from
the start that this hypothesis will not be accepted. The simulation tests yield the
expected results. Figure 7.5 shows the differences of the empirical L12-function and
the L12-envelopes from each 99 simulated patterns obtained by random allocations
and shifts. Clearly, the random superposition hypothesis is accepted. In contrast, the
random labelling hypothesis is rejected, since the null line is outside the confidence
band for many values of r. Apparently, random allocations completely destroy the
correlation structure in the pattern, in particular that in the patterns of type 1 and
type 2 points. Consequently, the independence of the systems of type 1 and type 2
points appears to be proved and the random superposition model seems to be the
appropriate model for the amacrine cells.

Example 7.5. Frost shake in an oak forest
This example reconsiders the distribution of trees damaged by frost shake in a young
oak forest (Quercus petraea) at Allogny in France, as shown in Figure 7.6. ‘Frost
shake is a split in a tree trunk, produced by the interaction of frost and sun, that leads
to a lowering of timber quality’ (Goreaud and Pélissier, 2003). Visual inspection
of Figure 7.6 shows that this example presents a difficult statistical problem as
there is only some weak clustering of damaged trees. In the following, the question
whether the pattern exhibits independent or dependent marking is addressed.

Figure 7.7 shows the three partial pair correlation functions g11�r�, g21�r� and
g22�r�. There are no clear differences between the three functions. g12�r� is only
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Figure 7.6 Positions of 392 oak trees in a 100 × 100 m square at Allogny, France.
The pattern consists of 285 sound (�, type 1) and 107 damaged (•, type 2) trees.
Courtesy of F. Goreaud and R. Pélissier. Reproduced by permission of Opulus Press.
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Figure 7.7 The empirical partial pair correlation functions for the oak pattern:
g11�r� (solid curve), g12�r� (dashed curve) and g22�r� (dotted curve). The curves
show that the pattern is close to a randomly labelled pattern with some tendency to
clustering of trees of damaged type 2.

smaller than g11�r� and g22�r� for r between 2.0 m and 3.0 m, which indicates some
weak repulsion among the trees of type 1 and 2. Between 2.5 and 3.5 m g22�r� has
larger values, which indicates some form of clustering of damaged trees.
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In this example it is clear which null hypothesis is appropriate. The biolog-
ical problem clearly dictates that the random labelling hypothesis is the right one.
But even in the absence of biological background information it is clear that the
random labelling hypothesis should be chosen, since the similarity of the gij�r� indi-
cates that there is some probability that the null hypothesis may be rejected and
it is unlikely that the clusters have been generated by superposition. Hence, the
random superposition hypothesis is tested here only to demonstrate the difference
between the two hypotheses. Indeed, Figure 7.8 shows that it is rejected; for r-values
smaller than 5.5 m the empirical L12-function is too small. For the random labelling
hypothesis the situation is not that clear: only for r-values around 5 m is L̂12�r�
smaller than L12�min�r�. Note that, using data from a larger window (125 × 180 m,
containing the window considered here), Goreaud and Pélissier (2003) concluded that
frost shake is a clustered phenomenon; damaged trees appear in clumps. This is a
nice example that shows the strong impact of the choice of the observation window.

Example 7.6. Testing the randomness of the distribution of oaks and beeches
Figure 5.11 on p. 334 shows the mark connection functions pij�r� which suggest
some weak correlation between oaks (1) and beeches (2). Figure 5.6 shows the
partial pair correlation functions, which do not indicate clearly which hypothesis for
independence testing is appropriate here. Whereas g11�r� and g22�r� differ clearly
(g11�r� looks like the pair correlation function of a hard-core process, g22�r� like that
of a cluster process), g12�r� is smaller than 1 and does not indicate independence.
Thus, both versions are considered in the following in an attempt to clarify the
situation.

0.0 2.5 5.0 7.5 10.0
–2

–1

1

0

2

–2

–1

1

0

2

r (in m)

0.0 2.5 5.0 7.5 10.0

r (in m)

Figure 7.8 The envelopes L12�max�r� − L̂12�r� and L12�min�r� − L̂12�r� resulting
from 99 simulations of random allocations (solid lines) and random shifts (dashed
lines) for the Allogny oak forest. The envelopes indicate varying degrees of devia-
tion from the independence hypothesis: for the random labelling hypothesis it is not
clear, whereas the random superposition hypothesis (which is nonsense for these
data) is clearly rejected.
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Figure 7.9 The envelopes L12�max�r� − L̂12�r� and L12�min�r� − L̂12�r� resulting
from 99 simulations of random allocations (solid lines) and random shifts (dashed
lines) for the pattern of oaks and beeches. The results of the two tests differ: whereas
the null line is entirely within the confidence band for the random allocations, this
is not true for the random shifts.

Figure 7.9 shows the differences in the empirical L12-function and the L12-
envelopes resulting from 99 simulations, for random allocations and random shifts.
For the random superposition test the null line is not completely within the confi-
dence band. There are deviations for values around r =6�0 m and hence the conclu-
sion is, as expected, that the marks correlate weakly. For the random allocation
method the result is different: the null line is completely within the confidence
band. This might suggest the conclusion that there is no correlation between oaks
and beeches; however, this has been proved wrong by the random shift test and the
correlation functions. The discrepancy in the result based on the random allocation
test may be due to the fact that relabelling does not destroy the global structure
in the sample, which consists of clusters with many type 2 trees and few type 1
trees.

Note that for the example of palms and mounds on p. 335 the random labelling test
also rejects the independence hypothesis, whereas the random shift test accepts it.

Quantitative marks

For quantitative marks, the test functions

t2�m1�m2� = m1m2 and t4�m1�m2� = 1
2

�m1 − m2�
2

can be recommended for defining Lmm�r� and L��r�, respectively. If the marks are
independent,

L�r� = Lmm�r� = L��r��
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For the k Lt-functions Lt�l�r� which result from simulated samples for l= 1, 2, � � � ,
k, the envelopes based on Lt�min�r� and Lt�max�r� may be determined. An L̂t�r�
that is outside these envelopes indicates non-independence at specific distances. In
graphical presentation it is useful to plot differences Lt�max�r�− L̂t�r� and Lt�min�r�−
L̂t�r� and to assess whether the null line remains within the confidence band.

Marked point patterns with quantitative marks are resampled by random reallo-
cation (or random marking or labelling), i.e. the points are fixed but are allocated
new marks. There are two different approaches to this: permutation of the marks,
and resampling the marks with replacement from the empirical mark distribution.
Both approaches ignore existing mark correlations, but if the marks are indepen-
dent these approaches do not change the mark correlation functions significantly.
Note that permutation of the marks guarantees that all samples have the same
empirical mark d.f.; this is not the case for independent marking using the empirical
mark d.f.

The following examples discuss independence tests for two different data sets.

Example 7.7. Gold particles: testing the independence of diameter marks
Figure 5.18 on p. 342 shows the mark correlation function kmm�r� for the pattern of
gold particles. For small r its values are below 1, which seems to indicate that there
is some inhibition among the particles. The aim of this example is to test whether
the relationship is significant using the random reallocation method and the Lmm-
and L�-functions.

Figure 7.10 shows the differences in the empirical Lmm-function and the Lmm-
envelopes resulting from 99 simulations. The null line is not completely within
the confidence band, indicating that the marks are indeed correlated. For L� the
situation is similar but much clearer, also shown in Figure 7.10. Considering the
results of the tests here and of the exploratory analysis in Section 5.3.3, one may
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Figure 7.10 The envelopes Lmm�max�r� − L̂mm�r� and Lmm�min�r� − L̂mm�r� (solid
lines) and L��max�r� − L̂��r� and L��min�r� − L̂��r� (dashed lines) resulting from 99
simulations with random allocation for the pattern of gold particles. Since the null
line is not completely in the confidence bands, the marks are considered correlated.
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conclude that there is a weak correlation among the diameter values with a tendency
for diameters of particles at short distances to be similar.

Example 7.8. Testing the independence of the marks in the spruce stand in the
Tharandter Wald
Figure 6.19 shows the mark correlation function kmm�r� and the mark variogram for
the 134 spruce trees as discussed in Example 6.4. The two correlation functions lead
to different conclusions: whereas kmm�r� indicates independence, �m�r� indicates
that close pairs of big and small trees appear slightly more frequently than would
have been expected for independent marks.

The random allocation method is used and Lmm and L� are considered. Perhaps
slightly surprisingly, the null hypothesis of independent marking is not rejected by
the envelope test with L� . The results are different for Lmm. Figure 7.11 shows the
differences in the empirical Lmm-function and the Lmm-envelopes resulting from 99
simulations. The null line is not completely within the confidence band and the null
hypothesis of independence is rejected. In conclusion, a weak correlation among
the diameter marks can indeed be assumed.

The contradictory results for the spruce stand might be a result of the small size
of the point pattern, which consists of only 134 trees. Probably the most realistic
assumption is that the marks are simply independent.

7.5.3 Testing geostatistical marking

Tests of geostatistical marking are based on the Lm·-function and random allocation,
and strongly resemble tests of independent marking. Under geostatistical marking,

L�r� = Lm·�r�� (7.5.5)
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Figure 7.11 The envelopes Lmm�max�r�− L̂mm�r� and Lmm�min�r�− L̂mm�r� from 99
simulations resulting from random reallocation for the stand of spruces. Since the
null line is not completely inside the confidence band, the marks are considered
correlated.
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Figure 7.12 The envelopes Lm·�max�r� − L̂m·�r� and Lm·�min�r� − L̂m·�r� resulting
from 99 simulations with random reallocation for the gold pattern. Since the null
line is not completely within the confidence band, the hypothesis of geostatistical
marking is rejected. But note that the upper envelope only slightly crosses the
null line.

Example 7.9. Gold particles: testing for geostatistical marking
This example continues Example 7.7 and uses the Lm·-function to test for geostatis-
tical marking. Figure 7.12 shows the differences the empirical Lm·-function and the
Lm·-envelopes from 99 simulations with random reallocation. The null line is not
completely within the envelopes, but nevertheless the hypothesis may be accepted,
as a simulation test with an estimated variogram shows (see p. 349).

Example 7.10. Testing for geostatistical marking in the pattern of spruce trees
from the Tharandter Wald
This example continues Example 7.8 and tests for geostatistical marking, again using
the Lm·-function. Figure 7.13 shows the differences in the empirical Lm·-function
and the Lm·-envelopes resulting from 99 simulations with random reallocation. The
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Figure 7.13 The envelopes Lm·�max�r� − L̂m·�r� and Lmm·�min�r� − L̂m·�r� resulting
from 99 simulations with random reallocation for the spruces. Since the null line is
not completely within the confidence band, the hypothesis of geostatistical marking
is rejected. But note that the lower envelope only slightly crosses the null line.
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null line is not completely within the confidence band, which indicates that the
hypothesis of geostatistical marking might have to be rejected. Since independent
marking is a special case of geostatistical marking, this result may suggest rejecting
the independence hypothesis as well. However, for this example this result may be
again due to the small size of the sample, and the authors tend to assume that the
marking here is independent.

Note, by the way, that the pattern in this stand is the result of a forester’s work.
However, since the aim was to grow trees of a similar size the result is certainly
a pattern of trees with similar diameters and only random fluctuations around the
mean, where any effect of competition among the trees can hardly be identified.

Table 7.2 lists the results of mark independence tests for a number of examples.

Table 7.2 Results from different tests of independence
hypotheses of marked point patterns by simulation tests.

Point pattern Lt used Envelope test

Gold particles Lmm –
Lm· �
L� –

Spruces in Tharandter Wald Lmm �
Lm· �
L� +

Amacrine cells L12 + tr
L12 – pe

Oaks and beeches L12 � tr
L12 + pe

Oak frost shake L12 – tr
L12 � pe

Concrete sample (planar section) L12 � tr
L12 + pe

Palms and mounds L12 + tr
L12 – pe

Buttercup
coverage L12 + tr
stoniness L12 + tr

Copper deposits L12 + tr

– Rejection of independence hypothesis, empirical Lt�r� for many r-values outside
the envelope strip.
� The same, but only for few (≤ 3) r-values.
+ No rejection.
tr Random shift.
pe Random allocation.
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Note that all tests are based on 99 replications (simulations) and 20 equidistant r-
values with maximum distance approximately equal to half the smaller side length
of the window W .

7.6 Bayesian methods for point pattern analysis
The Bayesian approach to statistical inference has recently become very popular,
especially in the analysis of complex data sets. This is mainly a result of the
development of Markov chain Monte Carlo methods, which has made it possible
to apply Bayesian methods, since the early 1990s, to a much wider range of situ-
ations than had previously been possible. Not surprisingly, the Bayesian approach,
together with MCMC methodology, has also made its way into point process
statistics. In Section 3.2.1 the Bayesian approach was briefly mentioned in the
context of statistics for the binomial distribution, and in Example 5.7 in the context
of identifying mother points in a cluster process, but it may also be applied in
many other situations, including intensity estimation, reconstruction of tessella-
tions from point process data, and estimation of pair potential functions for Gibbs
processes.

The Bayesian approach follows a different philosophy than the classical frequen-
tist approach to statistical inference; the parameters and other unknown quanti-
ties, such as unobserved variates (covariates) and missing data, are considered
random variables that are assumed to follow some probability distribution. In
other words, the analysis involves formulating a model for both the data and the
parameters. All uncertainties are expressed in terms of probability distributions and
probabilities.

This implies the following modelling steps:

• As in a non-Bayesian context, the observations x are modelled by a proba-
bility distribution f�x	��. However, in the Bayesian setting the distribution is
interpreted as a conditional distribution of the data x given the vector � of all
unknown and unobserved quantities in the model, including the parameters
but possibly also unobserved variates and missing data.

• As mentioned above, the unknowns � are further modelled with a prior
distribution ����. This is a specific distribution that has to be chosen a priori
and may be multivariate and may even have a complex dependence structure.
This distribution reflects the investigator’s beliefs on the unknown quantities
prior to the analysis.

• The investigator’s uncertainty on � given the data x is expressed by the
posterior distribution

���	x� = ����f�x	��∫
����f�x	�� d�

� (7.6.6)
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Equation (7.6.6) is an application of Bayes’ theorem. It relates unknown
quantities given the data to the prior distribution and the distribution of the
data.

• The posterior distribution is often difficult to handle and an analytical calcu-
lation of its characteristics is impossible in most cases due to the normalising
integral in the denominator. However, MCMC methods can be applied to
simulate from the posterior distribution. Refer to the literature (see below)
for details on how this is done in practice.

• Once the posterior distribution has been determined, the analysis typically
focuses very much on the characteristics of the marginal posterior distribu-
tions ���i	x� for � = ��1� � � � � �p�. This includes, in particular, the summary
characteristics familiar from classical statistics, such as mean, standard devi-
ation and quantiles.

There is an ample literature on the general principles of the use of MCMC in
the context of Bayesian statistics; see Clark and Gelfand (2006), Gelman et al.
(2004) and Gilks et al. (1996). Banerjee et al. (2004) concentrates on the Bayesian
approach in spatial statistics, and Møller and Waagepetersen (2004) and some of
the chapters in Lawson and Denison (2002) cover point process statistics.

To illustrate Bayesian methods, Example 3.4 is reconsidered here as this is based
on a probability distribution and on a modelling approach that is familiar from
classical statistics.

Example 7.11. Analysis of fruit dispersal around an ash tree
Consider the estimation of the intensity function ��r� for the data in Example 3.4
on p. 122. In this example, the locations of fruit dispersed by an ash tree are
modelled using an inhomogeneous Poisson process. The data set �ni� ri� consists
of trap counts ni and of the distances ri of 66 traps from the mother tree, where the
traps are located around the tree as shown in Table 3.1.

Again, as in Example 3.4, the observations are modelled by a Poisson distribution

f��ni�	��i�� =
n∏

i=1

�
ni
i

ni!
e−�i � (7.6.7)

The parameter ��i� of the Poisson distribution results from the intensity function
��r� on p. 122 and models the mean number of fruit in trap i. It depends on the
total number m of fruits and the random dispersal, which is assumed to follow a
lognormal distribution with density function

d�r� = 1

�r
√

2�
exp

(
− �ln r − ��2

2�2

)
for r ≥ 0�
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as in Example 3.4. Given m and the dispersal parameters � and � , the mean number
of fruits in trap i of area a is

�i =
amd�ri�

2�ri

�

The analysis now applies the Bayesian philosophy and treats the unknowns m, �
and � as random variables, with � = �m�����, requiring the specification of their
joint prior distribution. It is natural to assume that the total number of fruit (m) and
the dispersal parameters ����� are independent of each other a priori. Hence,

��m����� = ��m��������

In order to avoid complex notation ��·� is used for multivariate distributions as
well as for the corresponding marginal distributions. The specific distributions can
be identified on the basis of the arguments.

Prior information on the number of fruit is not available here – it is not clear, for
example, whether certain values are more likely than others. In many applications,
however, researchers do have expert knowledge on this and would probably be
able to specify a specific distribution. In the absence of prior information, a natural
choice of a prior distribution for m is the uniform distribution on �0� 1� � � � �, which
is well approximated by its continuous counterpart, the uniform distribution on
�0���. For this prior

∫ 0
� ��m�dm is infinite and referred to as improper. This

implies that ��m����� is also improper. However, such a prior may be used,
provided that the posterior (7.6.6) is a proper distribution, i.e. that the integral of
the posterior over the whole space is 1.

The parameters � and � determine the distances r of the dispersion of fruits
from the mother tree. Accordingly, the mean distance is

E�r� = exp
(

� + 1
2

�2

)
(7.6.8)

and the mode

rmode = exp�� − �2�� (7.6.9)

The mode of the dispersion distribution is an intuitive characteristic for a priori
reasoning. Assume now that some prior knowledge on the seed dispersal mechanism
of the tree and hence prior information on the � and � can be used to derive the
prior distribution of these ������. In other words, the analysis now assumes that
the maximum is between 0 m and 6 m with a high probability, i.e. ln�rmode� has a
Gaussian distribution where the parameters are chosen as �= 3 and � = 1�6 and �
can be modelled as

1/�2 ∼ the gamma distribution with mean 1 and variance 10�
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Note that in Bayesian statistics the precision parameter 1/�2 is commonly modelled
as a gamma distribution. A weaker prior such as the uniform distribution may be
chosen if less information is available. Finally, the prior ������ can be specified
based on these two distributional assumptions and (7.6.9).

The posterior distribution ��m����� ��i�	�ni�� is rather complex but can be
explored by simulation. Figure 7.14 gives a graphical description of the dependence
structure. Note that complex hierarchical models are often displayed in this way or
even constructed with reference to a similar graph.

The parameters of the marginal posterior distributions are shown in Table 7.3, and
have been calculated using a large number of MCMC simulation runs, which were
necessary to obtain stable results. This corresponds to the experience in Example 3.4
that the likelihood function was rather flat.

ni

m μ

μi

rmode σ

ri

Figure 7.14 Directed acyclic graph showing the hierarchical Bayesian model
describing the dependence structure among the variables. Observed variables are
represented by squares and unobserved variables by circles.

Table 7.3 Description of the marginal posterior distributions for m,
� and � extracted from MCMC simulations: mean, standard deviation
and 95 % credible intervals (2.5 % and 97.5 % quantiles).

Parameter Mean Standard deviation q0�025 q0�975

m 219 800 84 760 138 700 440 700
� 4.11 0�35 3.65 5.04
� 0.95 0�13 0.77 1.28
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The quantiles q0�025 and q0�975 are the bounds of the 95 % credible intervals
for the parameters. For example, the posterior probability that the mean number
of fruits from the tree is between 138 700 and 440 300 is 0.95. This interval is
wide, which means that the experiment provides little information on the number
of fruit. However, this is more valuable than the simple m̂ = 179 800 obtained in
Example 3.4.

Note that in this approach, which is often referred to as ‘fully Bayesian’, the
estimation also provides information on the precision (in terms of standard deviation
and credible interval) of the parameters. Unlike in the frequentist approach, which
often depends on large sample size assumptions, these estimates are ‘exact’ in the
sense that they do not rely on any such assumptions. Recall that the maximum
likelihood estimates in Example 3.4 were: m̂ = 179 800, �̂ = 3�93 and �̂ = 0�94.
These are in good agreement with the results of the fully Bayesian analysis.

Bayesian estimation of the intensity for a Poisson process

The following discusses the Bayesian approach, now applied to a simple point
process model, the inhomogeneous Poisson process. Bayesian approaches for more
complex models are briefly discussed below.

Assume that N is an inhomogeneous Poisson process with intensity function
��x� and a sample x1, � � � , xn of points in the observation window W is given. In
the Bayesian approach, ��x� is considered a random variable, i.e. a random field.
Consequently, the conditional distribution of the data given ���x�� is the likelihood
of an inhomogeneous Poisson process, given by (3.4.4), which in the notation used
here is

f�x1� � � � � xn	���x��� �� =
n∏

i=1

��xi� �� exp

⎛
⎝−

∫
W

��x���dx

⎞
⎠ �

Several kinds of prior distributions for the intensity function, i.e. distributions of
the random field ���x��, have been suggested such as the log-Gaussian Cox process
(Beneš et al., 2005), the gamma–Poisson process (Wolpert and Ickstadt, 1998), and
the partition process (Heikkinen and Arjas, 1998; Ferreira et al., 2002).

Note that two of these processes have been discussed in this book in the context
of Cox processes (refer to p. 380), but the partition process has not. The intensity
of the partition process is

��x� =
K∑

k=1

�k1Ek
�x��

where �Ek� is a random partition of W , typically the Voronoi tessellation generated
by some point process. Here, the ��1� � � � � �K� are the unknown parameters �. The
function ��x� is not continuous, but the average of several simulated realisations
from the posterior distribution of ��x� results in a smooth surface.
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Any of the three processes listed above may be chosen as the prior for the
random field and contains unknown hyperparameters �, i.e. for each of these a
similar hierarchical model structure may be used and the posterior ���� ���x��	N�
is proportional to

���������x��	�� f�x1� � � � � xn	���x����

Note that in this application the denominator in (7.6.6) may be ‘ignored’ in the
MCMC simulation, i.e. it suffices to use the numerator to characterise the posterior
distribution.

The estimation of the random intensity ���x�� of point pattern data assumes
a priori information on the smoothness of the result. There is some similarity to
kernel smoothing of intensity functions as discussed on p. 115 and sometimes the
term ‘Bayesian smoothing’ is used.

Other applications

Blackwell (2001), Blackwell and Møller (2003) and Skare et al. (2007) model
badger territories. Badgers (Meles meles) of a clan create latrines near their terri-
torial borders. These markings form a point pattern with increased intensity near
the borders of territories. A natural tool in modelling territories is the Voronoi
tessellation (see Section 1.8.4) generated as a secondary structure of a prior point
pattern with one ‘central’ point for each territory. Bayesian modelling may be used
to provide estimates of badger territories and their centre points, and posterior
simulations produce measures of the uncertainty in these reconstructions. Similar
approaches have been applied to image segmentation (Byers and Raftery, 2002),
and delineation of homogeneous regions from categorical and quantitative soil
measurements for precision farming purposes (Guillot et al., 2006).

Illian et al. (2008) apply both a non-Bayesian and a Bayesian approach to a
multi-type pattern of 24 species of Australian plants (Armstrong, 1991; see also
Section 4.9 above) and they notice that the Bayesian approach proves to be rather
flexible in particular in the context of complex patterns and a large number of
parameters.

For finite Gibbs processes (see Section 3.6) the likelihood is known and, in
theory, a Bayesian approach could be applied to the estimation of the pair potential
function. However, a big difficulty here is the fact that the normalising factor of
the Gibbs likelihood (see (3.6.11)) remains in the MCMC algorithm for posterior
simulation and also requires simulation, except in the Poisson case. Usually MCMC
within MCMC is regarded as intractable. However, some progress has recently been
made on this issue. It is possible to find the maximum of the posterior density; see
Heikkinen and Penttinen (1999). Hence a Bayesian approach can be taken here,
with the advantage that maximum a posteriori estimation is more useful than the
maximum likelihood solution if regularisation of the estimates is important. This
is the case, for example, if the pair potential is parametric but very flexible, such
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as a multi-scale model with many steps. Møller et al. (2006) suggest an ingenious
method based on an auxiliary variable for a fully Bayesian estimation of the pair
potential.

Marked point process models have been used as regularisation priors in image
analysis and computer vision; see Stoica et al. (2004).

For Bayesian methods to be applied to point pattern analysis the likelihood
of the point process has to be known. However, many important point processes
are defined by construction, and the likelihood is not readily available. For these
models the Bayesian methods are, at least currently, not a competitive alternative to
the frequentist approach. The inhomogeneous Poisson process and the finite Gibbs
process are two of the few exceptions. Indeed, many Bayesian applications for
point pattern analysis rely on the inhomogeneous Poisson process as the model for
observations. This model has been frequently applied, for example, in epidemiology,
most often to counts of points in small compartments or cells; see Elliott et al.
(2000) and Diggle (2003). Currently, Bayes methods in the context of point process
statistics are very topical and many new methods are being developed.
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Appendix A

Fundamentals of statistics

This appendix presents some general fundamental ideas of mathematical statistics
that are not specific to spatial point processes and may be found in many general
books on statistical theory. These are included here in order to make the book
self-contained. For more information and further details, refer to any good book on
statistics or a statistical encyclopedia.

A.1 Mean and variance
This book uses the notation of mathematical statistics, in particular its notation for
the mean (or expected value) of a random variable X, i.e. EX, which denotes the
same as �X� or X as used by physicists or engineers. Using the E-notation, the
variance is

varX = E�X − EX�2 �

and the covariance of two random variables X and Y

cov�X�Y� = E�X − EX��Y − EY� �

Statistical Analysis and Modelling of Spatial Point Patterns J. Illian, A. Penttinen, H. Stoyan and D. Stoyan
© 2008 John Wiley & Sons, Ltd
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A.2 Properties of estimators
Unbiasedness is a quality criterion that is frequently used in point process statistics
as well as in classical statistics. For instance, x and s2 as estimators of mean and
variance are unbiased. Estimators in point process statistics are often required to be
at least unbiased, i.e. to yield the true value on average. Technically, an unbiased
estimator �̂ of a parameter or characteristic � has the property that

E�̂ = �� (A.1)

A less stringent property is ratio-unbiasedness. An estimator �̂ of � is called
ratio-unbiased if � can be written as

� = �1

�2

and �̂ has the form of a quotient

�̂ = �̂1

�̂2

�

where �̂1 and �̂2 are unbiased estimators of �1 and �2, respectively. This is done with
the aim that �̂ is asymptotically unbiased, i.e. that the bias of �̂ vanishes for large
samples by the law of large numbers. These estimators often have small variances
if fluctuations of �̂1 and �̂2 cancel out.

A.3 Bias, errors and estimation variance
The bias of an estimator �̂ of the parameter � is the quantity

bias��̂� = �̂ − � �

which might also be called systematic error. Clearly, the bias of an unbiased
estimator is zero.

The mean squared error (mse) is the mean of the squared difference of the
estimator minus the true value,

mse��̂� = E��̂ − ��2 �

The estimation variance is the variance of �̂, i.e.

var��̂� = E��̂ − E�̂� �

Note that

mse��̂� = var��̂� + bias��̂�2 �
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A.4 P -value
For a statistical test, ‘the P-value is the probability, calculated under the null hypoth-
esis H0, of obtaining a test result as extreme as that observed in the sample � � � . If
this probability is regarded as small, H0 should be rejected; otherwise it should not
be rejected’ (Gibbons, 2005).

A.5 Maximum likelihood method
In ‘classical’ statistics maximum likelihood estimators are frequently used to
estimate a parameter (or vector of parameters) � in a given density function
f�x1� � � � � xn� ��. They are based on the likelihood function, i.e. the likelihood of
the data given the parameters

L�x1� � � � � xn� �� = f�x1� � � � � xn� �� �

considered as a function of �, where x1,� � � ,xn are the observations. For compu-
tational reasons the logarithm of the likelihood, i.e. the log-likelihood function
l�x1� � � � � xn� ��, is often considered instead. The parameter � is typically estimated
by numerical maximisation or by solving the likelihood equations

�

��s

l�x1� � � � � xn� �� = 0 for s = 1� 2� � � � � p� (A.2)

for � = ��1� � � � � �p� often using a numerical algorithm. An important by-product of
this approach are the asymptotic variances of the maximum likelihood estimators for
the �j , which may be obtained from the diagonal of the Hessian matrix (the matrix
of second derivatives of the log-likelihood function) evaluated for the solution
of (A.2). These may be used to calculate confidence intervals for the estimated
parameters, providing information on their precision.

A.6 Kernel estimators
Kernel estimators are commonly used in classical statistics for the estimation of
probability densities and appear in several contexts throughout this book. The
following briefly explains the fundamental idea as applied to probability density
estimation to facilitate the understanding of similar approaches in the context of
estimation of point process characteristics.

Let f�x� be an unknown p.d.f. to be estimated, given a sample x1, � � � , xn. Further,
let k�x� be another p.d.f., the kernel function, usually taken to be symmetric, i.e.

k�x� = k�−x� �
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Then

f̂ �x� = 1
n

n∑
i=1

k�x − xi�

is an estimator for f�x�. There are many possible kernel functions to choose from.
Common choices are the simple box kernel,

k�x� =
{

1
2h

for − h ≤ x ≤ h�
0 otherwise�

and the slightly more complicated Epanechnikov kernel,

k�x� =
{

3
4h

(
1 − x2

h2

)
for − h ≤ x ≤ h�

0 otherwise�

where h is the bandwidth (see below).
Note that the choice of the Epanechnikov kernel in probability density estimation

is based on certain optimisation considerations. Experience shows that the specific
choice of k�x� is not as important as the choice of the appropriate bandwidth h.
Large values of h result in smooth estimated density functions f̂ �x�, but sometimes
important local distributional details are lost. On the other hand, small values of
h result in rather ‘wiggly’ functions and the true global structure of the distribu-
tion might be obscured. Choosing h appropriately is a difficult issue, frequently
discussed in the literature. In a large study, the behaviour of the estimator with a
range of different bandwidths should be assessed.

Also note the following problem. The p.d.f. to be estimated often has the property
that

f�x� = 0 for x < a�

where a is some known constant. In particular, in many applications the data are
positive, i.e. a = 0.

If a symmetric kernel function k�x� is applied in this situation, it is not unlikely
that f̂ �x�> 0 for a−h<x<a. A viable means of ensuring that f̂ �x�= 0 for x<a,
and that the probability mass below a is not lost, is to use the so-called reflection
method:

f̂ �x� 	=
{

f̂ �x� + f̂ �a − x� for x ≥ a�
0 otherwise�

As noted, kernel estimators are frequently used in point process statistics and
throughout this book and principles similar to the above also hold. Note, however,
that the methods developed for choosing the optimal bandwidth for p.d.f. estimation
only apply in this specific context and not in most of the more general contexts
addressed in this book.



Appendix B

Geometrical characteristics
of sets

Set-geometrical ideas are frequently used throughout this book, and this
appendix provides fundamental definitions and important formulas. For more
details, refer to Stoyan et al. (1995) and Soille (1999).

B.1 Minkowski addition
For two subsets A and B of �d, the Minkowski addition is defined as

A ⊕ B = �x + y � x ∈ A and y ∈ B� �

Minkowski addition causes both a translation and enlargement of the original sets
A and B.

Consider the special case where B is a set with a single element, i.e. a singleton
�x�. Then

A ⊕ �x� = A + x = Ax = �x + y � y ∈ A� �

The set Ax is the set A translated by the vector x.

Statistical Analysis and Modelling of Spatial Point Patterns J. Illian, A. Penttinen, H. Stoyan and D. Stoyan
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B.2 Calculation of ��W ∩ Wx�
In many situations, the area (volume) of the intersection of the set W and the
translated set Wx, i.e. ��W ∩ Wx�, has to be determined. This is a standard problem
in computational geometry and is used in this book in the context of stationary esti-
mators of second-order summary characteristics. For some simple sets W , formulas
are known. For a disc of radius R,

��W ∩ Wx� = 2R2 arccos
( r

2R

)
− r

2

√
4R2 − r2 for r ≤ 2R	

and for a sphere of radius R,

��W ∩ Wx� = 4
3


R3

(
1 − 3r

4R
+ r3

16R3

)
for r ≤ 2R�

In both these cases r is the length �x� of x . For a rectangle with sides a and b,

��W ∩ Wx� = �a − �����b − ����	

where x = ��	��	 a > � and b > �, and for a rectangular parallelepiped with sides
a, b and c,

��W ∩ Wx� = �a − �����b − ����c − ���	

where x = ��	�	 � and 0 ≤ � ≤ a	 0 ≤ � ≤ b	 0 ≤  ≤ c. Of course, it is always
assumed that x is such that W ∩ Wx �= ∅.

If W has a more general shape, several efficient algorithms can be applied. Two
basic algorithms for the planar case are the following.

1. Application of the discrete version of Green’s theorem. Assume that W is
a polygon and suppose that e1, � � � , en are the edges of W indexed in
anticlockwise order. Without loss of generality assume that W lies in the
positive quadrant �x > 0	 y > 0�. Let hi be the orthogonal projection of ei

onto the x-axis. Let Ti be the quadrilateral bounded by ei and hi and two
vertical lines. Then the indicator function 1W �x� of W can be decomposed as

1W �x� =
n∑

i=1

si1Ti
�x� 	

where si is ±1. Representing both 1W and 1Wx
in this form, multiplying

these and then integrating the product, one gets a representation for the area
��W ∩ Wx� as a sum over all pairs of edges of W .
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2. Application of the Fast Fourier Transform. Consider a set W represented
by a binary pixel image. ��W ∩ Wx� can be computed by taking the Fourier
transform of the indicator function 1W �x�, evaluating the squared modulus,
and then taking the inverse Fourier transform; see Ohser and Schladitz (2007).

The library spatstat for the software package R (Baddeley and Turner,
2005, 2006) contains implementations of both algorithms. Algorithm 1 is called
overlap.owin and algorithm 2 is setcov.

B.3 Set covariance and isotropised set covariance
The isotropised set covariance �W �r� is a function assigned to the subset W of
�d, which is relevant in the context of many formulas and estimators in this book.
Consider the intersection of W and the translated set W + ru, and its area (volume),
the set covariance or geometric covariogram �W �r	u�, i.e.

�W �r	u� = ��W ∩ Wru� for r ≥ 0 	

where

Wru = W + ru with u ∈ Sd−1 	

i.e. u is a unit vector and r a non-negative number, the length of the translation
vector ru.

The isotropised set covariance is the rotation average of the set covariance
�W �r	u�, i.e.

�W �r� = 1
dbd

∫
Sd−1

�W �r	u�du 	

where Sd−1 is the �d − 1�-dimensional sphere.
For the cases of a rectangular, parallelepipedal, circular and spherical window

W formulas for �W �r� are known. For a disc of radius R,

�W �r� = 2R2 arccos
( r

2R

)
− r

2

√
4R2 − r2 for r ≤ 2R	

and for a sphere of radius R,

�W �r� = 4
3


R3

(
1 − 3r

4R
+ r3

16R3

)
for r ≤ 2R�

These two formulas coincide with those for ��W ∩ Wx�, since for both disc and
sphere �W �r	u� do not depend on u. For a rectangle with sides a and b (a ≤ b),
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�W �r� =

⎧⎪⎪⎨
⎪⎪⎩

ab − 2r



�a + b� + r2



for r ≤ a	

ab




(
2 arcsin

(a

r

)
− a

b
− 2

(
r

a
−
√

r2

a2
− 1

))
for a < r ≤ b

(see Stoyan and Stoyan, 1994, p. 123, for the case r > b). For a rectangular paral-
lelepiped with sides a, b and c (a ≤ b ≤ c),

�W �r� = abc − 1
2

�ab + ac + bc�r + 2
3


�a + b + c�r2 − 1
4


r3 for r ≤ a�

For the calculation of the full �W �r� a program is given in Ohser and Mücklich
(2000, p. 357). (Note that there M−2−PI = 2



, M−1−PI = 1



and M−PI−2 = 


2 .)

B.4 Calculation of ��W ∩ b�x� r��
The quantity ��W ∩ b�x	 r�� for x ∈ W is used in this book in the context of the
estimation of second-order summary characteristics. Its calculation is simple for
W = b�o	R�, x ∈ W and r < R. In the planar case,

��W ∩ b�x	 r�� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩


r2 for d ≤ R − r	

R2 arccos
(

R2 − r2 + d2

2dR

)
+ r2

(

 − arccos

(
R2 − r2 − d2

2dr

))

−d

√
r2 −

(
R2 − r2 − d2

2d

)2

otherwise�

In the spatial case,

��W ∩ b�x	 r�� =
⎧⎨
⎩

4
3


r3 for r ≤ R and �x� ≤ R − r	



12d
�R + r − d�2�d2 − 3�R − r�2 + 2d�R + r�� otherwise	

with d = �x�.
If W is a rectangle of sides a and b (a ≤ b), the following program shows

the calculation, where ra[0] is ��W ∩ b�x	 r��. This is elementary mathematics but
complicated because of many case distinctions.

%
double ra[2]={0.0,0.0};
void f(double d1, double d2, double r, double *ra)
{
double r2=r*r,d3,w;
if (d1<r)
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{
d3=sqrt(r2-d1*d1);
if (d3<d2)
{
w=atan(d2/d1)-atan(d3/d1);
ra[0]+=0.5*(d1*d3+r2*w);
ra[1]+=w*r;
}
else ra[0]+=0.5*d1*d2;
}
else
{
w=atan(d2/d1);
ra[0]+=0.5*r2*w;
ra[1]+=w*r;
}
}

double *rect(double a, double b, double x, double y, double r)
/* returns the vector (ra[0],ra[1])
*/
{
f(a-x,b-y,r,ra);
f(a-x,y,r,ra);
f(y,a-x,r,ra);
f(y,x,r,ra);
f(x,y,r,ra);
f(x,b-y,r,ra);
f(b-y,x,r,ra);
f(b-y,a-x,r,ra);
return ra;
}

For the case of a parallelepipedal window W formulas may be found in Baddeley
et al. (1993).

B.5 Calculation of �d−1�W ∩ �b�x� r��
The surface area of b�x	 r� in W , �d−1�W ∩ �b�x	 r��, for x ∈W is used in this book
in the context of the estimation of second-order characteristics. In particular,

w�x1	 x2� = �d−1�W ∩ �b�x	 r��
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with x = x1 and r =�x1 − x2�, see p. 229. The calculation of �d−1�W ∩ �b�x	 r�� is
again simple for W = b�o	R�, x ∈ W and r < R. In the planar case,

�1�W ∩ �b�x	 r�� =
⎧⎨
⎩

2
r for d ≤ R − r	

2r

(

 − arccos

(
R2 − r2 − d2

2dr

))
otherwise�

In the spatial case,

�1�W ∩ �b�x	 r�� =
{

4
r2 for d ≤ R − r	
2
rc otherwise	

with d = �x� and c = R2 − �r − d�2

2d
. In the planar case where W is a rectangle of

sides a and b (a ≤ b), the program above also covers the calculation of �1�W ∩
�b�x	 r��, which is denoted by ra[1]. Explicit formulas are given in Goreaud and
Pélissier (1999).

For the case of a parallelepipedal window W the formulas may be found in
Baddeley et al. (1993).

B.6 Kfin�r� for a rectangular window W
The general definition of Kfin�r� for a binomial process is

Kfin�r� = ��W ⊕ W ∩ b�o	 r���

see p. 130. The side lengths of the window are a and b, with a ≤ b. Here the radii
are r1 = a and r2 = √

a2 + b2. Then W ⊕ W̌ is the rectangle of side lengths 2a and
2b with centre at the origin o, and

Kfin�r�=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


r2 for r ≤ a	

2ac + 8r2
(


2
− arctan

(a

c

))
for a < r ≤ b	

4ab	 for a2 + b2 ≤ r2	

2bf + 2ac + 8r2

(



2
−
(

arctan
(

b

f

)
+ arctan

(a

c

)))
otherwise	

with c = √
r2 − a2 and f = √

r2 − b2.



Appendix C

Fundamentals of geostatistics

In some applications of point process statistics, random fields and the statistical
methods for these, termed geostatistics, have an important role. The corresponding
theory and applications are discussed in Cressie (1993), Chilès and Delfiner (1999)
and Wackernagel (2003). This appendix briefly covers some of the basic ideas.

A random field is a family of random variables Z�x� with x in �d. For example,
Z�x� may denote a parameter describing soil quality or altitude at location x. A
random field is a regionalised variable since a value Z�x� is associated with every
x. Note that random fields differ from marked point processes, as the marks m�x�
are only defined for points x of the processes. Sometimes a random field is written
as �Z�x��x∈�d , in order to emphasise that the random field is the totality of all Z�x�;
a simpler symbol is �Z�x��.

In many applications, the random field is assumed to be stationary (homogeneous)
and isotropic. These concepts resemble the analogous concepts as defined for
point processes: the distribution of the random field is invariant under translation
and rotation. Similarly, stationary random fields may be described with first- and
second-order moments.

The first-order moment of a random field is the mean value function m�x� given
by

EZ�x� = m�x� �

Statistical Analysis and Modelling of Spatial Point Patterns J. Illian, A. Penttinen, H. Stoyan and D. Stoyan
© 2008 John Wiley & Sons, Ltd



490 Fundamentals of Geostatistics

where E denotes the expectation operator. For a stationary random field, m�x� does
not depend on x and is denoted by m. m is estimated based on values of Z�yi� at
measurement locations yi which are independent of the random field; the estimator
of m is simply the arithmetic mean of these values.

The classical second-order characteristic considered for random fields is the
(semi-)variogram ��r�, which is defined as the mean squared difference of the field
values at x and x + r divided by 2, where r is a difference vector of length r:

��r� = 1

2
E �Z�x� − Z�x + r��2 �

Assuming stationarity, ��r� does not depend on x; and if isotropy is also assumed,
��r� depends only on the length r of r or the distance r between x and x + r.
Therefore, the simplified notation ��r� is used whenever stationarity and isotropy
are assumed, as in the following.

A variogram ��r� of a stationary random field has the properties

��0� = 0� ���� = 	2 �

where 	2 is the field variance, i.e. the variance of Z�x� (which does not depend
on x in the stationary case). Furthermore, the variogram is conditionally negative
definite, which means that it satisfies an analytical condition which is not discussed
here.

The rate of convergence of ��r� towards 	2 for r → � characterises the range
of correlation. If there is a finite r0 with ��r� = 	2 for r � r0, r0 is called the range
of correlation. Otherwise the smallest value rp with ��rp� = �1 − p�	2 is used for
some p. The specific value r0�05 is often called the practical range.

It is possible that

lim
r→0

��h� = 
2 > 0�

If this is the case, there is a ‘nugget effect’ and 
2 is called the nugget variance. The
nugget effect indicates short-range irregularities caused by very small structures or
measurement errors.

Estimating variograms based on values of the random field Z�yi� observed
at observation points yi yields so-called sample variograms or empirical vari-
ograms �̂�r�.

The geostatistical variogram estimator is

�̂�r� = 1

2nr

∑
�y�−y��=r

(
Z�y�� − Z�y��

)2
�

where the sum is extended over the nr pairs �y�� y�� of measurement points of
inter-point distance r; see Chilès and Delfiner (1999). The points of measurement yi
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have to be independent of the random field. They are either points chosen without
knowledge of the values of the field or based on points in a point process which
is independent of the random field. If the yi are not independent (e.g., they tend to
be located at places where the field has large values) the resulting estimators are
biased. In these cases even the estimation of the mean m can be difficult.

Several theoretical variogram models have been developed in geostatistics. These
models may be used to interpret the spatial variability of random fields, and are
based on variogram parameters that may be usefully interpreted. A simple example
is the exponential variogram given by

��r� = 	2 �1 − exp�−�r�� �

where � is a model parameter and 	2 the field variance.
Several approaches to the simulation of random fields have been developed.

Usually samples of Gaussian random fields are generated, i.e. random fields where
Z�x� and random vectors of the form �Z�x1��Z�x2��    �Z�xn�� are Gaussian
random variables. These simulations can be performed with the RandomFields
package (Schlather, 2001b) available for the statistical computing environment R.
Since Gaussian random fields may have negative values, often log-Gaussian fields
are used that are calculated from Gaussian fields by exponentiation, exp�Z�x��.
Conditional simulation of (Gaussian) random fields, where the observed values
Z�yi� are retained at the observation points vi, is considered by Lantuéjoul (2002).
This means simulation where the observed values Z�yi� are retained at the points
yi of observation.

One of the main aims in geostatistics is to find spatial interpolations, i.e. to predict
the value Z�x� at location x different from the measurement locations y1, y2, � � � ,
yn using the Z�yi�. The geostatistical standard method in this context is kriging,
which yields unbiased predictions based on least-squares methods.
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Notation index

Abbreviations
d.f. distribution function
i.i.d. independent and identically distributed
p.d.f. probability density function
lu length unit 6
mse mean squared error 480
ˆ ‘hat’, denotes an estimator; for example, �̂ is an esti-

mator of the parameter �.

Frequently used symbols
bd volume of unit sphere in �d

b�x� r� sphere (disc) of radius r centred at x
CE Clark–Evans index 196
d�r� p.d.f. for D�r� 207
d�x� distance from point x to its nearest neighbour 177
D�r� nearest-neighbour distance d.f. 206
Dfin�r� finite nearest-neighbour distance d.f. 126
E expectation
Eo expectation with respect to Palm distribution 178
f��m� p.d.f. for F��m� 302
fn�x1� � � � � xn� location density function 103
F��m� mark d.f. 300
g�r� pair correlation function 218
gij�r� partial pair correlation function 325
G�t� point density d.f. 29
h bandwidth 230, 482
hs�r� p.d.f. for Hs�r� 201
Hs�r� spherical contact d.f. 200
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516 Notation Index

I dispersion index 87
J�r� J -function 213
k�r� covariance function; kernel function 367, 384; 230, 481
kmm�r� mark correlation function 341
km·�r� r-mark correlation function 346
K�r� Ripley’s K-function 215
Kfin�r� finite K-function 129
Kij�r� multivariate K-function 323
Kmm�r� mark-weighted K-function 350
��B� second-order moment measure 223
L�r� L-function 216
Lij�r� multivariate L-function 325
Lmm�r� mark-weighted L-function 352
m�xn�� m�xi� mark of point xn, xi 299
mD mean distance to nearest neighbour,

= Eo�d�o�� 207
M marked point process 33, 299
Mk mingling index using k neighbours 314
N point process 23
nmm nearest-neighbour mark product index 317
n� nearest-neighbour variogram index 317
ni�r�� nx�r� number of points within distance r from xi, x 177, 182
N�A�� N�B� number of points of N in A�B 24
o origin of space �d

p��x1� � � � � xn	� p.d.f. with respect to Poisson
process distribution 148

pij�r� mark connection function 331
P probability
Po probability with respect to Palm distribution 178
r distance variable
� real line
�d d-dimensional Euclidean space
rmax range of interaction of Gibbs processes 140
r0 hard-core distance, minimum inter-point

distance
207

r1� r2� r3 distinctive points of the pair correlation function 240
Rk mean-direction index 197
W observation window
W�r � W�d�x� reduced window 186, 187
x� xi� xn points
Xr set of discs around the points of N 43
Z� Zn� Zn��� configurational partition function 148, 140, 161

 error probability; chemical activity

self-potential
54, 148, 399


�k� kth factorial moment measure 31
�W �r� isotropised set covariance 485
�̂st�r� estimator of �K�r� assuming stationarity 228



Notation Index 517

� intensity 37, 174
�i intensity of sub-point process of points

with mark i
300

�̂nn nearest-neighbour intensity estimator 194
�S mark-sum intensity 304
��x�� ��r� intensity function 28, 110, 113
��x�N� Papangelou conditional intensity function 28
 mean mark 302
�k� kth moment measure 31
��A�� ��W� area of A�W , volume of A�W ,

d-dimensional volume of A�W
��r� second-order product density in

stationary and isotropic case 33
��k� kth product density 32∑�= sum over point pairs or k-tuples of distinct

points
32

�2
 variance of marks 302

��r� pair potential of Gibbs process 140, 399
1A�x� indicator function 26

1 unit square, cube, or cube in �d

� · � norm;
�x� = distance from x to o,
�x − y� = distance from x to y

⊕ Minkowski addition 483
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