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Abstract
Spatiotemporal data mining (STDM) discovers useful patterns from the dynamic interplay 
between space and time. Several available surveys capture STDM advances and report a 
wealth of important progress in this field. However, STDM challenges and problems are 
not thoroughly discussed and presented in articles of their own. We attempt to fill this gap 
by providing a comprehensive literature survey on state-of-the-art advances in STDM. We 
describe the challenging issues and their causes and open gaps of multiple STDM direc-
tions and aspects. Specifically, we investigate the challenging issues in regards to spati-
otemporal relationships, interdisciplinarity, discretisation, and data characteristics. More-
over, we discuss the limitations in the literature and open research problems related to 
spatiotemporal data representations, modelling and visualisation, and comprehensiveness 
of approaches. We explain issues related to STDM tasks of classification, clustering, hot-
spot detection, association and pattern mining, outlier detection, visualisation, visual ana-
lytics, and computer vision tasks. We also highlight STDM issues related to multiple appli-
cations including crime and public safety, traffic and transportation, earth and environment 
monitoring, epidemiology, social media, and Internet of Things.
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1 Introduction

There has been an increase in the research of Spatiotemporal Data Mining (STDM) due to 
growing availability of geo-referenced and temporal data and also due to the complexity 
and poor performance when applying classical data mining methods (Shekhar et al. 2015; 
Wachowicz et  al. 2008). Large amounts of spatiotemporal data are being generated and 
captured through systems that record sequential observations of remote sensing, mobility, 
wearable devices, and social media. Spatiotemporal data represent different phenomena 
ranging from micro-scale of DNA and cell evolution, to global ones, e.g., climate change 
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(Yang et al. 2020). The wide-availability of user-generated data via the social media plat-
forms offers great opportunities to understand people needs, thoughts, and sentiments 
toward specific topics, products, or services (Hamdi et al. 2018). Medical sensory devices 
observe different activities at various locations of the human body over specific time 
ranges. STDM proposes new methods to handle such data through advanced predictive and 
descriptive tasks such as classification and clustering to work best with space and time ref-
erenced data. STDM methods are concerned with relationships and dependencies among 
different measurements. These relationships are complex, implicit, and dynamically chang-
ing. To a large extent, classical data mining assumes that data are independent and identi-
cally distributed (i.i.d.). On the contrast, spatiotemporal data do not follow this assump-
tion and STDM methods aim to capture the autocorrelation among different events or data 
points that are interdisciplinary in nature, i.e, data from multiple domains that may require 
the utilisation of various mining tasks.

Spatiotemporal data comprise spatial and temporal representations. They include three 
distinct types of attributes, namely, non-spatiotemporal, spatial and temporal attributes 
(Tan 2006). The non-spatiotemporal attributes represent non-contextual features of objects. 
Spatial attributes define the locations, extents, and shapes of the objects. Temporal attrib-
utes are timestamps and durations of processes denoting spatial object (vector) or field 
(raster layers). For example, air pollution spatiotemporal data have non-spatiotemporal 
attributes such as air pollution levels or station names, spatial coordinates of the location 
where the measurements are taken and temporal timestamps associated with the collected 
measurements. Spatiotemporal data types can also be categorised based on their collection 
nature to discrete or continuous observations. Events and data trajectories are examples of 
spatiotemporal discrete data types, while continuous data types include point reference and 
raster data. Spatiotemporal event data constitute discrete events that happen at geo-loca-
tions and times such as traffic accidents and crime incidents. Figure 1a denotes spatiotem-
poral events of three different types. Each type is presented in different colour and shape, 

Fig. 1  Spatiotemporal data types. a spatiotemporal events of different types at different locations and times-
tamps. b spatiotemporal trajectories between locations ( l

1
 and l

n
 ) at time ( t

1
 and t

2
 ). (c and d) spatiotemporal 

point reference data at different locations at timestamps ( t
1
 and t

2
 ). (e and f) spatiotemporal raster data of 

regular grid at time ( t
1
 and t

2
)
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e.g., red circles are for events of one type and each event is annotated with the its loca-
tion and time (location l

1
 in time t

1
 ). Trajectory data contain sequences of spatiotemporal 

instances that trace motions of objects in geographical spaces overtimes. Trajectories are 
usually represented by a series of chronologically ordered points which consist of spatial 
coordinates and timestamps Zheng (2015). For instance, a vehicle trajectory between two 
locations is a set of consecutive points of space and time. Figure 1b illustrates trajectories 
of three coloured objects between locations ( l

1
 and l

n
 ) at times ( t

1
 and t

2
 ). Point reference 

data measure continuous spatiotemporal fields at moving spatiotemporal reference sites. 
For example, spatiotemporal point references can be utilised to measure surface tempera-
ture using moving balloons. Figure 1c and d show spatiotemporal point reference data at 
different locations (black squares) at timestamps ( t

1
 and t

2
 ). Raster data represent measure-

ments of spatiotemporal fields at fixed cells in grids such as activities in fMRI brain scans. 
Figure 1e and f show spatiotemporal raster data of regular grid at time ( t

1
 and t

2
 ). These 

different types of spatiotemporal data are associated with different research challenges 
Atluri et al. (2018). Classical data mining approaches are not designed to handle such data.

This paper consolidates the current state of the challenges associated with the STDM 
tasks and applications. There have been several survey articles that reviewed work related 
to STDM, each of which discussed the literature from different perspectives such as spa-
tial databases Koperski et al. (1996), spatial patterns Shekhar et al. (2003), spatiotempo-
ral cluster analysis Kisilevich et al. (2009), urban concepts and applications Zheng et al. 
(2014), big data analytics Yang et al. (2019a), big climate data analytics Hu et al. (2018), 
and outliers detection Aggarwal (2017); Meng et al. (2018). Atluri et al. (2018) surveyed 
STDM methods and techniques according to main spatiotemporal problems of cluster-
ing, predictive learning, change detection, frequent pattern mining, anomaly detection, 
and relationship mining. Pei et al. (2020) reviewed the big geo-data mining objectives and 
issues in terms of human behaviour and distributions of geographical patterns. The sur-
vey by Shekhar et  al. (2015) divided prior surveys in the literature into two types; arti-
cles with statistical foundations Ester et al. (1997); Koperski et al. (1996); Miller and Han 
(2009), and others without that Aggarwal (2017); Kisilevich et al. (2009); Shekhar et al. 
(2003). Wang et al. (2020a) surveyed the utilised deep learning methods in STDM based 
on the data types, tasks and deep learning models. The authors also presented the utilisa-
tion of deep learning methods in various applications. Zheng et  al. (2014) surveyed the 
concepts and applications of urban computing and discussed their computing challenges. 
The work in Shi and Yeung (2018) presented a review of machine learning methods for 
STDM sequence forecasting related problem. They focused on moving point cloud, regular 
grid, and irregular grids. Due to the fast pace of advances in STDM, there is a continuous 
need for up-to-date surveys. Moreover, to the best of our knowledge, STDM challenges and 
problems are not thoroughly discussed and presented in articles of their own. Specifically, 
none of these existing researches paid their focus on the general challenging issues in terms 
of relationships, data, natures and limitations of STDM research or the challenges related 
STDM tasks and applications. Our survey attempts to fill this gap providing a comprehen-
sive literature survey on state-of-the-art advances in STDM. Unlike existing survey papers, 
we review previous works and describe STDM challenges and their causes as well as issues 
related to selected applications and tasks.

Figure  2 shows a taxonomy of the proposed structure for reviewing the STDM chal-
lenges. The taxonomy highlights the survey main sections and their sub-sections. The sur-
vey is designed to cover the STDM related challenges from three different perspectives. We 
start the survey by defining the general challenging issues in terms of relationships, data, 
natures and limitations of research. Then, we discuss the STDM tasks and applications 
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focusing on their related challenges. Finally, we conclude the survey with a mapping table 
and a discussion to connect the general challenges with the tasks and applications sections.

The rest of the paper is organised as follows. The research methodology on how we 
conducted this survey is presented in Sect. 2. Section 3 discusses general STDM challenges 
and their causes. Section  4 covers STDM tasks and their related challenges. Section  5 
introduces STDM applications and related challenges in them. Section 6 summarises the 
survey and the integration between the general challenges and STDM related tasks and 
applications . Section 7 highlights key conclusions and directions for future work.

2  Survey methodology

We designed our survey to focus on STDM challenges and research problems, as shown 
in Fig.  2. We built a comprehensive set of STDM challenges, as shown in Fig.  6. This 
list of challenges is accompanied with their root causes. We started extracting these chal-
lenges and causes from existing STDM surveys in addition to our knowledge in the area. 

Fig. 2  A taxonomy of the proposed STDM challenges structure. The survey is designed to cover the STDM 
related challenges from three different perspectives. We propose to investigate the general challenges that 
affect the STDM in terms of relationships, data, natures and limitations of research. Then, we discuss the 
STDM tasks and applications focusing on their related challenges
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We then extended the challenges set in terms of STDM tasks and applications. For exam-
ple, an STDM previous survey may list several challenges that are relevant to its scope, 
e.g., STDM visualisation. We add these challenges to our survey by extending their defini-
tions and searching for their related work. The most frequent search keywords are visual-
ised in a word cloud in Fig. 3. We included 342 STDM related work in our survey. These 
citations are from different publication types, including journal articles, conference pro-
ceedings, books, book chapters, and theses. Figure 4 compares between the different ranks 
and quartiles of the indexed journal articles and conference proceedings. It shows that Q1 
journals are the most cited with 48 percent, followed by A* ranked conferences with 29 
percent. The ranks and quartiles are calculated at the Scimago Institutions Rankings (SJR)1 
and Computing Research & Education (CORE)2 in December 2020. We focused the search 
process on high ranked journals such as: IEEE Transactions on Big Data, ACM Trans-
actions on Intelligent Systems and Technology, Cartography and Geographic Information 
Science, IEEE Transactions on Knowledge and Data Engineering, Neurocomputing, and 

Fig. 3  A word-cloud visualisation of the most frequent used search keywords

Fig. 4  Related work distributions 
for journal articles and confer-
ence proceedings

1 https:// www. scima gojr. com/.
2 http:// portal. core. edu. au/ conf- ranks/.

https://www.scimagojr.com/
http://portal.core.edu.au/conf-ranks/
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Transactions in GIS. We also covered a set of highly influential conferences such as ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE 
International Conference on Data Engineering (ICDE), IEEE Visualization Conference, 
AAAI Conference on Artificial Intelligence, International Joint Conference on Artificial 
Intelligence (IJCAI), and international conference on Ubiquitous computing. The majority 
of the cited papers, 85 percent, are published in the last 10 years. Figure 5 shows the distri-
butions for the citation of each year between 2011 and 2020.

3  General STDM challenges and research gaps

There are various factors causing difficulties in STDM. We identify and list them as 
follows: 

1. Spatiotemporal objects relationships that are complex and implicit.
2. STDM requires interdisciplinary effort and integration of various heterogeneous datasets 

and multiple data mining algorithms.
3. Spatiotemporal region discretisation problem caused by the scale and the zoning effects 

on the data mining results.
4. Data characteristics such as heterogeneity and dynamicity.
5. Further Efforts Needed in STDM for data representations, advanced modelling, visu-

alisation, and comprehensiveness.

Figure 6 presents these general challenges using a cause-and-effect diagram while citing 
related literature that explains further the used terminologies. In the next subsections, each 
of these challenges is discussed.

3.1  Spatiotemporal relationships

Spatiotemporal objects that exist in one area or during the same time and share similar 
characteristics are often related. Finding relationships between objects is helpful in dif-
ferent tasks such as spatiotemporal hotspot prediction Almanie et  al. (2015). However, 

Fig. 5  Related work distributions 
for years from 2011 to 2020
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discovering valuable relationships from spatiotemporal data is more challenging compared 
to traditional numerical and categorical data because of the complex data characteristics. 
The next sub-sections describe three of these characteristics of spatiotemporal relation-
ships, namely; complexity, implicitness, and non-identical distributions.

3.1.1  Complexity

The complexity of spatiotemporal relationships poses difficulty to extracting spatiotempo-
ral patterns Shekhar et al. (2015); Shen et al. (2019). Rao et al. (2012) stated that this com-
plexity stems from the fact that spatiotemporal data are discrete representations of what 
are, in reality, continuous in space and time. For example, traffic sensing devices that are 
fixed in roads capture data of moving vehicles in certain locations while these vehicles 
are continuously moving. Moreover, co-located spatiotemporal objects influence each other 
and hinder the detection of relationships. In other words, the pattern of a moving object 
might be affected by nearby objects such as a car’s direction, speed and acceleration are 
influenced by other cars around it.

3.1.2  Implicitness

Non-spatiotemporal data have explicit relationships represented through arithmetic rela-
tions, such as ordering, instance-of, subclass-of, and member-of. On the contrary, relation-
ships between spatiotemporal objects are implicit Shekhar et al. (2003). Spatial relation-
ships are built based on qualities or feature such as distance, volume, size and time. These 
relationships can occur among points, lines, regions or a mixture of them. For instance, 
Fig. 7 shows that topological relationships between two regions, include, disjoint, overlap, 
contains, covers, meet, equal, inside and covered-by Egenhofer et al. (1994). A spatiotem-
poral point can co-locate with another point. A line in a spatiotemporal environment can 
intersect, overlap, touch or be within another line or spatiotemporal area. For example, in 
the case of migrant birds, flying birds can be described as a complex network of multiple 
spatiotemporal lines. The work in La Sorte et al. (2016) analysed a daily temporal resolu-
tion for migration trajectories of 118 migratory bird species from 2002 to 2014. In order to 
address this issue, the spatiotemporal relationships can be transformed into traditional rela-
tionships mined using classical data mining methods. However, this process causes infor-
mation losses which inevitably preclude detecting subtle relationships. For example, in the 
case of traffic monitoring, using distributed sensing systems capture micro-scale sensing 
data for the whole sensed area; while using fixed traffic sensors can only collect transaction 
data for anonymous moving objects’ speed, direction and acceleration. The former repre-
sents the actual, but implicit, movement patterns. The latter aggregates the sensing data. 
This data aggregations leads to loss of data about tracking the relationships between them.

Fig. 7  Examples of topological relationships between two areas
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3.1.3  Non‑independent and non‑identical distribution

Spatiotemporal data objects have positive autocorrelation or dependency. Nearby things 
in space and time tend to be related and more similar than distant things. In moving 
cars, for example, there are many dependent variables such as location, direction, con-
nectivity and temporal attributes Miller and Han (2009). For instance, if there is heavy 
traffic in an intersection at 4 pm, the chances are that there will be some traffic at 4.01 
pm as well. Moreover, opportunity contributes more to the probability that a spatiotem-
poral pattern to occur Albertetti (2015). For example, crime often occurs when a crimi-
nal and a victim are found in the same location and time. This is an autocorrelation as 
opposed to classical data that are independent and identically distributed. The autocor-
relation between spatiotemporal objects degrades the performance of data mining algo-
rithms Chawla et al. (2001). Additionally, measuring the spatiotemporal autocorrelation 
in large datasets is computationally expensive.

Identifying spatiotemporal distribution characteristics is useful for patterns discov-
ery. It is also important for detecting regularly repeating relationships between spati-
otemporal objects Li et al. (2016). Spatiotemporal distribution was discussed in various 
studies in different domains such as phenology, geology, ecotoxicology, and criminol-
ogy. Such studies reported that spatiotemporal data tend to have a non-identical distri-
bution across space (spatial heterogeneity) and over time (temporal non-stationarity). A 
spatiotemporal dataset may have geographical regions and temporal periods with distin-
guishable distributions Ratcliffe (2002). For example, drivers’ behaviours are varying 
concerning location and time. Driving seems to be safer in quiet areas and night hours. 
While it is expected to be dangerous in crowded areas, especially during rush hours. 
Moreover, spatiotemporal data has skewed distribution in different locations of a city, 
e.g., a city downtown may have high-volume data than the other suburbs. This issue can 
affect the performance of STDM tasks.

3.2  Interdisciplinary and combined data mining

STDM requires interdisciplinary efforts and ever-expanding knowledge from different 
domains. For instance, spatiotemporal crime data analysis requires large-scale macro data-
sets analysis for socio-economy, socio-psychology, culture and demography Feng et  al. 
(2016), and micro-environmental datasets such as interurban structure, distance, density 
clusters and tactics to crimes Ho et al. (2018). Other factors also have been investigated, 
such as globalisation and social and demographic change.

Figure 8 shows data sources from different domains need to be combined with crime 
datasets. This combination enables analyses of crime patterns and criminal behaviors. 
Dealing with a variety of data from different domains requires integrating multiple data 
mining techniques such as classification, regression, clustering, and association rules dis-
covery. Using multiple heterogeneous datasets or utilising multiple data mining algorithms 
is known as combined mining (Albertetti 2015). Shaban et al. (2016); Zheng et al. (2015) 
proposed hybrid predictive models for air quality prediction combining different predictors, 
e.g., spatial, temporal, and inflection predictors. Zheng et al. (2015) considers the sudden 
change in climate as an inflecting predictor. This interdisciplinary nature is a challenging 
issue that contributes to the complexity of STDM. For example, bird migrations are inter-
related to climate, e.g., temperature, humidity and wind; which affects the forest areas and 
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water quantities; which may be removed and replaced by urbanisation caused by economic 
development.

3.3  Spatiotemporal region discretization

Before analysing spatiotemporal datasets, spatiotemporal discretisation (or aggregation) is 
applied. The discretisation is useful to summarise information and help in extracting fea-
tures within a range rather than measuring a single point Giannotti and Pedreschi (2008). 
For example, the crime rate cannot be measured for a single spatial point but requires the 
aggregation of the crimes occurred in wide areal units. Spatiotemporal patterns are scale-
dependent. They shape variant clusters at different scales. For example, the crime patterns 
and rates are affected by the discretisation scale. Spatiotemporal data can be aggregated at 
different levels or areal units. It is not always easy to define the best level to apply the spa-
tiotemporal region discretisation as the results vary according to the different areal units. 
This is defined by Openshaw (1983) as Modifiable Areal Unit Problem (MAUP). Accord-
ing to Stewart Fotheringham and Rogerson (1993), MAUP includes the scale effect and 
the zoning effect. The scale effect would reflect the different statistical measures if the data 
were aggregated to different scales of areal units. The zoning effect considers the change 
in the borders of different areal units and their effects on the results. Figure  9 presents 
the MAUP scaling between a or b and c, and zoning between a and b. Another efficient 
method is to discretise the region through a regular grid with small size cells Giannotti 
et  al. (2007). The small size is relevant to the region, i.e., the cell size could be a frac-
tion of that region. In Giannotti et al. (2007), each trajectory is used to compute the cell 
densities. They calculate how many cell points intersect other neighbourhood points in the 
trajectory. There are many previous works in the literature that studied the effects of spa-
tiotemporal discretization on different applications such as remote sensing (de Sherbinin 

Fig. 8  Different sources of data 
needed for crime analysis
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2017), physical geography (Linke et al. 2017), traffic safety (Jang et al. 2017), economy 
(Khoirunurrofik 2017), health (Rigby et al. 2017), crime (Flaxman et al. 2019), and ecol-
ogy (Shafran-Nathan et al. 2017).

3.4  Data characteristics

STDM uses spatial, temporal and non-spatiotemporal or thematic data at different levels 
of granularity Albertetti (2015). This fact introduces various challenging data characteris-
tics including specificity, vagueness, dynamicity, social, networking, heterogeneity, privacy 
and poor quality. These characteristics are explained in the following subsections.

3.4.1  Specificity

Spatiotemporal data when is used to build a good model for a particular application domain 
may not be useful in another one. For instance, a model that is built for the bird migrations 
neither be useful for vehicles movements in a city nor molecular movement in a micro-
scopic level. This challenge is also applicable to different geographical areas having differ-
ent nature and characteristics. Therefore, spatiotemporal models cannot be generalised as 
they are designed specifically for certain domains Phillips and Lee (2012).

3.4.2  Vagueness

Spatiotemporal data objects or events have similarities that are important in different 
STDM tasks such as clustering. However, these similarities have different interpretations 
stem from different criteria. Two similar events may belong to different classes or be trig-
gered by different patterns. Figure 10 shows an example where trajectories 2 and 3 are sim-
ilar from the spatial perspective, but after adding some semantic information, they become 
dissimilar. Because trajectory 2 departs from a train station while trajectory 3 departs 
from a company. In contrast, trajectory 1 and 2 appear dissimilar in terms of their spatial 
attributes while both of them start, pass by and end at the same location. This vagueness 
increases the analysis difficulty and adds further modelling and processing complexity in 
multiple STDM tasks such as classification, clustering and pattern extraction Shekhar et al. 
(2015). Therefore, there is an increasing need for more research efforts in STDM semantic 
annotation and enrichment.

Fig. 9  Spatial scaling between a or b and c and zoning between a and b. The figure shows the impact of 
having different scales and zones on the analysis results



1452 A. Hamdi et al.

1 3

3.4.3  Dynamicity

Spatiotemporal data require dynamical models to capture the evolution of their distribu-
tions or densities. Figure  11a, b and c represent three different time-stamps of moving 
objects. As can be seen, the distribution of spatiotemporal moving objects is changing over 
time. This dynamic evolution of the densities can be found in different applications. Arino 
(2017) described the dynamics of diseases in populations, Toole et  al. (2011) discussed 
the spatiotemporal dynamics of criminal events, and Kang et al. (2011) raised the need to 
study the spatiotemporal dynamics in the case of brain transcriptome to better understand 
the neurodevelopment in order to predict brain disorders.

3.4.4  Social

Spatiotemporal social datasets describe societies and people daily lives in different places 
and eras. Social media platforms contain big data related to human behaviour, traditions 
and people lifestyles. The social data such as text posts or tweets, images and videos are 
correlated with the socioeconomic characteristics. Besides, the growth of sensor technolo-
gies produces large spatiotemporal data such as check-in and geo-temporal tags. Therefore, 
spatiotemporal social datasets can be utilised to recognise spatiotemporal patterns in social 
media data or to predict social trends. Such data can also be used to discover the causes 

Fig. 10  Vagueness due to data similarities stem from different criteria. Trajectory 2 and 3 have similar spa-
tial attributes. However, they are semantically different

Fig. 11  Dynamic changing of the spatiotemporal distribution of moving objects
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behind new social phenomena. The spatiotemporal analysis of social data is an evolving 
area. It has different tasks such as density estimation Xu et  al. (2012), collaborative fil-
tering for recommender systems Qi et al. (2020); Li et al. (2011) and sentiment analysis 
Shah et al. (2019). However, recent studies have shown that such models may have bias-
ness and discrimination against different races and genders. Spatiotemporal datasets tend to 
have bias that affects these models. Buolamwini and Gebru (2018) evaluated bias present 
in automated facial analysis systems and datasets. They found that the analysed datasets 
are biased toward lighter-skinned subjects. Specifically, they categorised the gender and 
skin type of two facial benchmarks, namely Adience and IJB-A, according to their skin-
type classification with representations of 86.2% and 79.6% respectivly. They also showed 
that darker-skinned women are most mis-classified class with 34.7% error rate. There is a 
need to capture balanced datasets that lead to unbiased systems. Bias was also investigated 
in employee assessment and hiring algorithms. The work in Raghavan et al. (2020) stud-
ied bias in hiring systems. Specifically, they considered bias in data collection and target 
predictions processes. The study in Gebru et al. (2018) proposed datasheets for datasets. 
These datasheets are designed to avoid bias in data collection and usages.

3.4.5  Networked

Spatiotemporal data may be captured from moving objects or devices that are connected in 
space and time, such as GPS-tagged fleet of vehicles or animals. They form different types 
of networks such as in transportation (Zhou et al. 2017; Han et al. 2015), cellular (Krishnan 
and Dhillon 2017), wireless sensors (Alipio et  al. 2017), and smart cities (Gunturi and 
Shekhar 2017). Matching the raw trajectory data with road networks makes it easier to 
mine the trajectory patterns. In such a case, the trajectory mining problem is done sequen-
tially of the sequences the road network edges and stops. However, dealing with networked 
trajectory data is difficult due to the influence between the data points and trajectories in 
the network, in addition to the enormous volume of data and the exponential number of 
expected relationships.

When raw trajectory data, e.g., GPS readings, are matched to the road network, dealing 
with the resulting data is not always difficult. In the literature, such representation is con-
sidered as 1.5-dimensional and finding patterns and clustering this data is more straight-
forward in some contexts. For example, the problem of trajectory pattern mining could be 
reduced to the problem of sequential string pattern mining of the sequences of edge ids of 
the streets.

3.4.6  Heterogeneity and non‑stationary

Any environment is often affected by continuous change through space and time. Spati-
otemporal data show variation in measurements and relationships due to the influences 
of this continuous change. For example, trajectories and behaviour of road users of a city 
can vary over space and time. Hence, trajectories vary for cold days compared to sunny 
days. This variation is known as spatial heterogeneity and temporal non-stationarity (Shek-
har et al. 2015). Thus, most of the spatiotemporal data tend to have an intrinsic degree of 
uniqueness that may cause inconsistencies between a global model and regional models. 
Consequently, this heterogeneity requires building different mining models for varying spa-
tiotemporal regions. Otherwise, a global model built from a spatiotemporal dataset may 
not describe well the observed data for a specific space and particular time (Miller and 
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Han 2009). Therefore, finding the best parameters to build local models is a crucial chal-
lenge. The heterogeneity is a challenging issue that must be considered when analysing 
spatiotemporal data in many application domains – for instance, heterogeneity of socioeco-
nomic observations across regions throughout social network analysis (Yu and Liu 2017).

3.4.7  Limited access and privacy

Mining spatiotemporal data is often restricted by limited access due to privacy issues. Spa-
tiotemporal datasets may contain information about public behaviours and norms. Service 
providers can mine these personal data and discover patterns and trends Giannotti and 
Pedreschi (2008); Lakhdari and Bouguettaya (2020), which may reveal sensitive informa-
tion. For example, spatiotemporal trajectories include important data about people move-
ments, vehicles and mobile calls. Therefore, there is a concern with the side effects of 
STDM on privacy. The research on privacy-preserving STDM focuses on individuals’ and 
personal data privacy and corporate privacy for governments and organisations. There are 
different approaches to protect the privacy of the data, such as suppression of the identities 
of individuals, perturbation through adding noise or randomising the original data, data 
sanitisation, i.e., adding fake records. These methods aim to swap, modify or delete some 
aspect to protect the data Lin (2020); Lin et al. (2016). In this regard, researchers face a 
double-edged issue, i.e., to protect privacy vs. achieving accurate analysis.

3.4.8  Poor quality

The quality of spatiotemporal data directly affects the results of the analyses. Consequently, 
it is important to ensure high-quality data before analysing it. This data quality assurance 
may not be easy to achieve when utilising interdisciplinary data that may be fragmented 
and distorted in disordered environments. Causes of such poor quality are uncertainties, 
partial knowledge, and conjectures Albertetti (2015). For example, STDM on bird migra-
tions, at all times and for all locations, requires climate, water, forests data that are uncer-
tain, sparse and reflect non-measurable aspects. Monitoring the physical world is affected 
by errors and noise that may be caused by faulty or obstructed sensors Zhang et al. (2010). 
These errors and noise are to be corrected in order not to affect the STDM tasks Tan et al. 
(2006).

3.4.9  Big data and cloud computing

Spatiotemporal data always exist in large volumes. These large volumes are being gen-
erated by 3.8 billion people and 8.06 billion devices which are connected to the Internet 
Khan et al. (2018). Villars et al. (2011) reported 1ZB of data was created in 2010 and rose 
to 7ZB in 2014. This fast generation of large spatiotemporal data creates various challenges 
to overcome including volume, variety, and velocity. Spatiotemporal big data volume 
refers to the huge size that causes significant challenges in terms of storage and processing 
Elgendy and Elragal (2014). The data volume is growing faster than the computational pro-
cessing systems Chen and Zhang (2014). In terms of velocity, spatiotemporal data in most 
applications are continuous streams of data. As such, they require expensive computational 
cost for processing Salehian and Yan (2016). These challenging characteristics of big data 
cause multiple issues to various STDM and applications. Shao et  al. (2016) tackled the 
issue of clustering big spatiotemporal interval data, e.g., large parking data. They evaluated 
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spatiotemporal-intervals clusters based on the similarity and balance between them. Raha-
man et al. (2018) tackled the heterogeneity issue at a large number of contextual features. 
They proposed a model for predicting taxi-driver wait-time at airports. Shao et al. (2019) 
utilised a big GPS data of aircraft at the airport. They proposed a framework to cluster the 
aircraft trajectories incrementally based on such data. Ren et al. (2018) developed a loca-
tion query browse method utilising a large WiFi data of indoor physical and web activities. 
Such large and varied data have a spatiotemporal dependency and contextual influence on 
people’s information and physical behaviour.

Cloud computing has emerged to provide support to STDM to tackle different chal-
lenges in data management, storage, processing, analytics, and visualisation. Cloud com-
puting offers large amounts of resources that enable fast, and accurate STDM. STDM com-
putational problems are solved using new cloud technologies such as Hadoop, MapReduce, 
and Spark, on distributed storage systems. However, distributed frameworks suffer from 
many limitations in terms of data sharing, processing scalability, and interactive perfor-
mance Li et al. (2020). Besides, existing cloud solutions have limited support to the visu-
alisation of the GIS big data Wang et al. (2018a). Specifically, conventional cloud comput-
ing techniques are not designed to handle the spatiotemporal data. Therefore, spacial cloud 
computing techniques have recently been proposed to leverage a layer of data-as-a-service 
(DaaS) to virtualise the spatiotemporal data Yang et al. (2011). The advancements of the 
GIS harnessed the wide availability of the cloud-based spatiotemporal services Qingquan 
and Deren (2014). Spatiotemporal data storage and parallel processing are widely provided 
by open-source cloud systems Yao et  al. (2018). Other technologies such as Esri Geo-
spatial Cloud and Google Earth Engine are also providing significant Earth observations 
spatiotemporal data. Overall, spatial cloud computing aims to solve spatiotemporal issues 
related to storage and processing. It also tends to offer better spatiotemporal data utilisation 
through the “as-a-service” paradigm. However, there is a difficulty in representing physi-
cal spatiotemporal phenomena that are continuous via the classical discrete based cloud 
approaches. This issue stems from the heterogeneity, dynamic scalability, and complex dis-
tributions of the spatiotemporal data.

The issues of big data and cloud computing are discussed in different surveys in the 
literature such as big spatiotemporal data analytics Yang et al. (2019a), social media big 
data analytics (Ghani et al. 2019), deep learning for big data (Zhang et al. 2018), and big 
environment data (Sun and Scanlon 2019).

3.5  Open problems in STDM research

There exists a wealth of research in data mining, most of which, however, focus on extract-
ing knowledge from non-spatiotemporal data. Applying classical data mining techniques 
on spatiotemporal data often produces poor results Shekhar et al. (2015); Wachowicz et al. 
(2008). Classical data mining focuses on groups of items that satisfy some rules, e.g., if 
events are happening together. STDM often analyses events ordered by one or more dimen-
sions and focuses on the discovery of relationships between these ordered events, which 
adds more complexity to the spatiotemporal analysis. STDM deserves further research 
efforts to address the identified challenges and to improve the analysis methods and tools. 
In particular, STDM requires efforts to develop advanced data representations, modelling, 
visualisation, comprehensive STDM approaches, and Fairness, Accountability, Transpar-
ency, and Ethics (FATE).
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3.5.1  Data representations

Spatiotemporal data representation is an open research problem Thakkar et  al. (2016). 
There are multiple well-established spatial methods for both object-based and field-based 
data representation, including vector, raster data structures, spatial joins and indexing, and 
topological operators. These spatial data representation methods are supported in most of 
existing Geographical Information Systems (GIS) and spatial database systems. Their focus 
has been on the evolution of objects and fields over time in regards to discrete changes 
in object evolution and movement. However, this is not enough to cover spatiotemporal 
events and relationships Santos et al. (2016). The need for new methods to represent the 
spatiotemporal events and relationships is important due to its impact on STDM modelling 
Dunkel et al. (2019). Recent advances in deep learning have introduced spatially-structured 
networks such as graph convolutional networks Hamdi et al. (2020a) and recurrent neural 
networks Rahaman et al. (2020).

3.5.2  Advanced modelling

One important research direction in STDM is to develop new techniques for modelling the 
spatiotemporal data. For instance, noticeably, most existing hotspot detection methods pro-
duce poor results when they depend only on high-density locations while ignoring the tem-
porally related attributes, e.g., occurrence date and time, of the clustered objects. Neglect-
ing the temporal aspects when analysing and building models from spatiotemporal data 
and focusing only on spatial attributes leads to unfavourable outcomes. Despite the large 
volume of work in GIS, there is a little support of temporal data mining in popular GIS 
Roth et al. (2013). The temporal pattern discovery remains an under-explored area Nguyen 
et  al. (2017). Spatiotemporal pattern extraction methods are not able to accurately pre-
dict a pattern that may happen in a specific time because of disregarding the location and 
time-stamp together Almanie et al. (2015). Fusco et al. (2016) proposed a hybrid model 
combining a Bayesian network and a neural network to predict car speeds. The spatial and 
temporal correlation among the traffic variables led to better results. Moreover, the the-
matic attributes are important to discover hidden knowledge in the spatiotemporal data. Du 
et al. (2016) improved accuracy of visual clustering by considering both the temporal and 
thematic information with spatial information in their spatiotemporal data. Besides, mod-
elling real-time spatiotemporal data is challenging when they are sporadically observed. 
This issue means that the spatiotemporal sampling is irregular such as in clinical patient 
time-series data. The work in De Brouwer et al. (2019) proposed a continuous-time Gated 
Recurrent Unit based on the Neural Ordinary Differential Equations Chen et al.(2018) and 
a Bayesian update network. The proposed methodology encodes the continuity and dynam-
ics of the sporadic multidimensional observations. Capturing both global and local patterns 
is an essential objective of STDM modelling. DeepGLO Sen et al. (2019) is proposed as 
a deep forecasting method to think globally and act locally. It combines a global matrix 
factorisation with local temporal features. Also, temporal information is useful in flow-esti-
mation for applications such as video restoration. Existing methods mostly fails to capture 
long-range temporal features. Establishing spatiotemporal dependencies is challenging as 
well. Spatiotemporal Transformer Network process multiple frames at once to solve the 
occlusion issues in estimating the optical flow Kim et al. (2018). Generative Adversarial 
Networks (GAN) have also utilised for spatiotemporal modelling, simulation and data 
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generation (Gao et al. 2020). GANs are used to process different data types such as tra-
jectories (Liu et al. 2020; Wang et al. 2020b), events (Li et al. 2019; Yu et al. 2020), time 
series (Zhao et al. 2020; Golany et al. 2020) and spatiotemporal graphs (Gao et al. 2019).

3.5.3  Visualisation

Visualisations in data analysis are important for the decision-making as they visually sum-
marise and present results in digestible and easy to understand forms. Thus, it is useful 
to develop new approaches tailored to visualising the dynamic spatiotemporal data and 
the analyses results. GIS applications and current research work still focus on developing 
techniques for spatial visualisation, while less consideration is given to spatiotemporal (Ye 
et al. 2012). This gap requires more efforts to develop effective methods that can produce 
realistic, smoothing and dynamic visualisation. Recently, online news sources have pro-
duced large amounts of text data. One major issue in such data is visualising spatio-textual, 
and spatiotemporal online news trends (Kastner and Samet 2020). STDM methods can also 
be employed to visualise 3D active motions. The work in (Sakaue and Sato 2020) proposed 
to project high-frequency patterns on moving objects to visualise their 3D motion. Inspired 
by the human visual system, their method integrates light rays over time. Besides, spati-
otemporal visualisation methods are essential to observe and analyse urban activities and 
behaviours. The authors in (Rizwan et al. 2020) visualised the spatiotemporal and direc-
tional trends in urban activities. They examined both city and district levels using location-
based social data. The work in (Salcedo-Gonzalez et  al. 2020) Spatiotemporal geo-visu-
alisation method for dynamic data of the criminal activity. Data-driven approaches have 
recently been developed to estimate and visualise deficiencies in medical resources during 
the COVID-19 pandemic (Sha et al. 2020).

3.5.4  Comprehensive approaches

The nature of STDM necessitates the development of comprehensive and integrated spati-
otemporal models. For example, to detect spatiotemporal crime hotspots, some other spati-
otemporal tasks may be needed, such as clustering and outliers detection. Existing STDM 
approaches often focus on certain problems, and they do not introduce comprehensive spa-
tiotemporal solutions (Ndehedehe et al. 2016). Future work in STDM ought to consider the 
interplay among different data types and various domains.

3.5.5  Fairness, accountability, transparency, and ethics (FATE)

The attention around societal concerns of fairness, accountability, transparency, and ethics 
in machine learning and data mining has seen a noticeable increase recently. These con-
cerns include amplifying genders, denying people services, and racial biases Dudík et al. 
(2020). Web search engines results might be biased or offensive when, for example, they 
contain misbeliefs or posting undesirable behaviours Olteanu et al. (2020). Retrieving the 
right information that are considered fair in both spatial and temporal dimensions is not 
an easy task as what is considered an offensive to a specific group may change over loca-
tion and time. Buolamwini and Gebru (2018) evaluated bias present in automated facial 
analysis systems and datasets. They found that the analysed datasets are biased toward 
lighter-skinned subjects. The work in Raghavan et  al. (2020) reported that bias exists in 
employee-hiring systems. The work in Blodgett et  al. (2020) studied bias in Natural 



1458 A. Hamdi et al.

1 3

Language Processing systems, and found that existing methods are inferior when it comes 
to mitigating bias. People with disabilities (PWD) such as hearing impairments are directly 
impacted by automated systems like speech recognition systems. Guo et al. (2019) states 
that such systems “may not work properly for PWD, or worse, may actively discriminate 
against them.” Microsoft has released Fairlearn3 Bird et al. (2020), a toolkit to help data 
scientists and developers mitigate fairness-related issues. Later in this paper, we discuss 
different FATE related studies in multiple sections such as in STDM predictive modelling, 
public safety, mobility, environment, and Smart IoT applications.

4  STDM task‑related challenges

STDM has different tasks, such as prediction, clustering, hotspot detection, pattern discov-
ery, outlier analysis, visualisation, and visual analytics. These tasks are important in differ-
ent applications such as understanding the behaviour of moving objects like people, birds, 
animals and vehicles Huang et al. (2008). The next sub-sections explain the challenging 
issues related to these STDM tasks.

4.1  Spatiotemporal prediction

Data mining predictive models aim to predict target variables based on learning from anno-
tated features of observations. These models can be either classification models or regres-
sion models. Classification models are for categorical or discrete targets, and regression 
models are for continuous targets. In STDM, the prediction task formulations are based on 
the input and output of spatiotemporal data representations. For examples, predicting an 
output variable, continuous or categorical, using time series at different locations in raster 
Jia et al. (2017), predicting a scalar output using the complete information in raster data 
Yu et  al. (2015), or predicting spatiotemporal responses using observations collected at 
other time-stamps in spatial neighbourhoods Khandelwal et al. (2017). STDM prediction 
methods use extracted discriminative features, e.g., average speed, acceleration, duration, 
distance, length and direction, from labelled spatiotemporal data to train standard classi-
fiers or regressors. The prediction can be done by single models e.g., Decision Trees (DT) 
Kim et  al. (2015), Support Vector Machines (SVMs) (Aasha et  al. 2016), or ensembles, 
e.g., Random Forest (RF) (Phan et al. 2015) or deep learning, e.g., Convolutional Neural 
Network (CNN), Recurrent Neural Network (RNN) Liu et  al. (2017); Li et  al. (2018a); 
Pandey and Kulhari (2018); Zhang et  al. (2018). Other STDM tasks such as clustering 
can be applied to extract features for prediction. For instance, TraClass (Lee et al. 2008) 
applied segmentation and clustering for the region and sub-trajectory feature extraction, 
then trained an SVM classification model. STDM trajectory-based prediction estimates 
the future location or route of moving objects using different methods such as the Hid-
den Markov Model (HMM). Predictive models predict the next location of a trajectory to 
build more accurate decisions and deliver more precise recommendations. There are two 
different approaches proposed based on the moving object or other neighbours, as well as 
a hybrid approach that combines both Ying et  al. (2011). Recently, deep learning-based 
models have been applied to tackle various spatiotemporal prediction problems, e.g., crowd 

3 https:// fairl earn. github. io/.

https://fairlearn.github.io/
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flow, car-hailing supply-demand, and traffic predictions Ermagun and Levinson (2018). 
Here, the models take into account temporal instances, near and far spatial dependencies, 
and other influential external factors for the spatiotemporal prediction problem. Sadri et al. 
(2018) tackled another problem of predicting continuous trajectory, not only a single future 
location. Based on a user’s morning trajectory, their model can predict the whole-day tra-
jectory of the user. The spatiotemporal dependencies between multiple contexts cause an 
imbalance problem as one spatiotemporal event can be rare or infrequent compared to other 
Rahaman et  al. (2017). This data imbalance problem affects the accuracy of the STDM 
prediction task. The multi-scale effect or the spatiotemporal discretisation issue also poses 
another challenge as the results of the spatiotemporal classification or regression vary 
based on the different scales and zones. In order to train a prediction model, spatiotemporal 
features must be generated using data aggregation. However, the aggregation process can 
be challenging in building multiple relationships between spatiotemporal objects to build 
the feature sets. Moreover, the process of generating spatiotemporal features is resource 
and time-consuming. Spatiotemporal Kriging is an important geo-statistical regression-
based interpolation method with a spatiotemporal covariance matrix and variograms. Sim-
ply, it can predict the target values at unobserved locations based on observations at other 
locations, even with noisy data. However, Kriging suffers from the limitation of assum-
ing the isotopic nature of the random variables Shekhar et al. (2015). Recently, multiple 
deep learning-based studies focused on the spatiotemporal trajectory classification, such 
as using Long Short Ten Memory (LSTM) networks for sequence classification. However, 
these approaches fail to consider both spatial and temporal information simultaneously. For 
example, Time-LSTM handles trajectories’ temporal information and neglects the spatial 
ones Liu et  al. (2019). Explanation of the spatiotemporal predictions is another issue of 
concern. Most existing prediction models are mostly black boxes and, in many decision 
making applications such as medical diagnosis, understanding of the reasoning behind 
the predictions are required. The authors in Ribeiro et al. (2016) proposed LIME (Local 
Interpretable Model-agnostic Explainations), a method that explains model predictions by 
learning an interpretable model locally around the predictions. Figure 12 shows the process 
of explaining model predictions by using different symptoms to predict that a patient has 
a flu. The proposed algorithm tend to identify which symptoms contribute to the model 
predictions. For example, sneeze and headache led to the flu prediction while ’no fatigue’ 
is not relevant.

Fig. 12  An example of explaining a model prediction of flue based on different symptoms, from LIME 
Ribeiro et al. (2016)
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4.2  Spatiotemporal clustering and hotspot detection

In contrast with classification, clustering partitions a set of spatiotemporal objects into 
similar groups based on their characteristics without having labelled datasets. STDM clus-
tering methods aim to determine the cluster of a given object based on different features, 
including spatiotemporal ones. For example, trajectory clustering may harness the simi-
larities using features such as route origins and destinations. There are different approaches 
used in STDM clustering such as partitioning, hierarchical and density-based. Many statis-
tical models are also used such as HMM, spatiotemporal extensions of the density-based 
spatial clustering of data with noise (ST-DBSCAN), and time-focused clustering of tra-
jectories of moving objects (T-OPTICS) (Kisilevich et al. 2009). TraClus (Lee et al. 2007) 
algorithm works on parts of trajectories in order to define similar trajectories based on vis-
iting the same type of places. Clustering spatiotemporal data is affected by the large size of 
data which leads to a trade-off between the accurate clustering results and computational 
cost (Jiang and Shekhar 2017). It is also affected by noise and outlier patterns. Also, shapes 
and sizes of patterns add more complexity to spatiotemporal clustering. Spatiotemporal 
clustering differs according to the data types, such as clustering locations based on the-
matic attributes over time, clustering moving objects and clustering trajectories. Since a 
trajectory is a sequence of time-stamped point locations of a moving entity through space, 
clustering moving trajectories is complex due to their continuous object movement and 
evolving. Thus, more efforts are needed to discover the interaction and change in the spati-
otemporal trajectory movements in order to achieve more accurate clustering (Huang et al. 
2008). Such efforts may propose modifications of existing clustering algorithms to make 
them more suitable for spatiotemporal data (Birant and Kut 2007). Another open issue 
related to spatiotemporal clustering approaches is related to their evaluation techniques. 
While traditional clustering approaches require computations in single Euclidean space, 
the spatiotemporal clustering approaches need computations in multiple spaces (Shao et al. 
2016). Besides, computing the trajectory similarity based on point matching results in low-
accuracy results (Li et al. 2018c). Specifically, such methods handle two different point-
sequences in a different way albeit they belong to the same trajectory.

On the other hand, spatiotemporal hotspots refer to locations that contain an unexpect-
edly high number of objects in a time (Di Martino et al. 2017). The spatiotemporal hot-
spot detection is complex because the number and features, e.g., size, shape and number of 
objects, of hotspots are unknown. STDM hotspot detection task is utilised for identifying 
dense conglomeration of events both in space and time in applications such as the out-
breaks of diseases (Bulstra et al. 2018; Feng et al. 2015). Kulldorff (1997) proposed a spa-
tial scan statistical (SSS) method for hotspot detection. The method explores the potential 
region of multiple circular-shaped sizes. The hotspot is defined as the region with a signifi-
cantly high incidence of points. Later, multiple methods were proposed to generalise this 
SSS for spatiotemporal data (Cheng and Wicks 2014). However, the problem is still com-
plex as results of shapes of regions, background distributions, and speeds of search. STDM 
hotspot detection is also utilised in various applications such as public emotion analysis, 
public safety, and traffic management. Zhu and Newsam (2016) proposed a hotspot detec-
tion method for the analysis of public sentiment using geotagged photos. The proposed 
method detects the emerging concentrations of certain sentiment class. Mack and Kam 
(2018) proposed a hotspot detection for political violence. The proposed method tries to 
solve the problem of uncertain and less predictable violence against civilians. STDM hot-
spot detection is employed to explore the potential locations and times of traffic accidents. 
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Romano and Jiang (2017) proposed a spatiotemporal network kernel density estimation. 
Using the STDM hotspot detection methods such as scan statistics and kernel density esti-
mation are not useful in such traffic accidents cases. This is because these methods focus 
on Euclidean space and ignore traffic-related aspects such as constrained road networks 
(Romano and Jiang 2017). Research studies were proposed to detect hotspots in the net-
work space such as linear route detection which focuses on the spatial aspect and neglects 
the temporal dimension.

4.3  Spatiotemporal pattern mining

Spatiotemporal patterns represent the details of frequent behaviors in space and time. 
STDM pattern mining works on discovering hidden information, i.e., occurrences in space 
and time, such as movement patterns from trajectories of spatiotemporal objects. Multiple 
methods were proposed to mine several types of movement patterns including; periodic or 
repetitive patterns that concern regular movements which are repeated at certain time inter-
vals such as bird migration (Zhang et al. 2018), and frequent pattern mining to discover the 
sequence of visited locations and the transition times between them (Helmi and Banaei-
Kashani 2017). Trajectory pattern (T-pattern) is an example of frequent pattern defined by 
Giannotti et al. (2007) as a set of trajectories that visit the same sequence of places con-
suming similar transition time. T-pattern can be mined by analysing sequences of regions 
of interest with time-stamps (Beernaerts et  al. 2020) or discretisation of space to deter-
mine the regions of interest (Giannotti et al. 2007). Group pattern mining tends to identify 
movement patterns for groups of objects that move together in near space and time. Several 
group patterns were proposed based on spatiotemporal closeness constraint, group con-
struction and members’ properties. Examples of group patterns include flock (Wachowicz 
et al. 2011), convoy (Yadamjav et al. 2019), swarm (Shuai et al. 2019), leadership (Amorn-
bunchornvej and Berger-Wolf 2019) and chasing (de Lucca Siqueira and Bogorny 2011). 
They were also studied as mixed-drove or co-occurrences (Wang et al. 2019b; Celik et al. 
2008) for time-unordered patterns, spatiotemporal cascades (Mohan et  al. 2012) for par-
tially time-ordered patterns, and spatiotemporal sequential patterns (Maciąg et al. 2019) for 
totally time-ordered patterns. Mining of spatiotemporal pattern mining has key challenges. 
One major challenge is that there are no explicit transactions in the spatiotemporal datasets. 
The number of possible patterns is exponential, and there is a potential for over-counting. 
Accordingly, these issues lead to a trade-off between the accuracy of the output and com-
putational efficiency. There are different statistical methods used for mining the spatiotem-
poral co-location patterns, such as cross-K-function, spatial regression model (Chou 1997) 
and mean nearest neighbour distance (Sinclair 1985). However, these statistical methods 
are computationally expensive due to the exponential number of candidate patterns. Fur-
thermore, discovering spatiotemporal association or co-occurrences from trajectories is 
challenging due to temporal duration, different moving directions, and wrong locations.

4.4  Spatiotemporal outlier detection

In contrast to pattern mining, STDM outlier detection aims to find unusual patterns that 
do not follow the common path, using a set of whole trajectories (Zhang et al. 2011) or 
parts of trajectories (Liu et  al. 2012). Like prediction, STDM outlier detection methods 
usually come after other data mining methods; especially clustering to discover objects that 
are not similar to any cluster. STDM classification has also been used for outlier detection 
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based on predefined features, e.g., location, speed, angle and direction, and utilising vari-
ous distance measures (Yuan et al. 2011). Spatiotemporal outlier detection aims to discover 
spatiotemporal objects that are discontinuous or inconsistent with their space and time 
neighborhoods. Discontinuity means that the thematic or non-spatiotemporal attributes of 
the outlier objects significantly deviate from other observations (Rao et al. 2012). Outlier 
detection depends on different statistical methods which are affected by several challeng-
ing issues related to model generalisation and scalability, lack of effective spatiotemporal 
data representation methods, and low focus on interpretability. Although the mathemati-
cal and statistical foundation of spatiotemporal outlier detection is important, most pre-
vious researches focus only on the computation efficiency and intuitive analysis (Aggar-
wal 2017). Additionally, spatiotemporal outliers can be important and refer to interesting 
events, e.g., the formation of cyclones, or they can be noise Thakkar et al. (2016).

A new research trend in outlier detection is multi-view outlier detection, i.e., a multi-
view learning task. This task is challenging due to the complex distributions of data across 
different views. It focuses on three outlier types, including attributes, class, and class-
attributes outliers. There is a need to accomplish such multi-view outlier detection because 
most existing approaches consider part of the problem (Ji et  al. 2019). Figure  13 illus-
trates the three different types of outliers. The attribute outlier, red triangle, is an example 
of abnormal behaviour. The class outlier, blue circle, behaves normally in each view but 
abnormal across different views. The class-attribute outlier, green square, represents an 
attribute outlier in some views and class outlier in other views.

4.5  Spatiotemporal visualisation

Spatiotemporal visualisation task employs techniques for spatiotemporal data presen-
tation. These techniques go beyond static or traditional 2D maps to include modern 3D 
spatiotemporal cubes and interaction methods to uncover the implicit spatiotemporal 
knowledge. Spatiotemporal visualisation is discussed within various applications such as 
marine environment (Yawen et al. 2010), news events (Bo et al. 2011), social topics (Koylu 
2019), urban dynamics evaluation (Xia et al. 2020; Calabrese et al. 2011) and mobile data 
(Kobayashi and Miller 2014). Despite much previous work on spatiotemporal visualisa-
tion, there are still unsolved issues such as visualising big spatiotemporal data in real-time 
(Cheng et al. 2014). The challenge stems from the difficulty of temporal representation on 
maps because of the limitation of GIS in representing dynamic processes. This issue is 
further exacerbated by the fact that most geographic phenomena vary over time. There are 
many proposed methods based on 2D maps, such as showing small charts on maps (Reza 

Fig. 13  Three different types of outliers Ji et al. (2019)
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and Watson 2019). However, this cause issues such as overcrowded maps when plotting 
many charts, and overlapped charts with close locations. Moreover, 3D space-time cubes 
also pose additional challenges. For example, it is difficult to represent space-time paths to 
geo-locations and time due to the 3D display, as well as the difficulty to display big spati-
otemporal datasets.

4.6  Spatiotemporal visual analytics

STDM task of visual analytics considers identifying significant locations and periods along 
with movements such as a bus route Mazimpaka and Timpf (2016). STDM visual ana-
lytics methods harness the effect of significant spatial features during certain temporal 
periods. The selected discriminative spatiotemporal features are used to classify locations 
overtime periods. There are multiple applications in which knowing such locations and 
periods is crucial such as in traffic management and route planning. The visual analytics 
of public transportation has received less research focus in comparison to taxis or private 
cars Mazimpaka and Timpf (2016). STDM visual analytics methods were proposed in 
multiple research works such as in (Doraiswamy et al. 2018; Lv et al. 2012; Bhattacharya 
et al. 2012). However, these studies focused on spatial analysis and neglected the temporal 
dimension. A major challenging issue in STDM visual analytics is to visualise both spa-
tial and temporal information at the same time. Multiple methods were proposed to solve 
this STDM visual analytics problem such as space-time cube Tominski et al. (2012) and 
multiple 2D maps Wang and Yuan (2014). However, most of the proposed methods focus 
on discovering global patterns between origin and destination. There is a need to discover 
local patterns at stops and segment levels.

4.7  Computer vision related STDM tasks

Computer vision research aims to extract useful information for images. It focuses on learn-
ing how to see a scene, understand components, and track moving objects in a video. The 
complexity of the visual world makes STDM challenging in computer vision tasks. Spatial 
visual feature extraction is essential in various tasks such as image classification and hand 
writing recognition (Al-Nuzaili et al. 2017, 2018). STDM methods has been utilised most 
computer vision tasks such as tracking Huang and Zhou (2019); Wen et  al. (2019); Yin 
et al. (2019); Bai et al. (2019) and segmentation Xu et al. (2019a, b); Wang et al. (2019a); 
Hu et  al. (2019a). In this section, we focus on recent challenges in visual tracking and 
segmentation, specifically, drone-based object tracking and amodal semantic segmentation, 
respectively.

Visual object tracking (VOT) is a key component of multiple domain application such as 
surveillance, search and rescue, and topographic mapping. VOT is a challenging task due 
to visual noise, occlusion, cluttered backgrounds, and dynamic variation of moving object 
features. VOT methods aim to track the moving objects temporally in a video and spatially 
over the frame pixels. There are large bodies of research in both single VOT Follmann 
et al. (2018); Kart et al. (2019) and multiple VOT Tang et al. (2017); Zhou et al. (2018). 
New VOT tasks include object tracking with segmentation Follmann et al. (2018), tracking 
by reconstruction Kart et al. (2019), graph convolutional tracking (Gao et al. 2019), deep 
multi-scale spatial-temporal tracking Zhang et al. (2020) and drone-based VOT (Yu et al. 
2020). In drone-based object tracking Hamdi et al. (2020b), a drone d is tracking a moving 
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object in real-time o using a camera as illustrated in Figure 14. Unlike conventional object 
tracking using fixed cameras, a camera mounted on d is moving according to the motion 
of d. When d or o moves the distance between them is altered. This fact leads to changes 
in the location and scale of o in the video frame. Figure 14 shows three different tracking 
positions of a drone in different time-stamps monitoring a moving object indicated in light 
green. As illustrated, the scale of the moving object is inversely related to the size of the 
drone’s field of view. When the drone flies high and has a wide field of view, the object 
becomes smaller. Conversely, the object scale is enlarged if the drone gets close. New VOT 
drone-based dataset have been released such as DTB70 Li and Yeung (2017), UAV123 
Mueller et  al. (2016), UAVDT-Benchmark-S Du et  al. (2018), and VisDrone2019-SOT 
Zhu et al. (2018). The datasets are of high diversity and captured in multiple environments. 
They cover more difficulties and aspects that are not found in the traditional tracking data-
sets such as VOT Kristan et al. (2015) and VTB50 (Wu et al. 2013). The drone-captured 
datasets include both translation and rotation camera motions. The literature shows that 
these datasets are challenging for conventional tracking algorithms. They also cover highly 
challenging cases in both short-term and long-term occlusion. The datasets contain differ-
ent moving object types, such as humans, animals, cars, boats, birds and drones. This vari-
ety offers different levels of degree of freedom for the motion. Objects like cars and boats 
can only translate or rotate, whereas humans and animals, birds and drones have a higher 
degree of freedom. The datasets outdoor scenes are in various situations, including signifi-
cantly varied backgrounds. These challenging motion characteristics cause object deforma-
tion, leading to more difficult object tracking.

Video object segmentation (VOS) extracts foreground objects in a video. VOS is a fun-
damental task for many video analysis tasks such as video summarisation and understand-
ing. Most of VOS related work is either unsupervised, i.e., does not require human annota-
tion Tokmakov et al. (2017); Li et al. (2018b); Hu et al. (2018b) or semi-supervised, i.e., 
requires to annotate object in the first frame only (Cheng et al. 2018; Ci et al. 2018). VOS 
maintain the temporal associations of object segments through the video usually using 
optical flow Bao et al. (2018); Hu et al. (2018a). It aims to model the pixel motion over 
time. However, optical flow annotation requires expensive human efforts and is not always 
suitable for VOS. Recently, VOS researcher proposed end-to-end trained deep neural net-
works to overcome such issues, such as spatiotemporal sequence-to-sequence network Xu 
et al. (2018) and deep recurrent network Li and Change Loy /(2018). There are multiple 
datasets for video object segmentation such as DAVIS16 Perazzi et al. (2016), FBMS Ochs 
et al. (2013), JumpCut Fan et al. (2015), Youtube-Objects (Prest et al. 2012), SegtrackV1 

Fig. 14  Drone-based object tracking (Hamdi et al. 2020b)
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(Tsai et al. 2012), and instance segmentation data such as Youtube-VOS Xu et al. (2018), 
SegtrackV2 Li et al. (2013), and DAVIS17 Pont-Tuset et al. (2017). However, none of these 
datasets offers direct learning of new research directions in VOS such as Semantic Amodal 
instance level (SAVOS) (Hu et al. 2019b). SAVOS aims to segment individual objects in 
a video under occlusion semantically. Figure 15 presents an example showing the steps of 
segments annotation, depth and visible edge estimation, and annotating the edges of the 
invisible regions. SAVOS is a useful task for object size prediction, depth ordering, and 
occlusion reasoning. This task requires the temporal sequence, in the video dataset, to be 
densely and semantically labelled. Such data should be essential to analyse the object and 
human motion behaviours. New datasets have been released recently to fit the SAVOS task 
such as Maire et al. (2013); Zhu et al. (2017); Ehsani et al. (2018); Follmann et al. (2018). 
Human is able to predict the occluded parts with confidence and consistency (Zhu et al. 
(2017). However, this task is still a challenging task in STDM.

5  STDM application‑related challenges

In addition to the earlier above-mentioned spatiotemporal challenging issues, this section 
describes application-related issues. The following sub-sections discuss six major STDM 
applications including, crime and public safety, traffic and transportation, earth and envi-
ronment, epidemiology and spread of infectious diseases, social media analysis and smart 
Internet of things (IoT).

5.1  Crime and public safety

Crime data varies and have interesting characteristics that motivated previous works. How-
ever, the domain of public safety has its challenges such as the lack of comprehensive and 
generalised analysis methods that can handle complex and heterogeneous data types such 
as historical, geographical and demo-graphical data. Furthermore, there is a lack of sys-
tematic analysis and representation of the temporal crime attributes, as well as the unavail-
ability of systematic literature reviews Leong and Sung (2015). In addition, the dynamic 
nature of the crime patterns is affected by opportunities and the existence of motivated 

Fig. 15  An example of semantic amodal visual object segmentation Zhu et al. (2017). The first row shows 
the original scene and its segments human-annotation. The second row visualises the depth and visible 
edges. Finally, the third one shows the semantic annotation of the invisible regions
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offenders and suitable targets Ratcliffe (2002). Hence, many researchers focus on deriving 
features from human activities to tackle the problem of crime event prediction. Some stud-
ies use mobile network data to derive human dynamics and aggregate them with other fac-
tors, such as demographics, to predict crime events. Other works analyse social media, e.g., 
Twitter and Foursquare, data for crime prediction Wang et al. (2016). However, they often 
utilise aggregated datasets over long periods. This challenge raises the need to develop 
quantitative methods that work on high-resolution data Toole et al. (2011). Moreover, the 
new methods need to consider characteristics that are specific to spatiotemporal crime data 
such as the susceptibility of having outliers and noise. Recent literature in crime analysis 
utilises the spatial correlation in fine-grained crime modelling. The continuous conditional 
random field is used to capture the relationships among different regions. However, it can 
not deal with dense graphs considering the potentially large amount of nodes and rela-
tions in a graph of a fine-grained level. Deep neural networks are utilised to reduce the 
model complexity and improve the training accuracy Yi et  al. (2019). Crime prediction 
models try to answer the questions of where and when the next crime may occur. However, 
as discussed earlier, such models may be biased toward genders or races. Racial bias in 
predictive policing is a cumbersome issue. Multiple (non)-governmental organisations are 
concerned about bias in low enforcement applications and fear that predictive methods may 
target minority communities. There are studies that show the existence of the racial bias in 
different public safety applications such as pedestrian stops Legewie (2016), racial profil-
ing of vehicles (Horrace and Rohlin 2016), use of force Ferguson (2019), and drug enforce-
ment and arrests (Lynch et al. 2013). The work in Richardson et al. (2019) investigated the 
existence of racial bias in predictive policing. The work studied the link between illegal 
bias in police practice and dirty data that are used to train predictive models.

5.2  Traffic and transportation

Unlike the public safety domain, previous works in traffic and transportation focus on dis-
aggregated micro-scale data capturing a large number of observations. Thus, dealing with 
such spatiotemporal datasets adds more challenges related to the collection, storage and 
processing of such big and dynamic data, then using them to build comprehensive spati-
otemporal models. Besides, thematic data related to traffic accidents, injuries and road net-
works combined with criminal records is an important multidisciplinary path of research 
that needs more efforts. Traffic data represents spatiotemporal trajectories that are used to 
discover periodic patterns that describe the behaviours of moving objects Sönmez et  al. 
(2019). One important challenge is that the spatiotemporal trajectory pattern does not fol-
low regular time intervals Zhang et al. (2015). Furthermore, the influence of nearby objects 
and their patterns is another problem. Example of such influence is spatiotemporal events, 
such as accidents, that affect the traffic congestion patterns Rao et al. (2012). Traffic con-
gestion estimation is another open issue due to the complexity of analysing multiple data 
from different sources, e.g., sensors in taxicabs, GPS, mobile sensors, and road network 
sensors, and the inclusion of various variables such as density, velocity, inflow and previ-
ous status Yang et al. (2017). Adding to these computational issues, traffic congestion is a 
critical problem because it affects peoples’ life and may damage the socioeconomic growth 
Zheng et al. (2014).

Deep learning researchers have paid attention to traffic state estimation due to the avail-
ability of large datasets of vehicle trajectories Zhang et  al. (2019). There are two main 
approaches to address traffic estimation. The macro approach divides the city into equal 
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grids which are represented by its road segments states (Zhang et al. 2016; Vahedian et al. 
2017; Yao et  al. 2018). The micro approach produces finer-grain segments of road net-
works (Yu et al. 2017). This approach considers temporal traffic patterns and spatial cor-
relation among traffic states. Traffic estimation is still a challenging task due to the uncer-
tainty issue because of data sparsity and semantic ambiguity. Trajectory embeddings are 
tackled by the complicated topology of the transportation networks. Modelling such data 
is affected by the spatiotemporal dynamicity. Moreover, intelligent transportation systems 
have other essential components, such as Region-Level Ride-Hailing (RLRH) demand 
forecasting. RLRH demand forecasting aims to estimate the future demand in city regions 
given the previous states. RLRH demand forecasting tends to enhance traffic functions 
such as vehicle allocations, waiting time, and congestion Yao et  al. (2018). In the same 
fashion, this task is challenging because of the complex nature of the STDM correlations 
or complicated dependencies among different regions. Figure 16 shows an example of the 
impact of the different correlation level of different regions on the RLRH demand forecast 
(Geng et al. 2019). Moreover, recent studies focused on the fairness in the ride hailing plat-
forms such as Uber and DiDi as they employ different matching strategies to connect cus-
tomers and drivers. There seems to be an unfair distribution of jobs among drivers which 
led to concerns such as discrimination against minorities. Having each matching to be fair 
is a difficult task. Therefore, there is a need for more efforts in STDM to discover better 
matching distributions over time. The authors in (Sühr et al. 2019) proposed a framework 
that attempts to ensure fairness in the ride hailing matching. Their hypothesis of fairness is 
that all active drivers should be proportionally matched overtime.

5.3  Earth and environment monitoring

There are different environment-related spatiotemporal applications such as land use 
and change detection that are being affected by different natural and socioeconomic fac-
tors. Another application area is route mining in waterways, which is challenging due to 
routes may be created by different types of ships jamming in the same waterway, frequent 
changing direction and navigation via different routes Wen et al. (2016). There is a need 

Fig. 16  The impact of different 
correlations among regions on 
RLRH demand forecast. For 
example, R7 is adjacent to R8, 
similar to R4 and R2, connected 
with R3, and distant or irrelevant 
to R6
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to integrate data describing the atmosphere, hydrosphere, lithosphere, and biosphere of 
the earth in order to build more accurate spatiotemporal multidimensional models (Rao 
et al. 2012). Also, there is a lack of mathematical and statistical methods for dynamic vis-
ualisation Ye et al. (2012). Quantifying spatiotemporal human exposure to air pollutants 
is another difficult task because of different people activity patterns and the complexity 
that results from multifaceted relationships between human and environment Steinle et al. 
(2013). Spatiotemporal climate forecasting predictive models are affected by errors in their 
model physics (Meehl et  al. 2014; Hamdi et  al. 2021). Specifically, models drift toward 
their internal means state. This issue is also caused by imperfections in representing the 
models’ initial conditions Hazeleger et al. (2013). Recently, bias correction methods have 
been developed. There are multiple methods that are proposed to solve this bias in spa-
tiotemporal predictive modelling, such as bias adjustment and conditional bias methods. 
These methods correct spatiotemporal bias in the climate forecast time, lead time, and ini-
tial conditions (Director et al. 2017). The significance of this STDM task extends to com-
mercial vessel traffic in some Arctic regions. Such commercial domain is directly impacted 
by the sea ice forecast Huntington et  al. (2015). Spatiotemporal bias also exists in pre-
cipitation data gauging and analysis. Gauge-based rainfall predictions rely on point data 
which are collected from multiple areas with limited and uneven radius. Satellite-based 
rainfall predictions have been developed using deep learning bias correction models Le 
et al. (2020).

5.4  Epidemiology and spread of infectious diseases

The spread of infectious diseases is affected by human mobility. Monitoring human mobil-
ity is a hard task because it occurs in huge volumes, and different periods ranging from 
minutes to years Arino (2017). Another challenge is the enormous number of mobility 
events that have different characteristics, causes and complex spatiotemporal relationships 
with humans. On the other hand, migrants and refugees who come from regions of con-
flicts add more challenges to investigate new factors from outside the analysed society or 
geographic areas. The migrants carry their health history, which may affect the popula-
tion of the target societies. For example, the black death disaster came to Europe via the 
silk route. Arino (2017) reported that there are two main problems in the spatiotempo-
ral spread of pathogens of humans; namely; fast spatial spread of an evolving pathogen 
and the interactions of health systems. The modern transportation facilities enable this fast 
spread of infectious pathogens around the world. Besides, pathogens do not care about 
borders in contrast with the public health systems that manage a specific geographic area. 
Consequently, the interconnections between different areas add more challenge in mining 
the spread of pathogens. For example, the outbreak of 2019 new corona-virus diseases 
(COVID-19) in Wuhan, China, has forced the countries all over the world to close their 
borders and apply strict travel bans Novel et al. (2020); Pan et al.(2020). Recently, atten-
tion models with deep LSTM networks have been employed to predict disease progression 
Zhang et al. (2019). This task considers irregular time intervals between consecutive dis-
ease events. Moreover, understanding the probability of patient survival is a piece of essen-
tial information for the healthcare field. It is useful to identify the best treatment plans over 
time. Survival analyses consider the prediction of occurring an even of interest. However, 
these analyses are affected by spatiotemporal uncertainty. Therefore, most of the exist-
ing survival analysis methods lack the ability to provide comprehensive results. Figure 17 
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shows a representation of calculating the uncertainty of survival analysis in temporal func-
tion (Sokota et al. 2019).

5.5  Social media analysis

Data provided by social media is affected by the growth of sensor technologies that gen-
erate big spatiotemporal data, such as check-in records, user reviews, and geo-temporal 
tagged posts Zhang et al. (2015). In this context, social media has complex spatiotemporal 
correlations. Accordingly, the analysis of social media faces different challenges in order to 
understand these correlations and to develop accurate models. Spatiotemporal topic mod-
elling in social media contents is used with time and location-tagged to discover topics. 
This topic modelling is affected by challenges related to the heterogeneity of geographical 
context (Jiang et al. 2018), such as the locations sparsity caused by a tiny amount of posts 
that are tagged with geographical locations. The sparsity issue directly affects spatiotem-
poral social media analysis tasks such as density estimation (Jeawak et  al. 2020; Sakaki 
et al. 2010), event location extraction Chung et al. (2017) and collaborative filtering Zhou 
et al. (2019). Such tasks are affected by different social factors such as social trust. Trust 
propagation approaches estimate the users’ preferences based on the features of their con-
nections. This could achieved by implementing random-walk on social graphs. Recently, 
deep learning studies have merged social information into recommendation in an ensemble 
fashion such as graph neural network (Song et  al. 2019; Wu et  al. 2019b) and network 
embedding Liu et al. (2018). These works aim to encode high-dimensional network infor-
mation Wu et  al. (2019a). Most of the existing methods predict the social relationships 
based on pairwise approaches with hand-engineered features or utilising skip-gram model 
to learn the graph embeddings. However, both models fail to harness complex dynamics of 
social relationship patterns. Besides, computing the graph embeddings based on random 
walks for information propagation is not accurate due to lacking the semantic information 
Wu et al. (2019c).

5.6  Smart internet of things

Smart IoT adoption is increasing with the proliferation of urban population. Consequently, 
real-time large-scale sensor data are captured via distributed connected objects equipped 
with sensors. These sensors can monitor different variables at multiple locations such as 

Fig. 17  Survial analysis under 
uncertainty (Sokota et al. 2019). 
The survival curve, red line, 
calculates the probability as a 
temporal function. The point-
wise and simultaneous intervals 
covers the uncertainties
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homes, ambient air quality, climate and earthquakes Shaban et al. (2016); Poulakis et al. 
(2013); Mehrjoo and Khunjush (2018); Crooks et al. (2013); Yunus et al. (2020). Working 
with such data poses some challenges while storing, processing and modelling, which can 
be addressed by utilising cloud computing Neiat et al. (2014). Sensory data suffers from 
sparsity where no observations are captured for many regions within the sensed fields. This 
requires more efforts in filling the missing values using correlated data sources. However, 
the integration process is complicated because of the different sampling rates of various 
sensory data. For example, the temporal resolution in medical sensors is much higher than 
in GPS sensors. Also, the sensory data integration is complicated by the veracity of the dif-
ferent measurements recorded by each sensor. For instance, there is a high level of uncer-
tainty caused by the difficulty in spatial localisation and temporal synchronisation between 
sensors Ang and Seng (2016). IoT opens new research directions, such as sitting posture 
monitoring and smart voice control. The poor sitting posture causes ill-effects on both 
physical and mental health. Sitting posture monitoring is challenged by multiple issues 
such as the variance in human sitting behaviours and divergence in user body mass indexes 
Bourahmoune and Amagasa (2019). Smart voice control is being used by 100 million users 
(Lei et al. (2019). Different users can use multiple appliances at the same time. There is a 
need for new STDM methods that can consider the possible variant spatial, temporal, and 
thematic features. For example, voice-controlling a smart air-conditioner may be different 
from a smart TV. It is expected to have different user behaviours based temperature degrees 
and device locations. Moreover, IoT mobile devices can be used as a smart agent to detect 
certain diseases such as Parkinson’s disorder. This disorder cause degeneration of the nerv-
ous system. It affects human movement, speech, and cognition. Clinical assessments are 
commonly misdiagnosed such disease. However, this could be solved by analysing long-
term data that can be collected using mobile devices Schwab and Karlen (2019). Figure 18 
shows an example of Parkinson detection based on mobile-collected data of walking, talk-
ing, tapping, and memory. Another issue in multi-sensory data fusion is to eliminate spa-
tiotemporal bias. Fusing data from multiple sensors suffers from time delays among meas-
urement timestamps. Such delays might be caused by data transfer or signal processing. 
Therefore, data fusion applications are in need for accurate spatiotemporal bias estimation 
techniques (Bu et  al. 2019). Various methods are proposed for different sensors such as 
cameras, radars, or sonars Taghavi et  al. (2016); Jones and Soatto (2011). They utilised 
different computing methods such as maximum likelihood and Kalman filters. However, 
these works only consider spatial data references of the multiple sensors. The temporal bias 

Fig. 18  Mobile-collected data can be used to monitor different patterns of user’s walking, voice, tapping, 
and memory (Schwab and Karlen 2019)
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inevitably exits in the multi-sensor data fusion and requires more research efforts Bu et al. 
(2019).

6  Summary of STDM general challenges

Table 1 summarizes the identified and above-mentioned STDM challenges. For each chal-
lenge, the table highlights its causes and related works attempting to address them. Further-
more, the related works are annotated with relevant STDM tasks and applications. The aim 
of this annotation is to link between the three main components of the survey. For instance, 
STDM relationships pose three main challenges including complexity, implicitness, and 
non independent and identically distributions. Each of these challenges is accompanied 
with its tasks and applications. Tasks include Cluster Analysis (CA), Pattern Analysis (PA), 
Outlier Detection (OD), Prediction Modelling (PM), Visualization (v), and Visual Analyt-
ics (VA). Also, the Applications are Public Safety (PS), Transportation Management (TM), 
Environmental Analysis (EA), Epidemiology (EP), Social Media Analysis (SA), and IoT.

7  Conclusion

STDM is important due to the availability of large amounts of geographic and time-
stamped data that can be mined to solve many interesting problems in different applica-
tions. STDM aims at discovering beneficial relationships and patterns that are implicit in 
spatiotemporal data. In this regard, STDM focuses on the design of efficient and scalable 
algorithms to mine, i.e., extract, predict, cluster, and quantify spatiotemporal patterns. 
Performing STDM is more difficult than traditional data mining due to the complex types 
of spatiotemporal relationships, interdisciplinary nature of data and tasks, and the unique 
characteristics of spatiotemporal data. Future research should focus on developing new 
modelling and visualisation methods that enable the integration of multiple STDM tasks to 
solve more complex scenarios. In this paper, we described the STDM problems and open 
gaps. We explained general issues related to spatiotemporal relationships, interdisciplinar-
ity, discretisation, data characteristics, and research limitations. In an attempt to produce 
a comprehensive survey about the STDM challenges, we discussed the tasks and applica-
tions related challenges.
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