
 

ST-Trader: A Spatial-Temporal Deep Neural
Network for Modeling Stock Market Movement

Xiurui Hou, Kai Wang, Cheng Zhong, and Zhi Wei, Senior Member, IEEE

 
   Abstract—Stocks  that  are  fundamentally  connected  with  each
other tend to move together. Considering such common trends is
believed  to  benefit  stock  movement  forecasting  tasks.  However,
such  signals  are  not  trivial  to  model  because  the  connections
among  stocks  are  not  physically  presented  and  need  to  be
estimated  from  volatile  data.  Motivated  by  this  observation,  we
propose  a  framework  that  incorporates  the  inter-connection  of
firms to  forecast  stock  prices.  To  effectively  utilize  a  large  set  of
fundamental  features,  we  further  design  a  novel  pipeline.  First,
we use variational autoencoder (VAE) to reduce the dimension of
stock  fundamental  information  and  then  cluster  stocks  into  a
graph  structure  (fundamentally  clustering).  Second,  a  hybrid
model  of  graph  convolutional  network  and  long-short  term
memory network (GCN-LSTM) with an adjacency graph matrix
(learnt from VAE) is proposed for graph-structured stock market
forecasting.  Experiments  on minute-level  U.S.  stock market  data
demonstrate that our model effectively captures both spatial and
temporal  signals  and  achieves  superior  improvement  over
baseline  methods.  The  proposed  model  is  promising  for  other
applications  in  which  there  is  a  possible  but  hidden  spatial
dependency to improve time-series prediction.
    Index Terms—Graph  convolution  network,  long-short  term
memory  network,  stock  market  forecasting,  variational  autoencoder
(VAE).
  

I.  Introduction

THERE  is  strong  evidence  that  stock  prices  of  firms  that
interact  with  each  other  move  together  due  to  several

reasons.  First,  exchange-traded  funds  (ETFs),  such  as  S&P
500  and  NASDAQ,  track  the  prices  of  a  basket  of  stocks.
When people  trade  those  funds,  all  the  underlying stocks  are
traded  simultaneously,  which  causes  common fluctuations  of
those  stock  prices  [1].  Second,  most  professional  portfolio
managers  are  specialized  in  a  couple  of  strategies  and  these
strategies  often  involve  a  similar  set  of  stocks.  For  example,
value  investing  [2]  tilts  to  firms  with  high  earning-to-price
ratio, while momentum strategy focuses on firms with higher
returns  during  the  past  year.  On  the  one  hand,  any
fundamental  shock can  affect  the  prices  of  a  group of  stocks

together.  The  ongoing  COVID-19  pandemic  struck  the
traveling  industry  harder  than  the  technology  sector,  so  we
observed stocks within the traveling industry fall significantly
and  simultaneously  while  those  of  tech  companies  did  not
drop much. On the other hand, portfolio managers may adjust
their  positions  due  to  idiosyncratic  reasons,  for  example,  the
price  target  predicted  by  their  own  model  changes.  Third,
some  companies  have  cooperative  relationships,  like  Apple
and Nvidia. If one of them has good or bad news, the effect on
the other one could be reflected in the stock price. To our best
knowledge,  however,  we  have  not  seen  an  algorithm
effectively  incorporating  these  hidden  dependencies  among
firms into the stock price forecasting task.

Although the interaction among companies is not difficult to
observe,  it  is  not  easy  to  have  it  cooperated  in  stock  prices
forecasting  tasks  due  to  three  reasons:  1)  there  are  too  many
fundamental variables to select from (usually the total is more
than 1000). Extra financial expertise is needed to filter out the
key  variables;  2)  although  the  key  variables  are  selected,  the
interaction imposed by those variables  is  not  trivial  to  model
due  to  nonlinearity  and  chaos;  3)  the  way  that  interaction
contributes to the final forecasting goal is the biggest obstacle
to  utilize  the  fundamental  information  because  such  static
information  has  different  frequencies  and  scales  from  time-
varying price variable.

Deep  learning  is  well  deployed  in  grid  and  sequence
structured data, like image recognition in autonomous driving
[3]  and  natural  language  processing  [4].  However,  graph-
formed  data  is  more  common  but  more  complex  in  the  real-
world,  like  social  relationships,  sensor  networks  in  smart
cities, and stock connections in the financial market. Recently,
there has been a surge of attention on graph representation, for
example,  link  prediction,  graph  classification,  and  node
classification.  Motivated  by  the  graph  representation  empl-
oyed  by  previous  studies,  we  propose  a  framework  that
models the hidden dependency among firms as a graph.

In the field of graph representation learning, tasks with on-
hand  graph  information  are  well-studied.  For  example,  [5]
used  convolutional  neural  networks  (GCNs)  to  improve
recommendation  systems;  [6]  used  GCNs  to  learn  material
properties  from  the  connection  of  atoms  directly  to  predict
density.  However,  those  frameworks  cannot  be  directly
applied to the stock price forecasting since it is mainly a time-
series problem. Even though the stocks can be seen as nodes
in  a  graph,  edges  among  nodes  are  not  trivial  to  define
because  there  is  no  spatial  locality  attribute  for  each  stock.
Besides, forecasting stock price is a challenging task due to its
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tumultuous  nature,  which  prevents  the  transfer  learning  from
time-series  tasks  with  apparent  seasonality  or  trend.  Due  to
such  irregularities,  the  direct  application  of  existing  graph-
related models to the stock market is not appropriate.

In  this  work,  we  propose  a  hybrid  deep  learning  pipeline,
VAE-GCN-LSTM,  to  incorporate  the  graph  structured
relationship  among  firms  into  time-series  forecasting  tasks.
The  main  contributions  of  this  paper  can  be  summarized  as
follows:

1)  We design a variational  autoencoder (VAE) to learn the
lower-dimension  latent  features  of  companies’ fundamental
variables  to  calculate  more  meaningful  distance  among
companies, which helps construct the graph network.

2)  We  develop  a  hybrid  deep  neural  network  of  graph
convolutional  network  and  long-short  term  memory  network
(GCN-LSTM) to  model  both  the  graph  structured  interaction
among stocks and the stock price fluctuations on the timeline.

3)  To  evaluate  the  contribution,  and  the  improvement  of
additional  features,  and  the  proposed  method,  we  conduct
comprehensive  experiments  on  both  predicting  numerical
stock price and binary stock price movement on a real dataset.

We consider the largest 87 firms listed in the United States
in  our  experiment.  These  firms  are  included  in  the  S&P 100
index and we only incorporate 87 out of 100 firms due to the
data  availability. Fig. 1 shows  the  underlying  connections
among  these  firms.  In  Section  III  we  introduce  how we  take
the  connections  among  firms  into  account  in  the  price
forecasting  task,  and  the  actual  performance  is  presented  in
Section IV.

 
30

25

20

15

N
o
d
e
 c

o
n
n
e
c
ti

o
n
s

10

5

 
Fig. 1.     Constructed network among 87 firms using VAE.
   

II.  Related Work
  

A.  Classic Approaches in Stock Market
Many factors and firm characteristics are demonstrated to be

effective  in  forecasting  stock  prices  [7].  For  example,
financial practitioners and fund managers have been following
value  investing  strategies  after,  or  even  prior  to,  the
publication  of “The  Intelligent  Investor” [8]  in  1965.  Since
then, exploring effective factors became a hot topic and a slew
of  factors  have  been  explored.  Examples  of  these  factors
include  the  book-to-market  value  of  a  firm  [9],  price-to-
earnings  ratio  [10],  relative  strength  trading  strategies  that

focus  on  the  recent  stock  return  of  a  firm  [11],  and  the
profitability  and  investment  of  a  firm  [12].  These  factors
possess  valuable  predictive  power  in  terms  of  forecasting  a
firm’s future return.

The  advent  of  advanced  machine  learning  methods  makes
the stock return forecasting problem a more competitive task.
Time-series  and  cross-section  regressions  are  no  longer  the
only  toolkit  we  are  able  to  utilize.  For  instance,  [13]  applied
support  vector  machine  (SVM)  on  forecasting  NIKKEI  255
index’s movement on a weekly basis. In another independent
work,  [14]  predicted  the  stock  price  movement  of  Taiwan
(China)  companies.  Reference  [15]  used  Random  Forest  to
forecast  the  future  stock  prices  and  find  it  outperforms  both
artificial neural networks (ANNs) and SVM.  

B.  Deep Learning Approaches in Stock Market
Deep  learning  has  achieved  exciting  performance  in  many

areas,  e.g.,  image  recognition  task  [16]  and  natural  language
processing  task  [17].  The  application  of  deep  learning  also
includes  stock  price  forecasting.  Both  the  absolute  price  or
return (numerical prediction) and the price movement (binary
classification)  are  popular  forecasting  goals  for  researchers.
Fully connected neural networks are applied to predict future
stock price in Chinese market [18] and Canadian markets [19],
and  to  predict  stock  return  of  Japan  Index  [20]  and  S&P500
[21]. Long-short term memory (LSTM), which is designed to
work on time-series tasks, is used in this forecasting problem
[22],  [23]  since  the  stock  price  can  be  seen  as  a  time  series
sequence.  In  the  comparison  results,  LSTM  has  been
demonstrated  to  outperform  the  fully  connected  neural
networks.

Hybrid  models,  which  take  various  sources  of  information
to  enrich  the  predictive  power  of  the  conventional  machine
learning algorithms, make the forecasting task more promising
in  recent  years.  For  example,  [24],  [25]  proposed  a
combination  of  wavelet  technique  and  neural  networks.
Reference  [26]  introduced  a  hybrid  model  that  combines
autoregressive  moving  average  models  and  artificial  neural
networks.  A  more  recent  work  by  [27]  ensembled  machine
learning  methods  and  financial  technical  analysis.  In  some
related fields, like crowdfunding [28] and user intended action
prediction  [29],  the  hybridization  of  different  types  of  neural
networks  has  been  applied  successfully  potentially  due  to  its
ability  in  accommodating  heterogeneous  input  features.
Reference [30] proposed a hybrid model combining long-short
term  memory  and  deep  neural  network  (LSTM-DNN)  for  a
stock  forecasting  task.  This  hybrid  model,  LSTM-DNN,  first
integrates  static  firm  fundamental  features  into  a  time-series
forecasting task. Refer to [31]–[34] for more hybrid models on
forecasting  problem.  However,  no  matter  how  the  neural
network  structure  changes  in  the  literature  above,  none  of
them takes the interactions among firms into consideration in
the  prediction  task.  It  is  intriguing  to  extract  these  implicit
interactions and use them as input for the forecasting tasks.  

C.  Convolutional Neural Networks in Graph-Structure Data
Recently,  applying  convolutional  neural  networks  (CNNs)
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to  graphs  with  arbitrary  structures  has  caught  people’s
attention.  Two  main  directions  are  being  explored  in  the
literature:  1)  the  definition  of  spatial  convolution  is
generalized  in  [35],  [36];  2)  generalizing  CNNs  to  3-dimen-
sional  data  as  a  multiplication  in  graph  Fourier  domain  is
discussed  in  [35],  [37],  [38]  by  the  way  of  convolution
theorem. Using geodesic polar coordinates, the authors define
the  convolution  operation  on  meshes.  Therefore,  this  method
is  suitable  for  manifolds  and  cannot  be  directly  applied  to
graphs  with  arbitrary  structures.  The  spatial  approach
proposed  in  [36]  has  more  potential  possibilities  in
generalizing CNNs to arbitrary graphs. It has three steps: first,
select  a  target  node;  second,  construct  the  neighborhood  of
target  node;  third,  normalize  the  selected  sub-graph  by
ordering  the  neighbors.  The  normalized  sub-graphs  are  then
fed  into  1-dimension  Euclidean  CNN.  Since  there  is  not  a
natural ordering property in graphs, either temporal or spatial,
it  has  to  be  imposed  by  a  labeling  procedure.  The  spectral
framework to solve this issue is first introduced by [37] and is
described  in  Section  III-D.  The  main  disadvantage  of  this
method  is  the  high  computational  complexity, .  To
overcome this problem, [38] provides strictly localized filters
with a linear complexity . The first order approximation
of  the  proposed  spectral  filter  is  adopted  by  [39]  in  a  semi-
supervised  node  classification  task.  Thus,  we  also  use  the
spectral filters introduced in [38] in our framework because of
the efficiency and denote the convolution operation as .

Applying graph convolution operation in time-series tasks is
demonstrated  to  be  helpful  in  some  studies.  Reference  [40]
developed  a  spatio-temporal  GCN  model  for  traffic
forecasting. The conventional method for traffic forecasting is
to do time-series analysis for each traffic entity, like a specific
highway or a city road. The more natural thought is that if two
roads  are  close,  they  have  high  probability  to  experience  the
same  volume  of  traffic.  In  their  study,  the  GCN  model  can
perform  convolution  operation  with  much  faster  training
speed  and  fewer  parameters  than  the  traditional  CNN  model
that  is  more  suitable  for  grid  structured  data,  e.g.,  images.
Reference  [41]  also  proposed  a  spatio-temporal  GCN  model
for  human  body  skeletons  based  action  recognition  and  the
improvement  is  significant.  Reference  [42]  used  GCN  in
dynamic  texture  recognition  by  extracting  low-level  features.
Reference [43] combined LSTM and convolutional LSTM for
capturing both time sequencing features  and map sequencing
features.  There  are  some  attempts  to  combine  time-series
forecasting  and  graph  structured  convolution  operation,  like
[44]  and  [45]  forecasting  wind  speed  and  solar  radiation  by
enriching  the  time-series  with  wind  farm  distances  and  solar
site distances. The wind farms located nearby are supposed to
experience  much  the  same  wind  speed  and  direction.  Wind
forecasting  tasks  benefit  from  the  geographical  information
via graph convolutional network.  

III.  Method

In  this  section,  we  start  with  the  problem  formulation  of
prediction task with spatial and temporal dependencies. Then,
we  use  VAE  to  reduce  dimensions  of  fundamental  feature
space and generate the spatial graph structure for the selected

stocks.  After  that,  we  introduce  a  spatial-temporal  model,
GCN-LSTM, to predict the future stock prices.  

A.  Problem Formulation
N M

i

Fi = { f
(1)

i
, f

(2)

i
, . . . , f

(M)

i
} ∈ RM

F = {F1,F2, . . . ,FN} ∈ R
N×M

F

G = (V,E) V |V | = N E

E = ϕ(F) E ∈ RN×N

Consider  stocks, each with  fundamental variables. The
fundamentals  of  stock  can  be  represented  by  a  vector

.  Moreover,  the  fundamental
matrix  for  all  stocks  is .  There  is
not  a  time subscript  since  fundamental  features  are  not  time-
varying.  With  fundamental  matrix, ,  we  construct  a  graph,

, where  is the set of  vertices (stocks),  is
the  set  of  edges  representing  the  spatial  relationship  between
stocks learned from function , and .

T

i

Xi = {x
1
i
, x2

i
, . . . , xT

i
} ∈ RT

X = {X1,X2, . . . ,XN} ∈ R
N×T

For  temporal  dependency,  if  the  look-back window is ,  a
time-series  vector  for  stock  can  be  represented  as

.  Then,  we express  the data  collected
for all stocks in a matrix .

fθ(·)

y = {xT+1
1

, xT+1
2

, . . . , xT+1
N
} ŷ = {x̂T+1

1
, x̂T+1

2
, . . . ,

x̂T+1
N
} θ

Our  goal  is  to  forecast  the  price  of  each  stock  in  the  next
time point. With both spatial and temporal features ready, we
design  a  hybrid  model  of  graph  convolutional  network  and
long-short  term  memory  network  (GCN-LSTM),  denoted  as

.  We  further  denote  the  true  values  and  the  predicted
values  as  and 

,  respectively.  The  network  parameters, ,  can  be
estimated as
 

θ̂ = argmin
θ

1

N

N
∑

i=1

( fθ(G,Xi)− yi)
2. (1)

  

B.  Variational Autoencoder

z qϕ(F′|z)

F′

log pϕ( f (1), . . . , f (M)) =
∑M

i=1 log pϕ( f (i))

A VAE is  a  kind  of  directed  probabilistic  graphical  model
whose posterior is approximated by a neural network. In Fig. 2,
we represent  the  directed graphical  model  in  the  area  shaded
with  green  color.  The  generative  process  starts  from  the
bottle-neck  of  VAE, ,  which  is  a  latent  variable. 
represents  the  data  generating  process  that  results  in  the
reconstructed  input .  Because  the  marginal  likelihood  is
intractable, the objective function of a VAE is the variational
lower-bound  of  the  marginal  likelihood  of  data.  And  the
marginal likelihood is the sum over the marginal likelihood of
each  individual  fundamental  variable 

.  The  the  marginal  likelihood  of  individual
fundamental variables can be written as
 

log pϕ( f (i)) = DKL(qψ(z|F)||pϕ(z))+L(ϕ,ψ; f (i)) (2)
qψ(z|F) pϕ(z)

z

qψ(z|F) pϕ(z)

i

where  is  the  approximate  posterior  and  is  the
prior distribution of the latent variable . The first term on the
right  hand  side  of  (2)  means  the  KL divergence  between  the
approximate posterior  and the prior . The second
term is the objective variational lower-bound on the marginal
likelihood  of  feature .  Since  the  KL  divergence  term  is
always greater than 0, (2) can be rewritten as follows:
 

log pϕ( f (i)) ≥ L(ϕ,ψ; f (i)) (3)
 

= Eqψ(z| f (i))

[

− logqψ(z|F)+ log pϕ(F|z)
]

(4)
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= −DKL(qψ(z| f (i))||pϕ(z))

+Eqψ(z| f (i))

[

log pϕ(F|z)
]

(5)

pϕ(F|z)
F

F

qψ(z|F) pϕ(F|z)
ψ ϕ

F′ F

where  is  the  likelihood  of  the  fundamental  feature
vector  given the latent variable z.  The first term of (5), the
KL divergence, works as a regularization term which pulls the
posterior  distribution  to  the  prior  distribution.  The  second
term  of  (5)  is  the  reconstruction  of  through  the  posterior
distribution  and  the  likelihood .  The  training
goal is to estimate the parameters  and  that have minimal
loss  between  reconstruction  input  and  original  input.  Ideally,
the reconstructed input  and original input  are identical.

di, j

Using  the  bottle-neck  feature  representation  of  VAE,  we
calculate the Euclidean distance between each pair  of  stocks,

 and define the adjacency matrix, A, as follows:
 

Ai j =























exp(−
d2

i j

γ2 ), i , j and exp(−
d2

i j

γ2 ) ≥ ϵ

0, otherwise

(6)

γ2
= 0.1 ϵ = 0.5

A Ai j

i j

where  and  are  thresholds  to  control  the
distribution  and  sparsity  of  adjacency  matrix .  is  the
learnt distance between stock  and stock .  

C.  Long-Short Term Memory (LSTM)
In Fig. 2,  the  construction  of  LSTM  is  represented  in  the

area shaded in yellow color which is located in the upper-right
corner. A compact form of the equations for the forward pass
of a LSTM unit with a forget gate is represented below:
 

ft = sigmoid
(

W f ,xxt +W f ,hht−1+b f

)

(7)
 

it = sigmoid(Wi,xxt +Wi,hht−1+bi) (8)
 

ot = sigmoid(Wo,xxt +Wo,hht−1+bo) (9)
 

ct = ft ◦ ct−1+ it ◦ tanh(Wc,xxt +Wc,hht−1+bc) (10)
 

ht = ot ◦ tanh(ct) (11)

◦ xt ∈ R
T

t ft
it ot

ht ct

W∗,x ∈ R
h×T W∗,h ∈ R

h×h b ∈ Rh

where  denotes the element-wise Hadamard product; 
is the input vector at timestep ;  is the forget gate activation
vector;  and  are input and output gates’ activation vectors,
respectively;  and  represent  the  hidden  state  (output
vector) and cell state. , , and  are
weight matrices and bias vectors.  

D.  Graph Convolutional Networks
G ∗G

gθ(Λ) = diag(θ) θ ∈ RN

x ∈ RN×T

We denote the convolution operation on graph  as  and
the non-parametric filter kernel as  with 
as a vector of Fourier coefficients. Applying filter on a graph
input  can be written as
 

y = gθ ∗G x = gθ(L)x = Vgθ(Λ)VT x (12)
T V

L = I−D−
1
2 AD

1
2 = VΛVT

Λ

x VT x I

D ∈ RN×N Dii =
∑

j Ai j

V O(N2)

L

gθ(Λ)

Tk(x) Kth

where  is the size of look-back window;  is the eigenvector
matrix of the scaled Laplacian  with
a  diagonal  matrix  of  its  eigenvalues ;  The  graph  Fourier
transform  of  is  denoted  as ;  is  the  identity  matrix;

 is  the  diagonal  degree  matrix  with 
according  to  [46].  Since  multiplication  with  the  eigenvector
matrix  is ,  evaluating  (12)  is  computationally
expensive.  Furthermore,  it  is  prohibitively  expensive  to
compute  the  eigendecomposition  of  in  the  first  place  for
large  graphs.  To  address  this  problem,  [47]  suggested  an
approximation for  via a truncated expansion in terms of
Chebyshev polynomials  up to  order
 

gθ′ (Λ) ≈

K
∑

k=0

θ′kTk(Λ̃) (13)

Λ̃ =
2

λmaxΛ
− IN λmax

L θ′ ∈ RK

with  a  rescaled .  denotes  the  largest
eigenvalue  of  and  is  a  vector  of  Chebyshev
coefficients.  The  graph  filtering  operation  can  then  be
rewritten as follows:
 

y = gθ ∗G x = gθ(L)x =

K
∑

k=0

θ′kTk(L̃)x (14)
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Fig. 2.     Spatial-temporal modeling using GCN-LSTM framework for unspecified spatial graph structure. The area shaded in green is the VAE that reduces the
dimension  of  the  fundamental  feature  to  learn  more  meaningful  distance  among  stocks.  The  network  below  it  is  the  constructed  graph  based  on  the  learnt
distance. The vertical panel to the right of VAE presents the convolution neighbors of each node. The area shaded in yellow is the network of a LSTM cell. The
time-series inputs enriched with fundamental signals by convolution operation are fed into a LSTM network for final predictions.
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Tk(L̃) ∈ RN×N

k L̃ = 2L/λmax− IN

Tk(x) = 2xTk−1(x)−

Tk−2(x) T0 = 1 T1 = x

O(K|E)

K

K

where  represents the Chebyshev polynomial  of
order  evaluated  at  the  scaled  Laplacian .
By  using  the  stable  recurrence  relation 

 with  and ,  (14)  can  be  approximated  in
 operations  which  is  linear  to  the  number  of  edges  in

the graph. Because the filtering operation (14) is of an order 
polynomial  of  the  Laplacian,  it  depends  only  on  at  most 
neighbors  of  the  target  node.  For  details  and  an  in-depth
explanation, the reader is referred to [38].  

E.   ST-Trader:  Spatial-Temporal  Modeling  Using  GCN-LSTM
Framework

∗Gxt

xt

dh×T L

We propose to incorporate the spatial signal into time-series
prediction  with  graph  convolutional  network.  The  global
spatial  dependency  learnt  via  VAE  is  represented  by  the
adjacent  matrix, A,  calculated  from  the  features  from  low-
dimensional  latent  space.  For  notational  simplicity,  let 
denotes a convolution operation on  with filters (kernel size:

) that are functions of the graph Laplacian , as noted in
(14).  By  replacing  the  original  inputs  with  convolution-
applied inputs, the equations of GCN-LSTM cell are given as
follows:
 

ft = sigmoid
(

W f ,x ∗G xt +W f ,h ∗G ht−1+b f

)

(15)
 

it = sigmoid(Wi,x ∗G xt +Wi,h ∗G ht−1+bi) (16)
 

ot = sigmoid(Wo,x ∗G xt +Wo,h ∗G ht−1+bo) (17)
 

ct= ft◦ct−1+it◦tanh(Wc,x ∗G xt+Wc,h ∗G ht−1+bc) (18)
 

ht = ot ◦ tanh(ct). (19)
W.,h ∈ R

K×dh×dh

K

W.,x ∈ R
K×dh×T

N

K

i

In  our  setting,  are  the  Chebyshev
coefficients  that  defines  the  support  of  the  graph
convolutional  kernels.  determines  the  number
of parameters that is independent to the number of nodes  in
the  graph.  Parameter  determines  the  number  of  neighbors
used to compute the aggregated states for any target node  so
that  it  also  determines  the  communication  overhead  in  a
distributed  computing  setting.  The  detailed  algorithm
description is shown in Algorithm 1.

Algorithm 1 Training Process for the ST-Trader

F ∈ RN×M M

N

Input: . Fundamental feature matrix with  variables for
 stocks;
X ∈ RN×T T

N

. Time-series feature matrix with look-back window  for
 stocks;
γ2
= 0.1 ϵ = 0.5 256 K = 3

E = 1000 h = 16

d = 3

; ; minibatch size ; polynomial order ; number
of  epochs ;  the  hidden  space  dimension ;  network
depth .

ϕ ψ θParameters: ,  of VAE;  of GCN-LSTM.
ϕ ψ←,  Initialize parameters;
repeat

g←∇ϕ,ψL(ϕ,ψ; F)     (Gradients of minibatch estimator of (3));
ϕ,ψ← g

1e−5

     Update parameters using gradients  with learning rate =
 and Adam optimizer [48];

ϕ,ψuntil convergence of parameters ( );
A G←

ϕ,ψ

The adjacent matrix  for the edge information in  Distance of
latent features derived by the VAE using parameters ;

L̃← Calculate rescaled Laplacian using A;
θ← Initialize  Initialize parameters;
e← 1;

e ≥ Ewhile  do
X′← ∗G     apply convolution operator  on X using (14);
ŷ← LS T M(X′)    ;

Wx. Wh. b θ

1e−5

    Update , ,  and  in  by  gradient  descent  using  (1)  with
learning rate =  and RMSprop optimizer [49];

e← e+1    
  

IV.  Experiment
  

A.  Data Description
Since we consider the spatial dependency among firms, the

number  of  our  training  samples  is  divided  by  the  number  of
firms.  For  example,  suppose  we  have  10  firms  and  100
observations  for  each  firm.  The  total  number  of  samples  is
1000 if we take firms independently but the number drops to
100  if  we  consider  the  relations  among  firms.  To  obtaining
enough  samples,  we  use  minute-level  stock  data  of  87  firms
from  S&P  100  composite  in  2010  due  to  the  availability  of
data. The number of total minute-observations is 97 890, and
we  split  the  whole  dataset  into  batches  using  the  sliding
window.  We  also  check  the  robustness  of  our  results  using
five-minute-interval  stock  prices,  which  guarantees  enough
samples  for  at  least  one  epoch  training  and  testing.  For  five-
minute-interval,  the  sample  sizes  of  training,  validation,  and
testing  set  are 16384, 2944, 2944, respectively.  The  used
fundamental  variables  and  stock  tickers  are  presented  in
Appendix. For categorical variables such as SEC and SIC, we
use their one-hot encoding as input for VAE to learn the latent
feature.  

B.  Experimental Settings
For  one-minute-level  data,  the  testing  period  is  one  month

after  the  training  period.  For  example,  if  the  testing  is  Feb
2010,  the  training  data  would  be  Jan  2010.  The  last  testing
period is Dec 2010. Thus, we have 11 testing periods and the
number of samples for each month is listed in Table I.

Algorithms  studying  on  daily  data  may  cover  a  period  of
many years, since one year has around 250 trading dates (data
points)  only.  However,  as  shown  in Table I one  month  can
have  more  than 7000 minute-level  samples/data  points.  We
note that the months in 2010 cover different market scenarios,
such  as  uptrend  (e.g.,  March),  downtrend  (e.g.,  August),  and
mixed  (e.g.,  June)  ones.  Therefore,  the  minute-level  data  of
year 2010 are representative of different market scenarios and
sufficient for model validation.

To  demonstrate  the  benefit  of  incorporating  the  spatial
dependency  among  stocks  on  price  forecasting,  we  consider
the following baseline methods: 1) LR: For the classical linear
regression model,  we treat  the historical  time series prices as
explanatory  variables  and  the  price  of  the  next  time  point  as
the  response  variable;  2) FCNN:  The  fully-connected  neural
network  which  captures  the  non-linear  relationship  between
time-series  features;  3) LSTM:  Long-short  term  memory
neural  network  which  contributes  partially  to  the  proposed
method;  4) ecldn_ST-Trader: “ecldn” means  calculating  the
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Ai j = 1

i j

Euclidean distance between a pair of stocks using the original
fundamental  variables.  The spatial  relationship  in  this  setting
is expected to be much noisier than using VAE; 5) idsty_ST-
Trader: “idsty” means “industry”.  The  adjacent  matrix  for
this  method  is  derived  from  the  industry  category. 
means  company  and  company  are  in  the  same  industry
category.  The proposed model  is  denoted as vae_ST-Trader
when compared to those baselines methods because it  differs
in  deriving  the  adjacent  matrix  via  VAE.  The  purpose  of
studying baseline methods 4) and 5) is to evaluate the ability
of VAE to extract latent features from high dimension feature
space.  The network structure  and the  hyperparameters  for  all
methods,  are  tuned  using  the  validation  set  and  the  final
performance results are derived on the testing set.

We  apply  all  methods  mentioned  above  to  forecast  two
targets:  the  numerical  stock  price  and  the  binary  price
movement  indicator  (the  label  is  1  if  price  goes  up from last
time  point  and  0  if  price  goes  down  from  last  time  point).
Since  deep  neural  networks  are  not  stable  when  predicting
unbounded  numerical  results,  we  scale  both  the  training  set
and  testing  set  using  MIN-MAX normalization  (see  (20))  by
the maximum and minimum value of the training set.
 

x′ =
x−min(x)

max(x)−min(x)
. (20)

  

C.  Evaluation Metrics
For  the  numerical  stock  price  prediction,  we  adopt  widely

used  metrics  for  real-valued  prediction  problems  [50]–[53].
They are defined as follows:

1) Mean absolute value percentage error (MAPE):
 

MAPE =
1

N

N
∑

i=1

∣

∣

∣

∣

∣

ŷi− yi

yi

∣

∣

∣

∣

∣

(21)

ŷi yiwhere  is  the  predicted  stock  price  and  is  the  true  stock
price.

2) Median absolute value percentage error (MdAPE):
 

MdAPE = median

(
∣

∣

∣

∣

∣

ŷi− yi

yi

∣

∣

∣

∣

∣

)

, i ∈ 1,2, . . . ,N. (22)

MdAPE sits around the median value of the data and is thus
more robust to outliers compared to MAPE.

For  the  binary  price  movement  prediction,  we  use  area
under  roc  curve  (AUC)  and  other  following  metrics,  (TP  for
true positive,  TN for true negative,  FP for false positive,  and
FN for false negative):
 

Accuracy(ACC) =
T P+T N

T P+T N +FP+FN
(23)

 

Precision =
T P

T P+FP
(24)

 

Recall =
T P

T P+FN
(25)

 

F1 S core = 2×
Precision×Recall

Precision+Recall
. (26)

  

D.  Results
1) Predicting Stock Price: Table II presents the MAPE and

MdAPE  for  all  testing  periods.  The  stock  price  has  been
demonstrated  to  have  extensive  outliers  because  MdAPE  is
usually  less  than  MAPE.  The  methods  enriched  with  spatial
information  achieve  better  prediction  results  than  temporal-
only  models.  The  proposed  model,  vae_ST-Trader,
outperforms  baselines  across  the  board.  Moreover,  LSTM  is
more  desirable  than  LR  and  FCNN  in  most  batches.
Interestingly, idsty_ST-Trader with only industry information
is  more  preferable  than  ecldn_ST-Trader,  which  incorporates
much  more  fundamental  information.  One  possibility  is  that
simple  Euclidean  distance  calculated  from  all  fundamental
variables  brings  more  noise  to  the  spatial  signal  because  it
assigns  equal  weight  to  each  variable.  The  contribution  of
each variable to the final prediction is hard to be quantified by
the  linear  model.  Clearly,  extracting  the  latent  interaction
(spatial  distance  on  the  latent  features)  among  firms  using
VAE benefits the prediction accuracy substantially.

2)  Prediction  Stock  Price  Movement: Fig. 3 presents  the
Accuracy  and  AUC  scores  of  different  methods  on  binary
movement  prediction  chronologically.  The  Efficient-market
hypothesis1 states  that  asset  prices  reflect  all  available
information, and so there is not much space for algorithms to
forecast stock prices. This hypothesis is supported by the poor
accuracy in our study (Fig. 3) and in other literature. Although
many investors apply value-investing strategies, which tie the
market  price  of  a  stock  to  its  underlying  fundamental  value,
many  other  investors  keep  adopting  technical  analysis;  they
make  trading  decisions  based  on  reading  charts  of  the
historical  price  trends.  Therefore,  there  is  still  room  for  the
methods to improve their predictive power if they do not take
the  influence  of  the  technical-analysis  trader  on  stock  price
into account. The proposed model is enriched by the extracted
relationship  among the  firms so  that  it  can  better  capture  the
trend signal compared to baseline methods. This advantage is
reflected by both Accuracy and AUC scores.

The flash crash on May 6, 2010 is an example of an extreme
short-term  price  movement  in  the  market.  Around  2:30  p.m.
EST on May 6,  2010,  the  Dow Jones  Industrial  Average fell

 

TABLE I  
Number of Samples for Each Month

Month Jan. Feb. Mar. Apr. May Jun.

# of samples 7350 7410 8970 8190 7800 8680

Month Jul. Aug. Sep. Oct. Nov. Dec.

# of samples 8190 8580 8190 8190 7800 8580
 

  
1 https://en.wikipedia.org/wiki/Efficient-market_hypothesis
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more than 1000 points in just 10 minutes2.  It was the biggest
drop  in  history  at  that  point.  Despite  trillions  of  dollars  in
equity being wiped out,  the market recovered to its pre-crisis
level  by  the  end  of  the  day.  Analyzing  the  causes  of  such
events  is  beyond  the  scope  of  this  paper.  However,  it  has  a
profound  effect  on  the  stability  of  our  algorithm  since  these
extreme  events  can  hardly  be  thought  of  as  shocks  from
fundamental  information.  Incorporating  fundamental  connec-
tions in the prediction task may lower the prediction accuracy
under  this  particular  scenario.  By  avoiding  such  events,  we
may expect vae_ST-Trader to perform better in predicting the
longer  time-interval  stock  price,  e.g.,  day-to-day  or  week-to-
week. However, we are not able to do experiments on that due
to the lack of sufficient number of observations.

K

∆t = 1 ∆t = 5

∆t = 1 ∆t = 5 ∆t = 1

∆t = 5

∆t = 1

3)  The  Number  of  Neighbors  to  Communicate  With: We
compare  performance  of  the  proposed  model  on  different
granularity and different parameter  in Table III. We denote
one-minute-interval and five-minute-interval price forecasting
as  and . The superscript 1 and 5 highlight the best
scores  for  and .  The  results  for  are
aggregated  across  all  testing  months.  There  are  two  results
worth mentioning. First, the outcomes of  are better than

 for  all  evaluation  metrics.  This  result  is  as  expected
because  the  price  movement  of  five-minute-interval  is  much
less noisy than one-minute-interval due to a couple of reasons:
i) Rare events like the flash crash can recover so quickly that
five-minute-level  data  can  almost  screen  out  such  events;  ii)
The  recorded  stock  price  is  bounced  back  and  forth  between
the bid and ask quote and the price fluctuation in five-minute-
level is less likely to be affected by the bid-ask bounce. If we
have  enough  price  observations  on  a  longer  interval,  the
predictive  power  of  the  proposed  model  can  be  expected  to

 

TABLE II  
MAPE (MdAPE) for One-Minute-Interval Prediction

Training month 201001 201002 201003 201004 201005 201006

Testing month 201002 201003 201004 201005 201006 201007

LR 0.1579 (0.1679) 0.2056 (0.1534) 0.1684 (0.1392) 0.2313 (0.1877) 0.1672 (0.1282) 0.1641 (0.1439)

FCNN 0.1417 (0.1171) 0.227 (0.1044) 0.1418 (0.1065) 0.2314 (0.1831) 0.155 (0.1139) 0.1503 (0.1139)

LSTM 0.1077 (0.2313) 0.2145 (0.0800) 0.1512 (0.1947) 0.2283 (0.1789) 0.1058 (0.0868) 0.1398 (0.1037)

ecldn_ST-Trader 0.1206 (0.0772) 0.1018 (0.0655) 0.1605 (0.0752) 0.1857 (0.1594) 0.128 (0.0825) 0.1484 (0.1347)

idsty_ST-Trader 0.0904 (0.0699) 0.1142 (0.0714) 0.1203 (0.0619) 0.1426 (0.1319) 0.1018 (0.0741) 0.1305 (0.0899)

vae_ST-Trader 0.0789 (0.0686) 0.0827 (0.0611) 0.132 (0.0583) 0.1488 (0.1327) 0.0863 (0.0681) 0.1274 (0.0686)

Training month 201007 201008 201009 201010 201011

Testing month 201008 201009 201010 201011 201012

LR 0.1708 (0.1947) 0.1589 (0.1302) 0.1398 (0.1334) 0.1556 (0.1203) 0.2188 (0.1748)

FCNN 0.1364 (0.1302) 0.1478 (0.1389) 0.1478 (0.1268) 0.1481 (0.1143) 0.1995 (0.1810)

LSTM 0.1995 (0.1815) 0.1089 (0.0907) 0.1023 (0.0946) 0.1175 (0.1098) 0.201 (0.1369)

ecldn_ST-Trader 0.1478 (0.1018) 0.0856 (0.0739) 0.1119 (0.0980) 0.0856 (0.0866) 0.1802 (0.1368)

idsty_ST-Trader 0.0975 (0.0933) 0.0917 (0.0741) 0.0926 (0.0744) 0.0863 (0.0749) 0.1419 (0.1084)

vae_ST-Trader 0.0781 (0.0816) 0.0902 (0.0728) 0.0882 (0.0606) 0.0787 (0.0627) 0.1358 (0.0780)

Bold values indicate the best results
 

  
2 https://en.wikipedia.org/wiki/2010_flash_crash.
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Fig. 3.     ACC  and  AUC  comparison  for  different  methods  across  different
testing months.
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K

K = 3
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Second,  for  the  communication  overhead  parameter ,
which  is  the  number  of  nodes  any  target  node  should
exchange signals with in order to derive its local states, we use
different  to  explore  how  the  communication  affects  the
performance  in  different  granularity.  One-minute-interval
achieves  best  performance  when  and  five-minute-
interval achieves best performance when , which means
a  finer  granularity  prefers  a  lighter  communication  to  its
neighbors. We give one possible explanation. For one-minute-
interval,  where  the  fluctuation  of  price  is  more  random,  and
hence the dependency is less reliable, the communication with
more neighbors brings more noise in forecasting. While along
with  the  time  interval  increasing,  the  price  trend  becomes
more stable and the common fluctuation is more promising so
that  the  infusion  of  neighborhood  signals  can  be  more
informative. Thus, the number of neighbors for supporting the
center  node  is  a  key  hyperparameter  to  tune  for  a  specific
time-series forecasting task.  

V.  Conclusion

In this paper, we propose a spatial-temporal neural network
framework  GCN-LSTM,  to  utilize  the  spatial  dependency  or
the  latent  interaction  among  firms  in  forecasting  the  stock
price movement. The stock market has never been treated as a
graph  since  there  is  not  an  inborn  geographical  location  for
stock  entities.  However,  there  is  strong  evidence  that  the
interactions  among  firms  affect  the  stock  price  movement.
Experimental  results  show  that  our  model  outperforms  other
state-of-the-art  methods  on  the  real-world  minute-level  stock
price  data.  Fundamental  features  represented  in  a  spatial
structure contribute to the forecasting accuracy improvement.
For  future  directions,  we  plan  to  investigate  how  the
combination  of  fundamental  variables  and  fiscal  reports,
which can be seen as a dynamic cross-section assessment of a
company,  contributes  to  predicting  the  stock  market  trend.
More  practical  time-series  applications  with  potential  spatial
dependency should be explored under the proposed modeling
framework.  The  advanced  approaches  [54],  [55]  to  the  fine
tuning of hyper-parameters of the proposed framework should
be explored.  
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APPENDIX

 

TABLE III  
KBinary Price Movement Prediction With Different Parameter  for One-Minute-Interval and Five-Minute-Interval

ACC AUC Precision Recall F1 Score

K = 3
∆t = 1 0.5671 0.5231 0.469 0.6191 0.5341

∆t = 5 0.577 0.556 0.474 0.411 0.440

K = 5
∆t = 1 0.544 0.511 0.4711 0.551 0.508

∆t = 5 0.5875 0.5685 0.4925 0.6655 0.5655

K = 7
∆t = 1 0.552 0.518 0.4711 0.560 0.512

∆t = 5 0.563 0.519 0.475 0.592 0.527
 

 

TABLE IV  
Firm Fundamental Variables

Abbreviation Full name

AT Assets (Total)

INTAN Intangible Assets (Total)

BKVLPS BookValue Per Share

DLTT Long Term Debt (Total)

DLC Debt in Current Liabilities (Total)

LT Liabilities (Total)

RE Retained Earnings

ICAPT Invested Capital (Total)

IB Income Before Extraordinary Iterms

CHE Cash and Short-Term Investments

PPEGT Property, Plant and Equipment (Total)

DVT Dividends (Total)

EBIT Earnings Before Interest and Taxes

GP Gross Profit (Loss)

DV Cash Dividends (Cash Flow)

CAPX Capital Expenditures

TXPD Income Taxes Paid

SEC Stock Exchange Code

SIC Standard Industry Classification Code
 

 

TABLE V  
Stock Ticker List

Ticker Ticker Ticker

AAPL DUK NFLX

ABT EMR NKE

ACN EXC NVDA

ADBE F ORCL

AGN FDX OXY

AIG GD PEP

ALL GE PFE

AMGN GILD PG

AMZN GOOG PM

AXP GS QCOM

BA HD RTN

BAC HON SBUX
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