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Abstract

Prognostic tumor growth modeling via volumetric medical imaging observations can potentially 

lead to better outcomes of tumor treatment management and surgical planning. Recent advances of 

convolutional networks (ConvNets) have demonstrated higher accuracy than traditional 

mathematical models can be achieved in predicting future tumor volumes. This indicates that deep 

learning based data-driven techniques may have great potentials on addressing such problem. 

However, current 2D image patch based modeling approaches can not make full use of the spatio-

temporal imaging context of the tumor’s longitudinal 4D (3D + time) patient data. Moreover, they 

are incapable to predict clinically-relevant tumor properties, other than the tumor volumes. In this 

paper, we exploit to formulate the tumor growth process through convolutional Long Short-Term 

Memory (ConvLSTM) that extract tumor’s static imaging appearances and simultaneously capture 

its temporal dynamic changes within a single network. We extend ConvLSTM into the spatio-

temporal domain (ST-ConvLSTM) by jointly learning the inter-slice 3D contexts and the 

longitudinal or temporal dynamics from multiple patient studies. Our approach can incorporate 

other non-imaging patient information in an end-to-end trainable manner. Experiments are 

conducted on the largest 4D longitudinal tumor dataset of 33 patients to date. Results validate that 

the proposed ST-ConvLSTM model produces a Dice score of 83.2%±5.1% and a RVD of 11.2%

±10.8%, both statistically significantly outperforming (p <0.05) other compared methods of 

traditional linear model, ConvLSTM, and generative adversarial network (GAN) under the metric 
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of predicting future tumor volumes. Additionally, our new method enables the prediction of both 

cell density and CT intensity numbers. Last, we demonstrate the generalizability of ST-

ConvLSTM by employing it in 4D medical image segmentation task, which achieves an averaged 

Dice score of 86.3%±1.2% for left-ventricle segmentation in 4D ultrasound with 3 seconds per 

patient case.

Index Terms-

Tumor growth prediction; Deep learning; Convolutional LSTM; Spatio-temporal Longitudinal 
Study; 4D Medical Imaging

I. INTRODUCTION

Tumor growth modeling using medical images of longitudinal studies is a challenging yet 

important problem in precision and predictive medicine, because it may potentially lead to 

better tumor treatment management and surgical planning for patients. For example, 

treatments of pancreatic neuroendocrine tumor (PanNET or PNET) include active 

surveillance, surgical intervention, and medical treatment. Active surveillance is undertaken 

if a PanNET does not reach 3 cm in diameter or a tumor-doubling time <500 days; otherwise 

the corresponding PanNET should be resected due to the high risk of metastatic disease [1]. 

Medical treatment (e.g., everolimus) is for the intermediate-grade (PanNETs with radiologic 

documents of progression within the previous 12 months), advanced or metastatic disease 

[2]. Therefore the patient-specific prediction of PanNET’s growth pattern at earlier stages is 

highly desirable, since it will assist decision making on different treatment strategies to 

better manage the undergoing treatment or surgical planning.

Conventionally, this task has been well exploited through complex and sophisticated 

mathematical modeling [3]–[9], which accounts for both cell invasion and mass-effect using 

reaction-diffusion equations and bio-mechanical models. From there the actual tumor growth 

can be predicted by personalizing the established model based on clinical imaging derived 

tumor physiological parameters, such as morphology, metabolic rate, and cell density. While 

these methods yield informative results, most of them have not been able to utilize the 

underlying statistical distributions of tumor growth patterns in the studied patient population. 

The number of mathematical model parameters is often very limited (e.g., 5 in [8]), which 

might not be sufficient to model the inherent complexities of the growing tumors.

Furthermore, two alternative approaches have been proposed to predict tumor growth. 1) 

Assuming that the future tumor growth pattern follows its past trend, optical flow computing 

can be used to estimate previous voxel-level tumor motions, and subsequently, to predict the 

future deformation field via an autoregressive model [10]. Therefore the entire future brain 

MR scan can be generated but the resulting tumor volume still needs to be measured 

manually. For slow- and fast-growing brain tumors, the method achieves 13.7% and 34.2% 

volumetric estimation errors, respectively. However this approach does not involve the tumor 

growth pattern in population trend, and may over-simplify the essential challenge because it 

only infers the future tumor imaging under a linear way. 2) To address this issue, machine 

learning principle is a potential solution to incorporate the population trend into tumor 
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growth modeling. The pioneer study [11] attempts to model the glioma growth patterns as a 

pixel classification problem where traditional machine learning pipeline of hand-crafted 

feature extraction and selection and classifier training is applied. Although only moderate 

levels of accuracy (where both precision and recall values are 59.8% [11]) has been 

achieved, this data-driven statistical learning approach has shown its potential to tackle the 

highly changeling task of glioma (as a fast-growing tumor) growth prediction. Nevertheless 

the hand-crafted imaging features could be compromised by the limited understanding of 

tumor growth process, and may not generalize well for other tumors.

Recently, statistical and deep learning framework [12] and two-stream convolutional neural 

networks (ConvNets) [13] have shown more compelling and improved performance than the 

mathematical modeling approach [8] using the same pancreatic tumor dataset. More 

importantly, the later study [13] demonstrate the effectiveness of deep ConvNets in 

characterizing two fundamental processes of both cell invasion and mass-effect of tumor 

growth.

From [12], image patch based ConvNets extract deep image features that are late-fused with 

clinical factors, followed by a support vector machine (SVM) classifier using all features. 

Such a separated process may not fully exploit the inherent correlations between the deep 

image features and clinical factors. The two-stream ConvNet architecture [13] treats the 

prediction as a local patch-based classification task, which does not consider the global 

information of the tumor structure and its surrounding spatio-temporal context. Both 

methods make predictions based on 2D image slices whereas the tumor growth modeling is 

in fact a 4D (3D+time) problem. Additionally, [12], [13] cannot predict other clinically 

relevant properties, such as tumor cell density and radiodensity in Hounsfield units (HU). 

Last, due to the difficulties in collecting the longitudinal tumor data and the complexities of 

data preprocessing, both studies are only conducted and evaluated using a relatively small 

dataset consisting of ten patients.

In this paper, we propose a novel deep learning approach that incorporates both 3D spatial 

and temporal image properties and clinical information into one single deep neural network. 

Our main contributions are summarized as follows. (1) A novel spatio-temporal 

Convolutional Long Short-Term Memory (ST-ConvLSTM) network is proposed to jointly 

learn the intra-slice spatial structures, the inter-slice correlations in 3D contexts, and the 

temporal dynamics in time sequences. (2) Compared to previous machine (deep) learning 

based methods [11]–[13] that utilize 2D image patches and predict the future tumor volume 

only, our new model is holistic image-based and enables the predictions of future tumor 

imaging properties, i.e., future cell density and CT intensity numbers for relevant clinical 

diagnosis. (3) Other clinical information, such as time intervals can be fully integrated into 

our end-to-end trainable deep learning framework. (4) To the best of our knowledge, we 

construct the largest longitudinal pancreatic neuroendocrine tumor (which is a relatively 

slow-growing tumor) growth database to date (33 patients with serial CT imaging added), 

enriching our previous dataset by more than 3 times [12], [13]. (5) We demonstrate the 

effectiveness and high efficiency of employing 4D ST-ConvLSTM for a 3D+time left-

ventricle ultrasound image segmentation task. Only a small subset of sparsely-annotated 3D 

ultrasound volumes per time sequence are required by ST-ConvLSTM.
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II. RELATED WORK

In recent computer vision developments, the task of future image frame prediction (i.e., 

predicting a visual pattern of RGB raw pixels given a short video sequence) has attracted 

great research interests [14]–[19]. It is closely related to unsupervised feature learning and 

can enable intelligent agents to react to the environments. Table I briefly summarizes recent 

representative deep learning based approaches to tackle this problem. There are mainly four 

key technique components being exploited: convolutional LSTMs (ConvLSTM), generative 

adversarial network (GAN), encoder-decoder network, and motion (mostly optical flow) 

cues.

LSTM [31] is designed for the next time-step status prediction in a temporal sequence, and 

can be naturally extended to predict the consequent frames from previous ones in a video 

[20]. Next, ConvLSTM [21] is proposed to preserve the spatial structure in both the input-to-

state and state-to-state transitions. Subsequently, ConvLSTM becomes the backbone model 

of several video prediction approaches [14]–[19], [23]–[25], where each work is enhanced 

with additional improvements. For example, 1) optical flow is introduced in an encoder-

ConvLSTM-decoder framework [23] to explicitly model the temporal dynamics; 2) 

ConvLSTM is reformulated to predict motions from the current pixels to the next pixels [24] 

with the goal of alleviating the blurry prediction images; 3) ConvLSTM is integrated in 

encoder-decoder networks to estimate the discrete joint distributions of the RGB pixels 

which archived the highest accuracy on the moving digits dataset [16]; 4) additionally, a new 

spatiotemporal LSTM unit [18] is designed to memorize both temporal and spatial 

representations, thus obtaining better performances than the conventional LSTM.

In addition to ConvLSTM, ConvNets integrated with GAN [22], [27], [29] based image 

generators represent the other thread of promising solutions, especially effective on 

sharpening blurry predictions. Encoder-decoder networks [14]–[17], [23], [26], [28] 

commonly serve as backbone deep learning architectures to achieve the image-to-image 

prediction that typically contain multiple convolutional layers for subsampling and several 

deconvolutional layers for upsampling. Comprehensive discussions of the above techniques 

are given in [15], [17], [19], where state-of-the-art quantitative performances are presented 

using video, vehicle and pedestrian datasets.

ConvLSTM has also been employed for 3D medical image segmentation, and is an effective 

way of treating the 3D volume as a sequence of 2D consecutive slices [32]–[34]. Compared 

to the 2D ConvNets-based segmentation, ConvLSTM tends to be more robust and consistent 

inter-slice wise since 3D contextual information is memorized and propagated in the z-

direction.

Beyond the problems of 3D medical image segmentation (directly on 3D volumetric data 

scans) and natural video prediction (using 2D image+time sequences), tumor growth 

prediction is processed on 4D longitudinal volumetric patient imaging scans. Desirable 

prediction models should not only recall the temporal evolution trend, but also keep 

consistent with the tumor’s 3D spatial contexts. Motivated by this assumption, we propose a 

novel ST-ConvLSTM network to explicitly capture their dependencies among 2D image 
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slices, through the recurrent analysis over spatial and temporal dimensions concurrently. An 

alternative way of extending ConvLSTM to 4D image is based on 3D ConvLSTM model 

[35]. However, given the computational complexity of both 3D convolution and LSTM, such 

a model is hard to train and get converged. Furthermore, due to the large GPU memory 

consumption, its input size is limited which potentially affects its performance.

4D medical image segmentation, such as the segmentation of 3D+time ultrasound volumes 

[36], is another application scenario of our ST-ConvLSTM model. Currently, 2D or 3D 

ConvNets are the main deep neural network models to solve 4D segmentation problem. 

Although well-designed 2D/3D ConvNets could produce promising accuracy, the 4th 

temporal dimension contains the time-consistency constraints and can potentially improve 

the 4D segmentation accuracy. However direct usage of 4D ConvNets for segmentation is 

extremely slow and less practical, mainly because of the large computational complexity and 

the lack of 4D labels (e.g., the manual segmentation annotations for all 3D image volumes 

per sequence).

III. METHODS

A. Construction of 4D Longitudinal Tumor Dataset

Our 4D longitudinal tumor imaging data set used in this study consists of dual-phase 

contrast-enhanced CT volumes at three time points for each patient. As shown in Fig. 1, for 

each pair of pre- and post-contrast (arterial phase) 3D CT volumes at the same time point, 

their organ (e.g., pancreas) regions are first roughly cropped and registered to post-contrast 

CT using the ITK1 implementation of mutual information based B-spline registration [37]. 

The segmentation is performed manually by a medical trainee using ITK-SNAP [38]2 on the 

post-contrast CT (as those tumors can be better evaluated in the arterial phase), under 

supervision of an experienced radiologist. Three image feature channels are derived: 1) 

intracellular volume fraction (ICVF) images representing the cell density that is normalized 

between [0 100] (more details about ICVF calculation can be referred to [7]); 2) post-

contrast CT images in soft-tissue window [−100, 200HU] and linearly transformed to [0 

255]; 3) binary tumor segmentation mask (0 or 255). A sequence of image patches of 32×32 

pixels3 centered on the 3D tumor centroid is cropped to cover the entire tumor. The cropping 

is repeated for the three ICVF-CT-Mask channels (right panel in Fig. 1) and forms an RGB 

image as illustrated in Fig. 2. The dataset is prepared for every tumor volume at each time 

point, and imaging volumes at different times are aligned using the segmented 3D tumor 

centroids, to build the spatio-temporal sequence data set for training and testing. We 

acknowledge that there might be some bias of using simple tumor centroids for the 

longitudinal alignment, but this is a relatively (more) reliable approach compared to the 

image appearance based registration methods, based on our preliminary experiment and past 

studies (e.g., [8], [12], [13]).

1https://itk.org/
2http://www.itksnap.org/
3Most pancreatic tumors in our dataset are <3 cm (≈30 pixels) in diameter.
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B. Spatio-Temporal Convolutional LSTM

1) Convolutional LSTM: LSTM [20] operates on temporal sequences of 1D vectors, 

and can reconstruct the input sequences or predict the future sequences. A LSTM unit 

contains a memory cell Ct, an input gate it, a forget gate ft, an output gate ot, and an output 

state Ht. Compared with the conventional LSTM, ConvLSTM is capable of modeling 2D 

spatio-temporal image sequences by explicitly encoding their 2D spatial structures 

(replacing LSTM’s fully connected transformations with spatial local convolutions in 

ConvLSTM) into the temporal domain [21], [33]. The main equations of ConvLSTM are as 

follows:

ft = σ W xf * Xt + W ℎf * Ht − 1 + bf
it = σ W xi * Xt + W ℎi * Ht − 1 + bi
Ct = tanh W xC * Xt + W ℎC * Ht − 1 + bC
ot = σ W xo * Xt + W ℎo * Ht − 1 + bo
Ct = ft ⊙ Ct − 1 + it ⊙ Ct
Ht = ot ⊙ tanh Ct

(1)

where σ and tanh are the sigmoid and hyperbolic tangent non-linearities, * is the convolution 

operator, and ⊙ is the Hadamard product. The input Xt, cell Ct, hidden states Ht, forget gate 

ft, input gate it, input-modulation gate Ct, and output gate ot are all 3D tensors with the 

dimension of M × N × F (rows, columns, feature maps). The memory cell Ct is the key 

module, which acts as an accumulator of the state information controlled by the gates.

2) ST-ConvLSTM Network and Unit: Given the ICVF-CT-Mask three-channel input 

maps at time 1 and time 2 (as Xt = Xt
i, Xt

c, Xt
m , t ∈ {1, 2}, respectively), the aim is to 

predict the output ICVF-CT-Mask maps at time 3 (as Y t = Y t
i, Y t

c, Y t
m , t = 3), shown in Fig. 

2. Directly using ConvLSTM over temporal domain could discover the tumor 2D dynamics 

for its growth prediction. Furthermore, the spatial consistency in the 3D volume data and its 

form of sequential nature of 2D image slices make it possible to extend ConvLSTM to the 

3D spatial domain.

Instead of simply concatenating the 2D CT slices, in order to learn simultaneously both the 

spatial consistency patterns among successive image slices and the temporal dynamics 

across different time points, we propose a new Spatio-Temporal Convolutional LSTM (ST-

ConvLSTM) network as illustrated in Fig. 2 (left panel). In this network, each ST-

ConvLSTM unit takes input from one image slice at one time point in the 4D space, and 

receives the hidden states from both the horizontal (the same slice locations at previous 

time) and vertical directions (previous adjacent slice at the current time). For example, the 

unit (s, t) in Fig. 2 (left panel) corresponds to the sth slice at time t, and receives the hidden 

states Hs,t-1 from unit (s, t - 1) and Hs-1,t from unit (s - 1, t). Along with the current input 

image slice Xs, t = Xs, t
i , Xs, t

c , Xs, t
m , the ST-CLSTM unit (s, t) can predict the future slice 

Y s, t + 1 = Y s, t + 1
i , Y s, t + 1

c , Y s, t + 1
m , and generate its hidden state Hs,t. For the 4D ultrasound 

image segmentation task, the goal is from any current input raw image slice (e.g., Xs,t) to 

generate its output segmentation mask Y s, t
m . In each ST-CLSTM unit (right in Fig. 2), since 
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there are two different candidates generated from the spatial and temporal domains, 

respectively, two forget gates fs, t
S  and fs, t

T  are equipped for adding them to update the unit 

state. The activations of a ST-ConvLSTM at (s, t) are as follows:

fs, t
S = σ W xfs * Xs, t + W ℎsfs * Hs − 1, t + W ℎtfs * Hs, t − 1 + bfs

fs, t
T = σ W xfT * Xs, t + W ℎsfT * Hs − 1, t + W ℎtfT * Hs, t − 1 + bfT

is, t = σ W xi * Xs, t + W ℎsi * Hs − 1, t + W ℎti * Hs, t − 1 + bi
Cs, t = tanh W xC * Xs, t + W ℎsC * Hs − 1, t + W ℎtC * Hs, t − 1 + bC
os, t = σ W xo * Xs, t + W ℎso * Hs − 1, t + W ℎto * Hs, t − 1 + bo
Cs, t = fs, t

S ⊙ Cs − 1, t + fs, t
T ⊙ Cs, t − 1 + is, t ⊙ Cs, t

Hs, t = os, t ⊙ tanh Cs, t

(2)

where the input Xs,t, cell Cs,t, hidden states Hs-1,t and Hs,t-1, and gates fs, t
S , fs, t

T , is,t, Cs, t, os,t 

are all 3D tensors with dimensions of M × N ×F (rows, columns, feature maps). More 

precisely, Xs,t in Eq. (1) and Eq. (2) represents the feature maps (i.e., 8 × 8 × 8 bottleneck in 

Fig. 3) after the convolutional encoder on the input image.

The unit of ST-ConvLSTM (1,1) does not have any preceding units in both the spatial and 

temporal directions, and units at time 1 level do not have the preceding units in their 

temporal direction. Zeros activations are fed into these units. The output hidden state of the 

last unit at time 1 level carries all the tumor information at time 1, thus bringing the global 

contexts to time 2 through the link connecting itself and the first unit at time 2. It is worth 

mentioning that the ST-ConvLSTM network is flexible that it can be easily extended to 

receive more numbers of input time points or to predict longer future steps by recursively 

applying the model. Moreover, for 3D+time segmentation task, only sparsely-labeled 

manual segmentations are required, e.g., representative volumes or even slices.

3) End-to-End Architecture: We embed the ST-ConvLSTM unit in the encoder-

decoder architecture [16], [24] to make the end-to-end predictions, as shown in Fig. 3 to 

replace the ST-ConvLSTM unit in Fig. 2. In other words, Fig. 3 happens in every ST-

CLSTM unit in Fig. 2. Specifically, each frame Xs,t in the 4D spatio-temporal space is 

recurrently passed into the encoder which consists of four convolutional layers to encode a 

feature map. Along with the image features, clinical factors have non-neglectful influences 

on predicting the future image as well. We integrate the related factors into our model by 

spatially tiling the factors (i.e., m-dim vector) as a feature map with m-channels (m=1 in this 

paper, where only the time interval is added), which is then concatenated to the output of 

conv4 which possesses the smallest number of channels. The concatenated feature map is 

then fed into a standard ST-ConvLSTM unit (Fig. 2) with a 3×3 kernel and 8 hidden states 

for the spatio-temporal modeling. As such, the ST-ConvLSTM determines the future state by 

jointly considering or integrating the compact spatial information of the current slice, the 

states of slices from previous times and adjacent locations, and clinically relevant factor(s). 

After that, the decoder with four deconvolutional layers generates the future frame Ys,t+1. 

Because having a smaller transitional kernel helps ConvLSTM to capture smaller motions 

[21], we use a 3×3 convolutional kernel by taking into account the knowledge prior that the 
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pancreatic tumor in our dataset is slow-growing. For fast-growing tumors, such as glioma, a 

larger convolutional kernel should be used.

4) Network Training and Testing: For the tumor growth prediction task, during 

training, tumor image slices from time 1 and time 2 are fed as inputs into our network 

according to their corresponding spatio-temporal locations. Image slices from time 2 and 

time 3 are used to compute training loss. The objective function of our ST-ConvLSTM 

network is designed to minimize the ℓ2 loss between the predicted frames Y and the true 

future frames X at time 2 and time 3 (other losses, such as ℓ1 and GDL [22] have been tried, 

but ℓ2 produces empirically better results in our preliminary experiment):

L X, Y = ∑
t = 1

2
∑

s = 1

S
l2 Y s, t + 1, Xs, t + 1 (3)

where S is the spatial sub-sequence length (set to 5 in our current method). Note that 

minimizing the ℓ2 loss only at time 3 will have slightly lower performances, and more 

importantly, cannot maintain a reasonable performance on predicting time 2 which is not 

desired.

In testing, each spatial sequence (at time 1 and time 2) is divided to several sub-sequences, 

and fed into our model to generate predictions for time 3. These sub-sequences can be either 

overlapping or non-overlapping. In our preliminary experiment, no significantly differences 

are ever observed, so we use the non-overlapping sub-sequences for efficiency. In addition, 

our model is flexible to be extended to make prediction at an arbitrary later time point given 

the observational data of two previous time points, e.g., predicting time 4 based on time 1 

and time 2, by directly setting the value of factor (as depicted in Fig. 3) as the time interval 

between time 2 and time 4. For the problem of 4D ultrasound image sequence segmentation, 

refer the network training and testing details to Sec. IV-E.

IV. EXPERIMENTS

A. Data and Protocol

Thirty-three patients (thirteen males and twenty females) each with a PanNET are collected 

from the von Hippel-Lindau (VHL) clinical trial at the National Institutes of Health. Each 

patient has at least three time points (eleven of these patients have the 4th time points) of 

dual-phase contrast-enhanced CT imaging, with the time interval of 398±90 days (average

±std). The CT voxel sizes range between 0.60 × 0.60 × 1 mm3 - 0.98 × 0.98 × 1 mm3, and 

are resampled to 1 × 1 × 1 mm3 by trilinear interpolation. We did not include the modality of 

FDG-PET imaging as it only exists in a small portion of patients or time points. We 

acknowledge that the prediction performance may not be optimal without PET information. 

Nevertheless a CT-only predictive model can have wider application scenario (e.g., when 

more specific PET imaging is not available). The average age of patients and average 

volume of tumors at time 1 are 50±11 years and 1.7±1.7 cm3, respectively. Fig. 4 shows the 

trajectories of PanNET growth rates for different patients. The average information of all 33 

patients is shown in Table II. These tumors keep slowly growing in general, but the growth 

speed is lower in the 2nd-3rd time period. From the 1st to 2nd time points, only one tumor 
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shrinks. Such a number changes to twelve from the 2nd to 3rd time points. Only 11 patients 

have real imaging data and time interval information at time 4.

B. Experimental Design & Implementation Details

Training details: Four data augmentation schemes are performed to enrich our dataset. 

Besides the original axial image slice sequences, we 1) reformat/reslice original volumes to 

obtain coronal and sagittal slices, 2) rotate (with 90 degree interval), 3) translate/shift 

(randomly 2 pixels in xy plane) for each 4D ICVF-CT-Mask volumetric sequence, and 4) 

reverse the slice order in spatial direction. Then, S=5 sub-sequences are cropped from the 

augmented sequences (the minimal-sized tumor in our dataset has about 5 slices), resulting 

in 172,296 training sub-sequences in total. Such methods add more variations into the 

generated or augmented dataset and improve the generalization capability. Note that we 

ensure the augmented sequences are still spatio-temporally aligned. We train our ST-

ConvLSTM models for 5 epochs with the batch size of 16. Each data point has 5 slices at 

three time points. We use the ADAM optimizer [39] for neural network optimization with an 

initial learning rate of 10−3.

Testing details: In the testing scenario, given any testing PanNET data including pre- and 

post-contrast CT scans from time 1 and time2 (Xt = Xt
i, Xt

c, Xt
m , t ∈ {1, 2}), the 

preprocessing steps in Sec. III-A are applied to first obtain the aligned spatio-temporal 

ICVF-CT-Mask sequence pair. Next we divide the aligned data into several non-overlapping 

sub-sequence pairs: each sub-sequence image pair containing 5 consecutive slices from time 

1 and their corresponding 5 from time 2. By feeding these sub-sequence pairs together with 

the time interval features as (time1-time2) and (time2-time3) into our model, the future (at 

time 3) consecutive data slices (Y t = Y t
i, Y t

c, Y t
m , t = 3) can be predicted and produced. A 

thresholding value of 128 is applied upon the predicted probability map of mask channel to 

obtain a binary tumor mask Ym.

Comparison: We implement the current clinical practice of a default linear growth model, 

the conventional ConvLSTM [21], and another major deep learning method for video 

prediction, i.e., BeyondMSE (GAN) [22], for model comparison. The linear growth model 

assumes that tumors would keep their past growing trend in the future. As detailed in [13], 

the past radial expansion/shrink distances on tumor boundaries are used to expand/shrink the 

current tumor boundary as future prediction. The ConvLSTM uses the same architecture as 

in Fig. 3 (but it only captures the temporal dependencies) and is trained with the same 

network optimization setting as ST-ConvLSTM. In the BeyondMSE framework, a multi-

scale fully convolutional ConvNet is used as the future image generator, and a multi-scale 

ConvNet as the discriminator. The generator receives two past images as input and outputs 

one future image, while the discriminator receives all three images as input to classify 

whether they are real or fake. Our implementation uses the same network architecture and 

parameter setting as in [22]. Both ConvLSTM and BeyondMSE are trained for 5 epochs on 

the same augmented dataset as ST-ConvLSTM. All these aforementioned models are 

implemented in TensorFlow [40] and perform experiments on a DELL TOWER 7910 

workstation with 2.40 GHz Xeon E5–2620 v3 CPU, 32 GB RAM, and a Nvidia TITAN X 
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Pascal GPU of 12 GB of memory. Note that compared to previous machine (deep) learning 

based tumor growth model prediction methods [11]–[13] that merely utilize 2D image 

patches and only predict the future tumor volume, our new ST-ConvLSTM model is 

holistically 4D (volumetric+time) image-based and enables the predictions of future tumor 

imaging properties, such as future cell density and CT intensity numbers to assist relevant 

clinical diagnosis.

Predicting a later future: In this experiment, we evaluate the problem of predicting a 

later time step 4 given only time 1 and time 2 available. For those 11 patients who have 

follow-up studies at time 4, we directly set the time interval between time 2 and time 4 as the 

feature in the trained predictive model. For the remaining 22 patients without the follow-up 

time step 4, we assume that their time 3 and time 4 have the equal time interval as the 

interval between their time 2 and time 3, in order to investigate the effectiveness of time 

interval feature in our predictive model on a larger patient cohort (of all 33 patient data).

C. Evaluation Methods

We evaluate our model using three-fold cross-validation. In each fold, 22 patients are used as 

training and the remaining 11 patients as testing data. The performance of tumor prediction 

is evaluated at the 3rd time point by the metrics of Dice coefficient and RVD (relative 

volume difference) [8], [12], [13] for tumor volume, RMSE (root-mean-squared error) for 

ICVF [8], and diff.HU (difference of average HU values) for CT value.

Dice = 2 × TPV
V pred + V gt

RVD = V pred − V gt
V gt

RMSE = ∑ icvfpred − icvfgt /icvfgt
2

TPV
diff . HU = HUpred − HUgt

HUgt

(4)

where TPV (true positive volume) is the overlapping volume between the predicted tumor 

volume Vpred and the ground truth tumor volume Vgt. icvf represents the ICVF value of a 

pixel. HU represents the average Hounsfield units within a volume. Both RMSE and diff.HU 

are evaluated within the TPV following [8], in which RMSE of ICVF prediction is assessed 

in the TPV. Paired t-tests are conducted to compare our new model and other previous 

methods.

We calculate the scatter plots of the ST-ConvLSTM predicted tumor volumes and the 

respective growth rates (Fig.6), in comparison with the ground truth. Based on the tumor 

growth rate, we also assess the performance of our method on another clinical relevant 

prediction task - prediction of tumor progression vs. regression at time 3. Specifically, the 

prediction results are divided in two groups comprising tumor progression (positive growth 

rate) and tumor regression (negative growth rate), where sensitivity and specificity are used 

as evaluation metrics. As an alternative solution, traditional machine learning methods are 

applied on this task by training binary classifiers and evaluating using the same three-fold 
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cross-validation. Specifically, age, gender and tumor volume measures at time 1 and time 2, 

tumor volume changes between time 1 and time 2, are extracted as features for 

classification. Optimal feature combinations are experimented and assessed by several 

common classifiers including logistical regression, linear SVM, neural network (one hidden 

layer), and random forest.

We examine the contribution of each input feature channel, by training with only one and 

predicting the corresponding future one: for example, from given previous CT scans to 

predict a future CT image. Note that RMSE and diff.HU reported here are also evaluated 

within the true positive volume.

D. Quantitative Results

The visual example in Fig. 5 shows the prediction results of future CT scan, tumor mask/

volume, and ICVF obtained by ST-ConvLSTM (with time interval feature) and ConvLSTM. 

In this case, compared with the conventional ConvLSTM, our ST-ConvLSTM generates 

more spatially consistent prediction towards the actual tumor in terms of CT, mask and 

ICVF, and consequently, achieves better accuracies under all quantitative metrics (i.e., 

diff.HU, Dice, RVD and RMSE). Table III reports the overall performance of our ST-

ConvLSTM model (with and without time interval feature) with that of ConvLSTM and the 

linear model on 33 patients. For the volume prediction, ST-ConvLSTM (w. time) produces a 

Dice score of 83.2% and a RVD of 11.2%. Both are significantly better than ConvLSTM (p 
<0.01 and p <0.05) and linear predictive model (p <0.001 and p <0.01). Furthermore, our 

model generates a RMSE of 14.0% for tumor cell density prediction, and a diff.HU of 

10.2% for radiodensity prediction (no statistical significances are achieved on these two 

metrics in comparison to ConvLSTM). There is no significant difference between ST-

ConvLSTM with and without time interval feature.

The ST-ConvLSTM predicted tumor volumes achieve high correlations against the ground 

truth volumes (linear correlation coefficient r=0.96, the left panel in Fig. 6). However, the 

prediction of tumor growth rate is highly challenging (with r=0.04, the right panel in Fig. 6), 

especially for some extreme cases such as tumor shrink and aggressive progression 

(quadrants II and IV in the right panel in Fig. 6). Thus we assess the performance of a 

relatively more convenient binary prediction task: tumor progression (positive growth rate, 

21 patients) versus regression (negative growth rate, 12 patients). As shown in Table IV, our 

method has a sensitivity of 76.2% and specificity of 50%, in compared to an optimized 

machine learning approach on this dataset that achieves a sensitivity of 61.9% and 

specificity of 50%. This result is obtained by a random forest classifier using the tumor 

volume at time 1 as the only feature (other feature combinations and classifiers are 

empirically worse than this performance). The overall available features and patient numbers 

for our studied problem are still limited.

Figure 7 compares the prediction results of our ST-ConvLSTM with BeyondMSE (GAN) 

[22]. In this case, BeyondMSE has reported noticeably worse performance in predicting 

tumor volume, but generates less blurry CT and ICVF images (through visually 

observation). Table III lists the overall prediction performance of BeyondMSE, where the 
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proposed method significantly outperforms BeyondMSE in terms of Dice, RVD, and ICVF-

RMSE.

Fig. 8 shows the prediction results at an even later time step using ST-ConvLSTM for all 33 

patients. As a result, 78.8% tumors are predicted to keep growing at later time points - the 

predicted volume at time 4 is larger than time 3. For the 11 tumors which have ground truth 

measures of tumor volume at time 4, our prediction produces a RVD of 37.2%±42.5%. Fig. 

9 illustrates qualitative tumor visualization results upon changing the time interval feature, to 

examine the model’s predictions at future possible time steps. From Table V, when using the 

tumor mask as the single input channel, it produces statistically similar Dice and RVD 

measures as three input channels are utilized. However the three-channel ICVF-CT-Mask 

input configuration generates clearly better performance on RMSE and HUdiff. predictions.

On average, our method takes ~ 1.2 hrs for training and 0.2 second for prediction per tumor. 

This performance is faster than the statistical and deep learning framework (~ 3.5 hrs 

training and 4.8 mins prediction [12]) in both training and inference; while faster than the 

two-stream ConvNets [13] in prediction but slower in training.

E. Segmentation in 3D+Time Ultrasound

To further demonstrate the feasibility of ST-ConvLSTM for 4D segmentation, the publicly 

available 3D+time ultrasound dataset CETUS [36] is used. The dataset is acquired from 15 

patients where each patient containing 13–46 3D volumetric image sequences and each 

sequence with two volumes being manually segmented at the end-diastole (ED) and 

endsystole (ES) phases. We resample all 3D ultrasound scans to 1mm3 isotropic resolution. 

For facilitating ST-ConvLSTM training, the 4th dimension is downsampled to a constant 

length (i.e., 6 time points in our work), with image annotation/segmentation masks at the 1st 

and 6th time points. All image slices are resized to 96×96 pixels and pixel intensities are 

normalized to [0, 1].

2D ultrasound image slices are fed as inputs into the network according to their 

corresponding spatio-temporal locations to generate the corresponding segmentation masks, 

via a ℓ2 training loss computing only at two volumes from two time points (ED and ES 

phases). We train our model for 30 epochs with the batch size of 1. Each data instance has 

10 image slices at 6 time points. We use ADAM optimizer [39] for the network optimization 

with an initial learning rate of 10−3. In testing, each sequence is divided to several sub-

sequences and fed into our model to generate the segmentation mask at each time. The 

segmentation masks are post-processed with the largest connected-component selection. 

Five-fold cross-validation at the patient-level splitting is conducted.

Our method achieves the segmentation performance of Dice at 86.8%±2.1% and 85.9%

±1.6% for ED and ES phase, respectively. Compared to the CETUS 2014 challenge winner 

(89.4%±4.1% and 85.6%±5.7%, using deformable model approach) [36], our method 

performs better for ES but worse for ED. Fig. 10 shows an example of our 4D segmentation 

result from ED to ES. Our method is efficient by taking ~ 6.5 hrs for training of 30 epochs 

and only 3 seconds for segmentation in testing per 4D sequence (6 ultrasound volumes in 

our setting).
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F. Discussion

Deep learning based precision and predictive medicine is a new emerging research area, and 

has been shown to be capable of outperforming traditional mathematical modeling based 

methods for tumor growth prediction. This may suggest its great potential for solving this 

complicated but important problem. Because of the tremendous difficulties of collecting the 

longitudinal tumor data, most previous studies are evaluated on a relatively small sized 

dataset (i.e., < 10 patients). A statistically larger and more representative patient dataset is 

desired to evaluate the prediction performance. Our novel model, ST-ConvLSTM network, 

significantly differs from the most recent statistical and deep learning [12] and two-stream 

ConvNets [13] in several key aspects. Firstly, it uses a single recurrent neural network to 

explicitly and jointly model the temporal changes and spatial consistency (i.e., in 4D space), 

rather than separate invasion and expansion networks to model the temporal information 

only (i.e., 2D+time) [12], [13]. Secondly, it makes prediction at the holistic image-level 

instead of local image patch-level, integrating the global spatial context of tumor structure 

and meanwhile being more computationally efficient. Thirdly, it enables the prediction of 

both future images and the associated imaging properties, including CT scan, tumor cell 

density and radiodensity, as demonstrated in this paper. Fourthly, it uses an encoder-decoder 

deep neural network architecture that incorporates imaging feature and clinical factor (such 

as time interval) in an end-to-end learning framework, rather than a late feature fusion stage. 

Fifthly, we construct the largest longitudinal tumor dataset (33 patients) to date to the best of 

our knowledge, and comprehensive quantitative evaluation results against three other 

prediction methods using ConvLSTM [21] and GAN [22]. Finally, we extend our deep 

learning based method to make it capable of predicting any time point in a later future 

(beyond time point 3).

One of our main contributions is the novelty of proposed ST-ConvLSTM architecture. 

Compared to the previous state-of-the-art ConvLSTM [21] model for temporal modeling of 

2D image sequences across different time points, we substantially extend the ConvLSTM 

into the spatio-temporal 4-dimensional space by jointly leaning both the temporal evolution 

of tumor growth and the spatial information of 3D consistency. Particularly, for the adjacent 

2D CT slices, they are also modeled by ConvLSTM (slice-by-slice) to ensure their spatial 

consistency. In addition, the global contexts of previous time point are fed to the current time 

point. Therefore, each ST-ConvLSTM unit makes prediction not only based on its local 

spatial and temporal neighbors, but also from the whole information of past states. As a 

result, our ST-ConvLSTM is able to generate a sequence of images with better 4D properties 

than ConvLSTM, e.g., producing statistically higher accuracy in volume prediction, as 

shown in Table III. An illustrative example can be observed from Fig. 5. ST-ConvLSTM 

generates more consistent tumor morphology and structure for CT, mask, and ICVF 

predictions than ConvLSTM results (of irregular predictions for tumor morphology). An 

alternative option of using ConvLSTM for the 4D prediction task can simply stack 2D CT 

slices as different input channels and modeling the temporal relation using LSTM. However 

such a method cannot exploit either the inherent correlations of inter-slice correlations in 3D 

contexts, or temporal dynamics across time points. The simple linear predictive model 

performs the worst among all compared methods. This is in agreement with the fact that the 

pancreatic neuroendocrine tumors demonstrate nonlinear growth patterns [1], [41]. The 
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ablation study shows that directly predicting the future tumor mask based on previous masks 

may perform comparably with the configuration of using all three information (ICVF, CT, 

mask). This is in accordance with the finding of a computer vision study [27] that 

segmentation-to-segmentation prediction generates no worse result than RGB

+segmentation-to-segmentation prediction. Of course, the complete ICVF-CT-mask 

configuration offers better performance on RMSE and HUdiff. predictions, and more 

importantly, can compute the future tumor CT images (Fig. 9).

Beyond the tumor prediction task, our proposed novel ST-ConvLSTM architecture can be 

adapted conveniently for learning 4D medical image representations. We demonstrate its 

promising accuracy and high efficiency (e.g., 3 seconds to process per 4D imaging 

sequence) in 4D ultrasound image segmentation, while only requiring sparse image 

annotation masks (e.g., 2 out of 6 volumes per 4D sequence in our experiment) for training. 

Furthermore, it can also be applied to 4D classification task by changing the network output.

Besides ConvLSTM, BeyondMSE (GAN) [22] is another deep learning model for future 

frame prediction. Benefited from the ℓ1, image gradient based optimization and adversarial 

losses, GAN could generate less blurry future image predictions, as shown in Fig. 7. 

However GAN has much lower quantitative prediction performance than our method. One 

reason may be that GAN does not explicitly model the temporal dynamics, while LSTM has 

inherent temporal “memory” units though GAN-based tumor prediction can somewhat 

capture the tumor growing trend. For example, in Fig. 7, from time 1 to time 2, the tumor 

invasion happens mostly in its lower part so that GAN predicts the tumor to continue 

infiltrating to the below area at time 3. Nevertheless the tumor actually slows down its 

growing speed at time 3 in that direction. Our ST-ConvLSTM model learns the spatio-

temporal information jointly and can leverage the current slice’s global and local neighbors’ 

information, which results in more robust prediction. On the other hand, the GAN-based 

method may have higher overfitting risk on our task. The network architectures used in [22] 

can be over-complicated for the relatively small-sized data studied in this work.

Using time-interval feature in the ST-ConvLSTM does not improve the prediction accuracy 

compared to without using such feature. This may be because for time 1–2 and time 2–3 in 

our data, 1) the time-intervals are similar (about 1 year) for different patients, and 2) the 

PanNet is slow-growing and can show different growing trend. Actually, recent studies show 

that time feature can be either helpful [42] or not helpful [43] in LSTM-based prediction on 

different medical data. More investigation is needed in this direction. Nevertheless, the time-

interval feature is necessary for tumor growth prediction problem. For example, for the 

prospect of longer future prediction of tumor growth, the time-interval feature is effective to 

control our predictive model to generate sensible prediction results, as shown by the 

illustrative example in Fig. 9. Furthermore, our model predicts that 78.8% tumors keep 

growing at time 4. This is in accordance with the natural history of PanNET tumors, around 

20% decreasing over a median follow-up duration of 4 years [41]. However, considering the 

missing of ground truths of 22 patients at time 4, the related results and discussions should 

be treated with caution. For the 11 patients with ground truths at time 4, the prediction 

accuracy at a longer future time point (i.e., RVD=37.2% at time 4) is much lower than that 

of the next predictable time step (i.e., RVD=15.7% at time 3). This is as expected since it is 
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indeed harder to precisely predict the tumor growth trends and patterns after a longer period 

of time, for example, around two years later using our data. As a reference, a recent 

mathematical modeling based tumor growth prediction method [9] has the relative volume 

errors of later time predictions, ranging from 45% to 123% for breast carcinoma. Another 

solution for predicting further into the future is to recursively apply the two-time-input 

model as in [27], i.e., predicting the outcome of time 4 based on the time 2 and the predicted 

time 3 results.

There are some future directions which may further improve our method. First, the ℓ2 loss 

function used in our model is the major reason that causes blurry predictions. Adversarial 

training [22] can increase the sharpness of the predicted image and is straightforward to be 

incorporated into our ST-ConvLSTM network, through using a discriminator to determine 

whether the generated future image sequence is real or fake during training. Second, 

alternative network architectures, such as skip and residual connections [16], [24] may 

complement our current encoder-decoder network as the backbone. Third, testing time data 

augmentation may further improve the prediction performance, e.g., averaging prediction 

results along three reconstruction directions: axial, coronal, and sagittal. Fourth, predicting 

the tumor growth rate is challenge for the current model. This may be caused by the limited 

training data in which most tumors are slow-growing whereas our model is not trained to 

directly predict the tumor growth rate. Our deep model can scale well and perform better by 

incorporating more patient data when available in the future. Another potential solution is 

explicitly personalizing the predictive model as in our previous work [13]. Although 

obtaining much better result in predicting aggressive progression, we find that it decreases 

the overall volume prediction accuracy (increasing RVD difference from 11.2% to 13.1%) 

on our dataset. Nevertheless, our model shows competitive results on predicting tumor 

progression versus regression compared to traditional machine learning approaches.

V. CONCLUSION

In this paper, we have employed and substantially extended ConvLSTM [21] in the 4-

dimensional spatio-temporal domain for the task of modeling 4D longitudinal tumor data. 

The novel ST-ConvLSTM network jointly learns the intra-slice structures, the inter-slice 3D 

contexts, and the temporal dynamics. Quantitative results of notably higher accuracies than 

the original ConvLSTM [21] are reported, using several metrics on predicting the future 

tumor volumes. Compared to the most recent 2D+time deep learning based tumor growth 

prediction models [12], [13], our new approach directly works on 4D imaging space and 

incorporates clinical factors in an end-to-end trainable manner. This method can also predict 

the tumor cell density and radiodensity. Our experiments are conducted on the largest 

longitudinal pancreatic tumor dataset (33 patients) to date and demonstrate the validity of 

our proposed method. In addition, ST-ConvLSTM enables efficient and effective 4D medical 

image segmentation with only sparse manual image annotations required. The presented ST-

ConvLSTM model can potentially enable other applications of 4D medical imaging 

applications.
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Fig. 1. 
Image processing pipeline of constructing the tumor dataset for one time point.
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Fig. 2. Left:
The proposed Spatio-Temporal Convolutional LSTM (ST-ConvLSTM, or ST-CLSTM) 

network for learning of 4D medical imaging representations to predict tumor growth or 

segment object. In this example, 2 time points (each with 4 spatially adjacent image slices 

and each slice is a 3-channel color image) are shown. This network model can be either used 

to predict tumor growth in 4D longitudinal data (i.e., to generate a future slice Ys,t+1) given 

the input Xs,t; or segment objects in 3D+time images (i.e., to compute the current 

segmentation mask frame Ys,t from an input ultrasound image Xs,t in Sec. IV-E). Right: The 

ST-ConvLSTM unit. The encoder-decoder architecture is depicted in Fig. 3.
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Fig. 3. 
The end-to-end network architecture of our proposed encoder-ST-ConvLSTM-decoder for 

tumor growth prediction. For 4D segmentation task, the input is replaced with the raw (e.g., 

ultrasound) image, the output is its mask, no “factor” branch for other clinical properties, 

and network model channels are set to 1-8-16-32-64-64-64-32-16-1.
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Fig. 4. 
Longitudinal trajectories of PanNET tumor volumes over a population of 33 patients, from 

time 1 to time 3.
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Fig. 5. 
An illustrated example shows the prediction results of CT, mask/volume, and ICVF of a 

tumor by ST-ConvLSTM and ConvLSTM. Note that the tumor contours are superimposed 

on the ground truth CT images at time 3. Red: ground truth boundaries; Green: predicted 

tumor boundaries. In this example, consecutive image slices with the spatial interval of two 

slices are shown for better visualization of the spatial changes/differences.
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Fig. 6. 
Scatter plots of ST-ConvLSTM predicted tumor volumes versus ground truth values (r is the 

linear correlation coefficient) (Left) and predicted tumor growth rates versus true rates 

(Right).
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Fig. 7. 
An example of image slices shows the prediction results of CT, mask/volume, and ICVF of a 

tumor by ST-ConvLSTM and BeyondMSE (GAN). Note that the tumor contours are 

superimposed on the ground truth CT images at time 3. Red: ground truth boundaries; 

Green: predicted tumor boundaries.
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Fig. 8. 
ST-ConvLSTM prediction results at an even later time point. Volume prediction results at 

time 4 based on time 1 and time 2 for all 33 patients. 26 out of 33 (78.8%) patients are 

predicted as tumor keeping growing (i.e., tumor size at time 4 larger than time 3).
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Fig. 9. 
One tumor example using ST-ConvLSTM predictions from time 1 (Day 0) and time 2 (Day 

553), and at different later time points (Day 830, 1106, 1383, 1659). Note that the predicted 

tumor becomes larger when time interval grows.
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Fig. 10. 
4D segmentation results of left ventricle in 3D+time ultrasound by ST-ConvLSTM.
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TABLE I

DEEP LEARNING BASED FUTURE IMAGE FRAME PREDICTION METHODS AND THEIR KEY 

TECHNIQUES. CONVLSTM: CONVOLUTIONAL LONG SHORT-TERM MEMORY; GAN: 

GENERATIVE ADVERSARIAL NETWORK.

ConvLSTM GAN Encoder-Decoder Motion

LSTM [20] - - -

ConvLSTM [21] √ - - -

BeyondMSE [22] - - -

Autoencoder [23] √ - √ √

CDNA [24] √ - - √

MCNet [14] √ - √ √

PredNet [25] √ - - -

STNet [15] √ √ √ √

VPN [16] √ - √ -

Hierarchical [26] - - √ -

S2S-GAN [27] - √ - -

DVF [28] - - √ √

DM-GAN [17] √ √ √ √

PredRNN [18] √ - - -

SNCCL [29] - √ - -

Two-stream [30] - - √ √

Spatial-motion [19] √ √ √ √
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TABLE II

STATISTICS OF TUMOR GROWTH AT THE 1ST, 2ND, AND 3RD TIME POINTS OF 33 PATIENTS.

1st-2nd 2nd-3rd

Days Growth (%) Days Growth (%) Size (cm3, 3rd)

Average 379±68 24.0±23.1 416±105 8.8±19.7 2.2±2.2

[min,max] [168,553] [−10.5,95.6] [221,804] [−23.2,68.8] [0.1,9.0]
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TABLE IV

PERFORMANCE OF PREDICTING TUMOR PROGRESSION VERSUS REGRESSION BY ST-

CONVLSTM AND AN OPTIMIZED MACHINE LEARNING APPROACH ON THIS DATASET.

Sensitivity (%) Specificity (%)

Time 1’s tumor volume + random forest 61.9 50.0

ST-ConvLSTM 76.2 50.0
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TABLE V

ABLATION STUDY SHOWING RESULTS FOR DIFFERENT INPUT FEATURE CHANNELS.

Input channel Dice (%) RVD (%) RMSE (%) HUdiff. (%)

ICVF - - 15.7±8.9 -

CT - - - 12.1±10.8

Mask 83.6±4.7 13.7±11.9 - -

ICVF+CT+Mask 83.1±4.9 12.6±9.0 13.9±7.9* 10.0±7.3*

*
INDICATES A STATISTICALLY SIGNIFICANT DIFFERENCE.
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