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Spatio-temporal processes
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We present an overview of the literature on the analysis of spatio-temporal
processes with a nonseparable covariance structure. We focus on those methods
that rely heavily on computing for the estimation or inference. Topics are classified
into frequentist approaches, which rely on expectation–maximization algorithms,
and hierarchical Bayesian approaches, which rely on Markov chain Monte Carlo.
We also present discussions on other computational issues related to the analysis
of spatio-temporal data .  2010 John Wiley & Sons, Inc. WIREs Comp Stat 2010 2 375–382 DOI:

10.1002/wics.88
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As the name implies, ‘spatio-temporal processes’
are the processes which evolve in time and space.

The modeling of spatio-temporal distributions result-
ing from these dynamic processes is critical in many
scientific and engineering fields such as environmental
sciences, climate prediction and meteorology, pop-
ulation biology, epidemiology, criminology, image
analysis, and agriculture, to name a few. Many
approaches for modeling spatio-temporal processes
have been proposed. For instance, one can separate
the time and spatial dimensions so that a separate
spatial analysis is at each point in time, or vice versa.
However separating the time and spatial elements is
ill-advised (see, e.g., Refs 1 or 2). In this article, we
focus on computational aspects of methods for ana-
lyzing spatio-temporal data that do not separate the
time and spatial dimensions.

THE JOINT SPACE–TIME FRAMEWORK
Consider a time domain T ⊂ �1, a finite time-
dependent spatial domain D(t) ⊂ �d, t ∈ T, and with-
out loss of generality, let d = 2. A spatio-temporal ran-
dom process Y(s, t) is a random variable that can take
a series of outcome values at any location s ∈ D(t) and
instant in time t ∈ T, i.e., {Y(s, t) : s ∈ D(t), t ∈ T }.
It is common to model the variability in {Y(s, t)} as
a random field.1 It is also commonly assumed that
D(t) = D, although it is often not necessary.

Until the mid- to late-1990s, covariance func-
tions most commonly used for describing spatio-
temporal processes were separable, i.e., the covariance
function might decompose into the sum or the product
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of a purely spatial and a purely temporal covariance
functions; see, for example, Refs 3,4. This separability
does not allow for space–time interactions. Moreover,
as noted by Stein,5 separable covariance functions
generally imply that small changes in the locations
of observations can lead to large changes in the
correlations between certain linear combinations of
observations.

Analyzing a spatio-temporal process as spatial
data with an ‘extra dimension’ is another approach
that has been proposed. Consider, however, that
there are fundamental differences between time and
space. Time has a clear ordering—a past, present,
and future—while space does not. Because of the
intrinsic ordering in time, isotropy, which is well-
defined in the spatial context, has no meaning in
the space–time context. This additional complexity,
along with a lack of computational tools in standard
software, leads many to over-simplify and proceed by
separating the two elements of space and time and
to perform either a (1) separate spatial analysis for
each time point or (2) separate temporal analysis of
each location. These conditional approaches isolate a
particular time point or location and apply standard
techniques for the resulting data. An additional stage
of the analysis usually includes combining the results
of the first stage of the analysis, e.g., nonlinear mixed
model applications for clustered data. While these
two stage approaches are appealing, they have serious
drawbacks.6

We discuss methods that employ the joint
analysis of spatio-temporal data. As with most areas
in statistics, approaches to modeling spatio-temporal
data are varied, but can be categorized into two
schools of thought: frequentist and Bayesian. In
keeping with the scope of this volume, we focus
on those results that rely heavily on computational
techniques.
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Nonseparable covariance functions
The overarching theme of developing nonseparable
covariance functions is that the dynamic evolution
in time and space adds complexity such that
the dependence structure across both space and
time is nontrivial. In a seminal paper, Cressie
and Huang7 developed nonseparable space–time
stationary covariance functions that model space–time
interactions. However, their approach depends upon
Fourier transform pairs in �d, and is thus restricted
to a small class of functions for which a closed-
form solution to the d-variate Fourier integral is
known. Gneiting8 avoids the limitation of Ref 7,
providing a more general class of valid space–time
covariance models. In a series of papers, Iaco et
al.,9–11 continued the development of new classes
of stationary space–time covariance functions on
�d × �, and Iaco et al.11 provided algorithms for
fitting such models. Fuentes et al.12 use the spectral
representation of a process to develop a general,
flexible parametric class of nonseparable space–time
covariance models. Stein5 further extends this body
of work on nonseparable covariance functions by
developing nonseparable covariance functions that are
smooth everywhere except possibly at the space–time
origin, and which allow for different degrees of
smoothness away from the space–time origin. Stein5

shows how one can generate space–time covariance
functions that are spatially isotropic but not fully
symmetric in space–time by taking derivatives of
spatially isotropic fully symmetric models. A good
review of the literature on covariance functions for
spatio-temporal processes can be found in Refs 13
and 14.

Following Xu and Wilke,15 the covariance func-
tion C(s1, s2; t1, t2) and semivariogram γ (s1, s2; t1, t2),
assuming they exist, are defined by

C(s1, s2; t1, t2) = Cov{Y(s1, t1), Y(s2, t2)}
= E[{Y(s1, t1) − EY(s1, t1)}{Y(s2, t2)

− EY(s2, t2)}]
γ (s1, s2; t1, t2) = 1

2
Var {Y(s1, t1)

− Y(s2, t2)} , s1, s2 ∈ D, t1, t2 ∈ T

Properties and characterizations of the covariance
function and semivariogram can be found in, e.g.,
Ref 15. Specifically, for the covariance function
to be well-defined, it is necessary to assume
that Var[Y(s, t)] < ∞ for all (s, t) ∈ D × T, which
implies that the first two moments exist. Then
the process is second-order stationary in space–time
if EY(s1, t1) = EY(s2, t2) and C(s1, s2; t1, t2) depends

only on s1 − s2 and t1 − t2. In this case, the
corresponding covariance function can be denoted by
C(s, t) = Cov{Y(s0, t0), Y(s0 + s, t0 + t)}. The process
is intrinsically stationary in space–time if E{Y(s1, t1) −
Y(s2, t2)} = 0 and γ (s1, s2; t1, t2) depends only upon
s1 − s2 and t1 − t2. In the case of intrinsic stationarity,
the semivariogram can be written as, simply, γ (s, t).
Moreover, if the process Y(s, t) is second-order
stationary, it is easily shown that the semivariogram
can be written as

γ (s, t) = C(0, 0) − C(s, t) for all (s, t) ∈ D × T

Spatio-temporal models
Huang and Cressie16 were among the first to
develop a full implementation of a space–time
dynamic model with a Kalman filter for a separable
space–time structure. Cane et al.17 implemented a
reduced dimension space–time dynamic model from
a truncated set of multivariate empirical orthogonal
basis functions derived from a long model run
without assimilation. Mardia et al.18 provide the
details and full implementation of the general reduced
dimension model they call the ‘kriged Kalman filter.’
These reduced dimension space–time Kalman filter
approaches provide techniques for modeling spatially
nonstationary and space–time nonseparable process,
and can be applied to large data sets. However,
they did not provide for a small-scale spatial
structure that does not evolve temporally. Wikle
and Cressie19 considered not only the measurement
error and space–time dynamic components, but also
a non-dynamic term that captures small-scale spatial
variability.

A state-space approach
Following Xu and Wilke,2 let Z = (Z(s̄1, t), . . . ,
Z(s̄mt , t))′ be an mt × 1 vector containing data values
at mt spatial locations si at time t. The vector
Y = (Y(s1, t), . . . , Y(sn, t))′ is an n × 1 vector for an
unobservable spatio-temporal state process at some
fixed network of locations s1 . . . , sn. The state process
Y is of primary interest, and the two sets of spatial
locations s̄i, si ∈ D need not be the same. Then Z and
Y can be expressed by the system of equations

Zt = KtY t + εt (1)

Y t = HY t−1 + ηt (2)

for t = 1, . . . , T. In this representation, Eq. (1) is
referred to as the ‘measurement equation,’ and Eq. (2)
the ‘state equation.’ The matrix Kt is a known mt × n
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matrix that maps the data Zt to the process Y t.
The measurement noise εt is zero-mean, uncorrelated
in time and Gaussian with an mt × mt covariance
matrix Rt. The dynamics are described in the state
equation (2) via a first-order Markov process with
transition matrix H. The shocks ηt are spatially
colored, temporally white, and Gaussian, with mean
zero and a common n × n covariance matrix Q.
The process starts with a Gaussian spatial process
Y0 with mean µ0 and n × n covariance matrix �0.
The parameters of the system in Eqs. (1) and (2)
are represented as � = {µ0, �0, H, Q, Rt}. Often,
researchers use Bayesian hierarchical models (see
the section following) for dealing with the high-
dimensionality, i.e., problematic in most space–time
applications. Xu and Wilke2 show it is often possible
to fit such models and estimate � using a Kalman
filter and expectation–maximization (EM) algorithm.

If the values of the parameters � are known, then
the Kalman filter and Kalman smoother20–22 can be
used to obtain the conditional mean and covariance of
the state variable Y t. Xu and Wilke2 give a nice review.
On the other hand, if they are not known, they can be
estimated using method of moments. Those estimates
are then ‘plugged into’ Eq. (1) to implement the
Kalman filter.19 However, the Kalman recursion has,
as a by-product, the computed value of the likelihood.
From this, the maximum likelihood estimates of � can
be computed numerically23 or via an EM algorithm
(details in Ref 24). The EM iteration consists of two
steps: an ‘E-step’ and an ‘M-step.’ In the context of
spatio-temporal data, and the state space model in
Eqs. (1) and (2), the complete data vector is given
by (Y0, Y1, . . . , YT , Z1, . . . , ZT) with likelihood LY,Z,
say. Given the current value of the parameters �(j−1),
the E-step computes the expected value of LY,Z.
Denote this expectation g(� | �(j−1)). In the M-step,
an update �(j) is chosen to ensure that the likelihood
increases monotonically, i.e., �(j) is chosen to satisfy
g(�(j) | �(j−1)) < g(�(j−1) | �(j−1)). If the likelihood is
bounded, then the iterates �(j) eventually converge to
the maximum likelihood estimator. If �(j) is also
a minimum of g(� | �(j−1)), the algorithm is the
‘standard EM algorithm.’ Otherwise, it is known as
the ‘general EM algorithm.’

In the case of the state-space model for spatio-
temporal applications, the data vector Zt is usually of
high dimension, and correspondingly, the parameter
� is also of high dimension. Xu and Wilke2 provide
a method for dimension reduction that reparameter-
izes � by exploiting the structure of the process.
They provide several approaches for specifying realis-
tic models for Rt, Q, and H. Their first approach uses
an expectation-conditional maximization algorithm,

in which they replace the M-step with two simpler con-
ditional maximization steps. The second approach is a
general EM algorithm based on one Newton–Raphson
step proposed in Ref 25. In that same paper, Xu and
Wilke2 provide algorithms for the parameterizations
of the Rt matrix, the Q matrix, and the H matrix.

HIERARCHICAL BAYESIAN
SPACE–TIME MODELS
In the Bayesian framework, modeling spatio-temporal
processes requires the implementation of hierarchical
Bayesian methodology, also referred to as Bayesian
maximum entropy. Many examples of hierarchical
Bayesian space–time modeling are found in the
literature.26–36 In general, these models take into
account the uncertainty in the observations, in the
specification of the spatio-temporal process, and in
the knowledge of the parameter values which describe
the dependence in space and time. Because of the
high level of complexity in a joint specification of all
of these degrees of uncertainty, hierarchical models
rest on the ability to factor the joint distribution of
the data, process, and parameters into a product of
conditional distributions. This Bayesian hierarchical
structure allows the process to be modeled in terms of
means at various stages, as opposed to an unwieldy
joint covariance matrix. The models also provide
the analyst with opportunities to explore trade-
offs between rich time-lagged site-specific time series
models and models based on more direct specification
of spatial structure, but at short time lags.28

The paper of Handcock and Wallis26 is one
of the seminal papers which applies Bayesian
methodology to spatio-temporal data. The authors
take a traditional approach, choosing priors for which
numerical integration can be performed to determine
posteriors. However, Handcock and Wallis26 give no
mention of the Markov chain Monte Carlo (MCMC)
approach for simulating approximate posteriors.
Wilke et al.28 were the first to implement a fully
Bayesian (hierarchical) space–time dynamic model.
However, their approach does not allow for the
case when there is a significant small-scale spatial
structure that does not have a discernible temporal
evolution. Such behavior is commonly seen in physical
and biological processes. Recognizing this short-
coming, Wikle and Cressie19 consider explicitly
the measurement error and space–time dynamic
components, as well as a non-dynamic term that
captures small-scale spatial variability. They derive
a general empirical Bayesian predictor based on
their model, which has as special cases, the various
space–time models of the approaches in the references
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they cite within their paper, many of which are
included here. We explain their approach in the
following paragraphs.

Following Wikle and Cressie,19 assume that
data Z(s1, t1), . . . , Z(sN, tN) are obtained from an
observable and spatially continuous process {Z(s, t)},
where s ∈ D and t ∈ T, where T is a discrete
index of times. The observable process has a
component of measurement error expressed through
the measurement equation:

Z(s, t) = Y(s, t) + ε(s, t)

where Y(s, t) is an unobservable process, i.e.,
‘smoother’ than Z(s, t). The goal is to predict
the process Y(s, t) regardless of when and where
Z(s1, t1), . . . , Z(sN, tN) are observed. Further assume
that the process Y(s, t) can be written as:

Y(s, t) = YK(s, t) + ν(s, t)

where ν(s, t) is a component of variance representing
small-scale spatial variation that does not have a
temporally dynamic structure and ZK(s, t) evolves
according to the state equation:

YK(s, t) =
∫
D

ws(u)YK(u, t − 1) du + η(s, t)

Here η(s, t) is a ‘spatially descriptive’ component,
ws(u) is a function representing the interaction
between the state process YK at location u and
time t − 1 and YK at location s and time t, called
the ‘temporally dynamic’ component. Through a
series of linear representations and reasonable model
assumptions, Wikle and Cressie19 develop a predictor
that minimizes mean-square prediction error for the
class of all linear predictors, even when the Gaussian
assumption is not appropriate. The predictor can be
expressed recursively in terms of a Kalman filter.

The approach for model parameter estimation
in Ref 19 corresponds to viewing the Kalman filter
as an empirical Bayesian technique. Fully Bayesian
hierarchical approaches, as in Ref 28, can also be
implemented. But as pointed out in Ref 19, there is a
trade-off between computational efficiency, with the
empirical Bayesian approach, and statistical precision,
with the fully Bayesian approach. The approach
proposed in Ref 19 is motivated by the need to model
large spatio-temporal data sets, and so they focus
more on the computationally efficient algorithm.

These two approaches19 and Wikle28 are
the fundamental underpinnings of the majority of
Bayesian methodology applied to spatio-temporal

data. The underlying assumption is that the process
{Y(s, t)} is a Gaussian random field. Work has been
done that expands the approaches to non-Gaussian
processes. See, e.g., Refs 32,36,37 or 38.

Finally, Fahrmeir et al.34 propose extensions
of penalized spline generalized additive models for
analyzing space–time regression data and study them
from a Bayesian perspective. Using their approach
they illustrate inferential methods using either full
Bayes or empirical Bayesian posterior analysis. For
the fully Bayesian technique, their MCMC techniques
are only a slight extension of previous work. For
inference based on empirical Bayesian methodology,
they develop a computationally efficient solution on
the basis of a generalized linear mixed model represen-
tation. This representation can be viewed as posterior
mode estimation and is closely related to penalized
likelihood estimation in the frequentist setting.

Markov chain Monte Carlo algorithms
The high dimension and complexity of the models
discussed above require the use of some form
of an MCMC algorithm to obtain estimates of
posterior and predictive quantities. However, while
MCMC is a powerful and useful technique, rich
models in very high dimensions lead to technical
problems in their implementation. As a result,
while discussing the implementation of MCMC to
spatio-temporal problems, different authors propose
different variations on the MCMC theme. For
example, Waller et al.27 note that the Gibbs sampler39

is not well-suited to their approach, and so enhances
it by using a Metropolis algorithm40,41 to obtain
the necessary samples. They begin with a univariate
version of the algorithm, associating each parameter
with a normal candidate density centered at the
current parameter value with a variance chosen to
provide a Metropolis acceptance ratio between 25
and 50%. Motivated by the fact that the likelihood
by itself cannot inform about spatial heterogeneity
and clustering parameters, but only their sum,27 use
an elementary transformation method42 to update
parameter values. Because their model features many
parameters identified only by a vague prior, they
report slow convergence.

A similar approach is found in Ref 28. They
use a Gibbs sampler approach to MCMC. The choice
of Gaussian distributions with conjugate priors made
the derivation and implementation of the full condi-
tional distributions straightforward, with one excep-
tion—the full conditional distributions for each of
the Markov random fields spatial dependence param-
eters. To account for these, Wilke et al.28 employ
a Metropolis-Hastings step in the Gibbs sampler
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by sampling from the ‘pseudo full conditional
likelihood,’ which makes use of the pseudo-
likelihood approach to classical Markov random field
estimation43 for these parameters. They too report
slow convergence. The study of Wikle and Hooten37

contains a good overview of computational methods,
and includes a sketch of an MCMC program.

EM VERSUS HIERARCHICAL BAYESIAN
APPROACHES
The question of which approach—EM/generalized
expectation-maximization (GEM) or Bayesian—is
‘better’ naturally arises. Generally speaking, the
Bayesian approach is most useful when there is some
understanding about the process dynamics, in partic-
ular, regarding H. When it is reasonable to assume
the parameters are spatially varying (as in Ref 32), the
hierarchical Bayesian approach is more appropriate
than GEM. Xu and Wilke2 conclude that when the
model complexity increases, or when one has signif-
icant prior knowledge about the dynamics, a fully
Bayesian (MCMC) approach is superior to a GEM
approach. However, if the model is relatively simple,
and there is little prior knowledge, then the EM/GEM
approach is more reasonable. They go on to say that
the EM/GEM approach is of limited use if the param-
eter space is highly dimensional because algorithmic
convergence is problematic.

SIMULATING SPATIO-TEMPORAL
DATA
Literature on methods for simulating data from a
spatio-temporal process is sparse. One common means
begins with estimation of the covariance function.
Once the covariance function is estimated, if the pro-
cess is assumed Gaussian, then simulating a realization
from a spatio-temporal model can be accomplished by
simulating from a d-dimensional Gaussian process. If
the process is stationary, the Fourier representation
gives an efficient tool for this (see Refs 12, 44–46, and
the references therein).

LARGE OR MULTIPLE DATASET
CHALLENGES

In addition to the slow convergence encountered
because of high-dimensionality, it is also common
that the data set is large, contributing to long com-
puting times. Another challenge that arises is that
of combining more than one, very different, datasets
to estimate a surface, i.e., changing through time;
see, e.g., Ref 30. Hoar et al.33 provide a solution to
both challenges by migrating the Bayesian hierarchical
model from a workstation-class implementation to a
(massive) parallel architecture. They outline a number
of ways in which running jobs on a (single-processor)
workstation is fundamentally different from using
a shared, high-performance computing environment.
They illustrate those ideas by tracing through the pro-
duction of a value-added surface wind dataset based
on combining two very different wind data sets—one
with irregularly spaced gaps in space and time, the
other on a regularly spaced spatio-temporal grid, but
that lacked sufficient detail. They successfully migrate
software from a workstation-class implementation to
a server-class implementation and outline the plan-
ning in terms of hardware consideration, data stream
management, and software customization.

CONCLUSION

Computational methods play a huge role in the anal-
ysis of spatio-temporal data. Methods for estimation
and inference typically involve some sort of iteration.
Moreover, cross-validation is often used to assess if a
model fits a data set well (see, e.g., Ref 38). Data sets
are often large, requiring sophisticated, efficient algo-
rithms. Often computer hardware—memory, storage,
etc.—also play a role in the many facets that must be
considered. The goal in writing this article is to pro-
vide an overview of the most current, common, and
innovative literature in computational applications to
spatio-temporal processes. Other topics of interest
that provide more insight or additional, supplemen-
tary methods may be found in references 47–59, that
are elaborated in Further Reading.
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FURTHER READING
Literature on modeling spatio-temporal processes is growing rapidly. In addition to the sources cited in this
manuscript, an interested reader might consider the following additional resources. In the development of
nonseparable spatio-temporal covariance functions, the reader is referred to Refs 15,47–53, and the references
therein. For an overview of space–time Kalman filters, the reader is referred to Refs 19,54. An interesting
paper that was difficult to fit into the text of this manuscript is by Ref 55, in which the authors present
the STAR-Miner algorithm for finding patterns in how objects move between regions in space over time.
Background information for Kalman filtering and cross-validation techniques for space–time processes that
are separable (in time and space) are found in Ref 16. Stoffer and Wall56 describe a simple bootstrap
sampling algorithm for parameter estimates in general state-space models, i.e., appropriate for the spatio-
temporal setting. Additionally, Wall and Stoffer57 describe how bootstrap resampling can give estimates of
conditional forecast accuracy. Zheng and Zhu38 present an MCMC approach for a spatio-temporal autologistic
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regression model, proposing a fully Bayesian approach for both model parameter inference and prediction
at future time points. They combine a Metropolis-Hastings algorithm with a Gibbs sampler for obtaining
the posterior distribution of the model parameters as well as the posterior predictive distributions. Gelfand
et al.58 address the change of support problem for spatio-temporal data, including fully Bayesian kriging.
They illustrate the ‘judicious specification of the spatio-temporal association’ enables manageable computation.
Spectral methods are also used for studying spatio-temporal processes in Refs 12,44–46,59 and the references
therein.

382  2010 John Wi ley & Sons, Inc. Volume 2, May/June 2010

 19390068, 2010, 3, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
ics.88 by U

niversity of M
assachusetts D

artm
outh, W

iley O
nline L

ibrary on [22/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


