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 Principal Component Analysis on Spatial Data:
 An Overview
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 This article considers critically how one of the oldest and most widely applied statistical methods, principal
 components analysis (PCA), is employed with spatial data. We first provide a brief guide to how PCA works:
 This includes robust and compositional PCA variants, links to factor analysis, latent variable modeling, and
 multilevel PCA. We then present two different approaches to using PCA with spatial data. First we look at
 the nonspatial approach, which avoids challenges posed by spatial data by using a standard PCA on attribute
 space only. Within this approach we identify four main methodologies, which we define as (1) PCA applied
 to spatial objects, (2) PCA applied to raster data, (3) atmospheric science PCA, and (4) PCA on flows. In
 the second approach, we look at PCA adapted for effects in geographical space by looking at PCA methods
 adapted for first'order nonstationary effects (spatial heterogeneity) and second'order stationary effects (spatial
 autocorrelation). We also describe how PCA can be used to investigate multiple scales of spatial autocorrelation.
 Furthermore, we attempt to disambiguate a terminology' confusion by clarifying which methods are specifically
 termed "spatial PCA" in the literature and how this term has different meanings in different areas. Finally, we
 look at a further three variations of PCA that have not been used in a spatial context but show considerable
 potential in this respect: simple PCA, sparse PCA, and multilinear PCA. Key Words: dimensionality reduction,
 multivariate statistics, principal components analysis, spatial analysis and mathematical modeling, spatial data.

 这篇文章批判性地探讨一个最古老和最广泛应用的统计方法之一，即主成分分析（PCA)，是如何被应用到空间

 数据的。我们首先提供一个有关PCA如何工作的简要指南：它包括完整的和成分性的PCA变种，与因素分析，潜

 变量模型，多层次的PCA相关联。然后，我们提出了两种不同的把PCA应用到空间数据的方法。首先我们査看了

 非空间的方法，该方法通过只在属性空间使用一个标准的PCA，避免了空间数据带来的挑战。在这类方法中，我

 们确定了四个主要方法，并把它们定义为（1)应用于空间对象的PCA，(2)应用于栅格数据的PCA, (3)大

 气科学PCA，(4)流动科学PCA。在第二种方法中，我们通过查看适应第一阶非稳效应（空间异质性）和二阶

 固定效果（空间自相关）的PCA,测试了适应地理空间影响的PCA。我们还描述了如何可以用PCA来研究多尺度

 的空间自相关。此外，我们试图通过澄清哪些方法是专门在文献中被称为“空间PCA”的，以及这个术语在不同

 的领域有怎样不同的含义，来消除该术语的歧义。最后，我们期待进一步观察PCA的三个变种，它们还没被应用

 到空间范围内，但是在这方面已显示了相当大的潜力：简单的PCA，稀疏的PCA，和多重线性的PCA。关键词：

 降维,多元统计分析，主成分分析，空间分析和数学模型,空间数据。

 Este artículo considera críticamente la manera de utilizar con datos espaciales uno de los métodos estadísticos más
 viejos y de aplicación generalizada, el análisis de componentes principales (ACP). Antes de todo, suministramos
 una breve guía sobre cómo trabaja el ACP: Esto incluye variantes del ACP robustas y composicionales, vínculos
 con el análisis factorial, modelización de variable latente, y ACP de nivel múltiple. Luego presentamos dos
 enfoques diferentes para utilizar el ACP con datos espaciales. Primero, dirigimos nuestra atención al enfoque no
 espacial, que evita los problemas que surgen cuando los datos espaciales se utilizan con un ACP estándar de solo el

 espacio como atributo. Dentro de este enfoque identificamos cuatro metodologías principales, las cuales definimos
 como (1) el ACP aplicado a objetos espaciales, (2) el ACP aplicado a datos raster, (3) el ACP para ciencia
 atmosférica, y (4) el ACP para flujos. En el segundo enfoque, tratamos al ACP adaptado para efectos en el espacio
 geográfico, examinando métodos de ACP adaptados para efectos no estacionarios de primer orden (heterogeneidad
 espacial) y efectos estacionarios de segundo orden (autocorrelación espacial). También describimos la manera
 de utilizar el ACP para investigar múltiples escalas de autocorrelación espacial. Adicionalmente, intentamos
 desambiguar una confusión de terminología aclarando qué métodos son específicamente denominados "ACP
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 espacial" en la literatura y cómo esta expresión tiene significados diferentes en áreas distintas. Por último,
 dirigimos nuestra atención a tres variaciones adicionales del ACP que no han sido usadas en un contexto espacial
 pero que muestran considerable potencial en este respecto: ACP simple, ACP ralo y ACP multilineal. Palabras
 clave: reducción de dimensionalidad, estadísticas multivariadas, análisis de componentes principales, análisis espacial y

 modelización matemática, datos espaciales.

 Following its introduction at the beginning of can consist of n-dimensional attribute space, three the twentieth century by Pearson (1901) and dimensional geographic space, and one-dimensional
 Hotelling (1933), principal components analy- temporal space, where the space-time components pro

 sis (PCA) has been used in many different disciplines, vide the framework for attribute space,
 including agriculture, biology, chemistry, climatology, Two properties that can make spatial data special
 demography, ecology, economics, genetics, geography, and different from nonspatial data are spatial hetero
 geology, meteorology, oceanography, and psychology. geneity and spatial autocorrelation. Spatial heterogene
 The purpose of this article is not to give a full historic ity refers to the nonstationarity of geographic processes,
 overview of its use (see Jolliffe [2002] for an extensive meaning that processes can vary locally and are not nec
 review) but to highlight the need for special types of essarily the same at each spatial location. Commonly,
 PCA for use with spatial data and to investigate how this nonstationarity is modeled as a first-order (mean
 different versions of PCA have been and should be used response) or second-order (variance) effect. With re
 on spatial data. spect to spatial heterogeneity, in this article we limit

 This overview is intended for geographers who might ourselves to nonstationary first-order effects only, where
 want to use PCA in some way for their particular prob- such effects change across space. Spatial autocorrelation
 lems and data. The hope is that this overview might help is the tendency of attributes at some location in space
 them select an appropriate version of the method or to be related. Spatial autocorrelation is a second-order
 suggest an improvement to their existing methodology. effect and we limit ourselves to stationary second-order
 Therefore, we attempt to present the material in a very effects only (noting that nonstationary second-order
 general form without going into details, to try to make effects are possible). The presence of spatial hetero
 it accessible to the widest possible audience. For a more geneity and spatial autocorrelation invalidates two ba
 expert reader, the underlying theory can be found in the sic assumptions of many standard statistical analyses:
 method-specific references cited and in the comprehen- that data are independently generated and identically
 sive book by Jolliffe (2002). Key historical literature on distributed. As a consequence, using a standard statisti
 the use of PCA from a geographer's perspective includes cal methodology, including PCA, on spatial data poses
 the work of Berry (1964, 1966, 1968a, 1971), Gould particular challenges. Analogous effects are possible in
 (1967), Hâgerstrand (1967), Tinkler (1972), Mather temporal space (and spatiotemporal space combined),
 and Openshaw (1974), Goddard and Kirby (1976), but we do not discuss them here.
 Daultrey (1976), and Johnston (1978). In many of these In this article, we distinguish between two differ
 articles, there is much interchange between the use of ent approaches to using PCA on spatial data: ( 1 ) those
 PCA and factor analysis (FA), where for applications that avoid spatial challenges altogether by using a stan
 in urban geography their use came under a general um- dard nonspatial PCA and (2) those that adapt PCA for
 brella term of factorial ecology. spatial effects with respect to spatial heterogeneity or

 Spatial data contain geographic as well as attribute autocorrelation. Although most spatial applications of
 information. Thus, whereas typical data sets only con- PCA stem from the geosciences (physical geography,
 tain measurements of variables or attributes, spatial data geology, geochemistry, atmospheric sciences, environ
 sets are characterized by having a location associated mental sciences, etc.) and, to a lesser extent, the social
 with each measurement; that is, the geographic loca- sciences (human, social, economic geography), we focus
 tion within the basic three-dimensional framework of on the manner in which PCA is applied to spatial data,

 our physical world, where the measurement was taken. rather than on the discipline-specific topics themselves.
 In contrast with nonspatial data, the data space can

 therefore be separated into two distinct components: ge- Principal Components Analysis
 ographic space and attribute space. Occasionally, if tem
 poral information is also present, then time forms a third Data dimension is the number of variables measured
 component, the temporal space. As such, the data space at each observation. Many spatial data sets are highly
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 PAPt = X (4)
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 dimensional and as such can be difficult to visualize and of the next largest variance, and so on. These direc
 interpret. However, there often exists a smaller intrinsic tions correspond to the eigenvectors of either the data
 dimensionality in the data set, where not all of the vari- covariance or correlation matrix, X, where
 ables are needed to convey the information relevant to

 an understanding of the underlying process. Therefore, ^ y
 it is often of interest to reduce the dimensionality of the X = . (3)
 data. Methods for dimensionality reduction attempt to
 capture the maximum information present in the origi
 nal data, at the same time minimizing the error between Here, X denotes X with the mean removed from each
 the original data and the new lower dimensional repre- column in the case of covariance and X with each col
 sentation (Donoho 2000; Fodor 2002; Afifi, Clark, and umn standardized to have zero mean and unit variance
 May 2004) m the case of correlation. By definition X is a posi

 PCA is one of the most popular dimensionality re- Clve semidefinite matrix and therefore its eigenvalues
 duction methods. It is a linear method, meaning that the are 8reater than or equal to zero. Hence, ordering the
 transformation between the original data and the new eigendecomposition of X so that the eigenvalues are in
 lower dimensional representation is a linear projection. descending amplitude order gives
 Its main purpose is dimensionality reduction, but it can
 also be used to explore relationships between variables.
 Often it is used as a preprocessing method either for data

 orthogonalization and eliminating redundancy caused where P is the score matrix and A is the diagonal matrix
 by variable correlation or for dimensionality reduction, eigenvalues; that is,
 before employing another statistical method, such as
 regression or clustering (Fodor 2002; Jolliffe 2002). As A = diag(Xi, \i, ..., Xr, 0,... 0), with
 principal components (PCs) are orthogonal, regression > Xj • • • > Xr > 0 (5)
 and clustering methods can proceed with data indepen

 dence assured. In many situations X can be approximated by a small
 PCA maps the original n dimensions (variables) of number of PCs, k, where k <<r < n, while still ex

 the data matrix X onto a new orthogonal space, such plaining most of the variance in the data; that is, where
 that the new axes are oriented in directions of largest A only has a small number of large eigenvalues and
 variance in the data. The new dimensions are called the many small ones. Denoting Pfc as the matrix containing
 PCs and are mathematically defined as follows. the first k columns of P (i.e., the most significant PCs)

 PCA is a factorization or decomposition of an m x n then the corresponding scores matrix is given by
 matrix X, with m measurements and n variables, such

 that Tk = XPk (6)

 X = TPT, (1) and the proportion of the total variance explained by
 Tk is given by ^ x 100, where

 where P is an orthonormal projection matrix (i.e.,
 PTP — I) and T is the projection of n-dimensional X k r
 onto the new r-dimensional space defined by P; that is, V]i = and vr = ^ X, = trace(A) = traceCL).

 i=i ¡=1

 T = XP. (2) (7)
 From this description it follows that each PC cor

 Matrix P € 9inxr is referred to as the loading matrix and responds to the direction of one eigenvector and is a
 T 6 9fimxr is referred to as the score matrix. The dimen- linear combination of the original variables. Because
 sion r is the number of independent columns in X (i.e., PCs are ordered according to the size of their respective
 the rank of X) and is bounded by the minimum of m eigenvalues, starting with the largest, this means that
 and n. P is computed so that its columns are the direc- the new space of the PCs is oriented so that the first
 tions of maximum variance in the data, with the first few PCs are aligned with the directions of the largest
 column (or PCI) representing the direction of maxi- variance in the data; that is, the first PC represents the
 mum variance, the second column (PC2) the direction direction in which the variance of data is the largest,
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 the second PC the direction of the next greatest vari- In our context, PCA should be seen as a descriptive
 ance, and so on. If the first few dimensions (k) explain methodology rather than an inferential one, as it can
 most of the variance in the data, the rest can usually be produce valuable information regardless if the attributes
 disregarded with minimal loss of information. Dimen- are normally distributed or not. That is, it provides a
 sionality reduction is performed by taking the first k PCs, view on the structure of data as they are within the sam
 where k << n such that the new k-dimensional space pie, rather than attempting to infer characteristics of
 contains the majority of the information according to the entire population. This is the perspective that the
 some criterion. A key decision is the size of k; that is, majority of applications in this overview would take,
 how many PCs should be retained? The answer is study Details on the inferential side of PCA can be found in
 dependent and has to be determined by examination of Jolliffe (2002).
 the data. A number of heuristic methods exist for this

 purpose. The k selected PCs are sometimes referred to Robust pCA and Outlier Detection
 as unobserved latent variables.

 PCs will differ by the choice of the matrix E used When there are outliers in the sample data, basic
 for their calculation. The covariance matrix is scale de- statistical methods often produce unreliable results,
 pendent and should only be used when all variables as the presence of outliers violates basic assumptions
 have the same measurement units. If the measurement of the methods. This is usually prevented by using a
 units of variables differ in size and type, then the scale- robust version of the same method. By construction,
 independent correlation matrix should be used instead robust methods also detect outliers and a robust version
 to standardize the original variables. This avoids a dom- of PCA can be used for multivariate outlier detection
 ination of variables with the largest measurement units via dimensionality reduction, so that in the resultant
 in the first few PCs (Mackiewicz and Ratajczak 1993; transformed (PC) space, outliers are more readily
 Jolliffe 2002). observable. PCA in a basic form is not very robust to

 With respect to data set structure, PCA can be run outlying observations (i.e., its covariance estimates are
 in two ways: either in the so-called R-mode or Q-mode. nonrobust) and, as such, is not ideally suited to their
 In R-mode, the goal is to identify combinations of vari- detection. In this respect, numerous robust PCA-based
 ables that explain the pattern of variation among the techniques (together with their associated outlier
 objects—this is the standard way of running PCA. Q- detection tools) have been proposed (see Jackson and
 mode PCA, which is sometimes referred to as inverted Chen 2004; Rousseeuw et al. 2006; Daszykowski et al.
 PCA, focuses on combinations of samples that explain 2007; Stanimirova, Daszykowski, and Walczak 2007).
 variation among variables. That is, the PCA is run on Here PCA can be made robust to outliers by using ( 1 )
 a data set where the matrix of samples and attributes some robust covariance estimator (such as a reweighted
 is transposed so that the roles of the variables and minimum covariance determinant [MCD]; Croux
 measurements are reversed (Tanaka and Zhang 1999; and Haesbroeck 2000), (2) a projection pursuit (PP)
 Choulakian 2001; Schuenemeyer and Drew 2011). If technique where projections of the data are searched
 time is added as one of the measurements, resulting in for outliers (Hubert, Rousseeuw, and Verboven 2002),
 space-time series data, then there are in total six dif- and (3) a mixture of both MCD and a PP technique
 ferent modes—O, P, Q, R, S, and T—each of which (Hubert, Rousseeuw, and Vanden Branden 2005).
 addresses a different combination of time, objects, and Many robust PCA techniques are computationally
 attributes (Richman 1986). We explain these modes intensive and, as such, computationally fast algorithms
 more fully later, as we specifically deal with space-time are required for analyzing large high-dimensional data
 series data. sets (e.g., see Filzmoser, Maronna, and Werner 2008).

 Statistical inference for PCA deals with estimating

 characteristics of the PCs defined by the entire popu- Compositional PCA
 lation given the PCs derived from a data sample. The
 key limitation is that inference should only ever be In some cases, data have the property that all at
 attempted when the data are (at least approximately) tributes sum to a constant; that is, they are descriptions
 multivariate normal (Jolliffe 2002). If this requirement of a part of some whole and give only relative informa
 were to be imposed every time, it would limit the use tion. An example of this is proportional values that sum
 of PCA to only a very small number of cases, because to one—this routinely occurs in geochemistry when
 in reality, true multivariate normality is rarely the case. water or soil samples are taken and the proportions
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 110 Demsar et al.

 in each sample of a number of chemical elements are PCA is sometimes considered to be a special form
 measured (e.g., Filzmoser, Hron, and Reiman 2009). of FA. This, however, is not quite correct, because al
 This constraint means that the attribute values of such though both methods have a similar goal of dimen
 data occur in a space limited by a simplex and are sionality reduction to a number of latent variables,
 therefore closed in space, which affects the structure of their postulations are very different. As described ear
 the correlations. A standard multivariate method such lier, PCA can be defined as a technique that identi
 as PCA is therefore not applicable to such data. Instead, fies a set of linear combinations of original variables
 a common way to model this type of data is to use a with no preassumed models: PCs are defined simply
 technique from compositional data analysis (Aitchison as directions of largest variance. FA, on the other
 1982; Aitchison and Egozcue 2005), which replaces hand, attempts to achieve dimensionality reduction by
 variables with logarithmic ratios of variables (or some assuming the existence of k latent variables or factors
 related transformation). This removes the constraint of (where k << n and n is the number of variables), such
 the simplex and transforms the variables into an uncon- that each original variable is a linear combination of fac
 strained multivariate space and consequently allows a tors. Factors are separated into common factors, which
 standard statistical method to be applied. Specifically, contribute to all variables, and specific factors, each of
 compositional PCA (Aitchison 1983) calculates PCs which contributes to only one particular variable and
 of log ratio transformations of the raw data. Many describes the variable-specific model error (which can
 compositional data sets are inherently curved; that is, be either an observational or measurement error). Thus,
 the largest variance is distributed along a curved line FA is defined in the familiar format of a "determinis
 and not a new straight line dimension. Compositional tic term + random error term," used, for example, in
 PCA is able to correctly pick up this curvature, whereas regression models. The factors define a model and de
 a standard PCA, which only produces linear combina- pend on known parameters such as k defined in the text
 tions of variables, is powerless (Jolliffe 2002). However, immediately preceding and unknown parameters to be
 the log ratio transformation in compositional PCA estimated, such as the component loadings. There is no
 further complicates the already difficult interpretation explicit model in the classic derivation of PCA whose
 of PCs (Aitchison and Egozcue 2005). results are dependent on data only (although it is pos

 sible to consider model-based PCA, as one solution of
 the maximum likelihood calibration of FA where k fac

 PCA and Links with Factor Analysis tors coincide with the first k PCs! see next subsection
 on latent variable modeling and Jolliffe [2002]). Stan

 As suggested, a known disadvantage of PCA is dard PCA finds a data-defined linear transformation
 that the PCs do not always correspond to meaningful from an n-dimensional space to another n-dimensional
 physical variables. Indeed, there is no reason why a space and no additional parameters have to be spec
 purely mathematically calculated linear combination ified. To summarize, FA provides us with a model of
 of variables should have a physical meaning (Jolliffe the lower dimensional space, whereas PCA produces
 2002). PCs are therefore not always easy to interpret. a unique data-driven projection. This is the most fun
 One attempt to solve this problem is to rotate the PCs damental difference between the two methods. An in
 post-analysis into new dimensions that might have terested reader can find details on FA in any textbook
 an easier-to-interpret connection with the original on multivariate statistics (e.g., Afifi, Clark, and May
 variables. This is commonly done using varimax, 2004). Detailed differences between PCA and FA are
 covarimax, or similar rotations that originate in factor discussed in Jolliffe (2002).
 analysis (FA) and were designed to maximize the

 variance of the factors (Kaiser 1958). Although this is a Latent Var¡able Modeling and Multilevel PCA
 relatively common approach (e.g., Widmann and Schar

 1997; Frank and Esper 2005; Esteban, Martin-Vide, Some recent developments in PCA are latent vari
 and Mases 2006), the usefulness of postrotation of PCs able modeling and multilevel PCA. From a theoretical
 is debatable, as PCs already maximize the variance, and perspective, these can be best understood by adopting
 any further rotation of the axes in the PC space, while a model-based interpretation of PCA—see, for exam
 preserving the amount of the variance, might change pie, Anderson (1984) or Whittle (1953). Although of
 the ordering according to variance size (Daultrey 1976; ten presented as an exploratory algorithm, PCA can be
 Richman 1986; Jolliffe 2002). viewed as the solution to a maximum-likelihood model
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 calibration problem, where the data matrix is repre- • Atmospheric science PCA
 sented as a matrix of lower rank than its number of • PCA on flows

 columns. In standard PCA, the data are assumed to be
 such a matrix plus an independent Gaussian error term In the following, we give a description of each of
 for each element—but the model can be modified to these approaches and list some examples from various
 represent a number of alternative situations. One such academic disciplines. Table 1 provides a summary,
 example is that of a spatial PCA, where the statistical

 distribution of the error terms reflects the spatial struc- Spatial Objects PCA
 ture of the observations. This approach, in which the
 data might be thought of as a linear combination of a One of the most common uses of PCA on spatial data
 number of unobserved variables (PCs) plus a random is in studies where spatial data consist of spatial objects,
 error, is sometimes referred to as latent models or latent These are typically either irregularly spaced points (e.g.,
 variable models (see subsection on regionalized PCA). sampling sites of environmental measurements) or

 Another modification can be used to reflect a areas (e.g., watersheds or administrative districts). Vari
 hierarchical structure in the data. This means that the ables are measurements of several different properties
 data set consists of individual data records for which (characteristics) at each point or area location. In these
 factors are calculated at different levels of aggregation. studies, PCA is run on the entire data set, statistical
 An example would be data collected on the level of software is (commonly) used for processing rather than a
 individual students and the two higher aggregation geographical information system (GIS), and geographi
 levels were schools and the aeral units to which each cal effects do not play any role in the PCA itself. Results
 school belongs (Goldstein and Browne 2005). In such give a global summary of the data and are presented non
 cases, the variability in the data can be represented by spatially using tables and statistical summaries. Figure 1
 random terms at different levels in the hierarchy. In shows the schematic flow of this methodology. Observe
 turn, this implies that the models can be thought of as that it is possible to map the PC scores (i.e., the trans
 having components at different levels of the hierarchy. formed data values after applying PCA) for each PC, as
 Goldstein and Browne (2005) applied this approach to they correspond to each vector of observations at each
 investigate Organisation for Economic Co-operation spatial location of the data set. Regionalization studies
 and Development (OECD) data recorded for thirty- in the social sciences provide numerous examples of
 two industrialized countries (OECD 1999) including this practice (see the text immediately following),
 tests of reading, mathematics, and science. Factors Spatial objects PCA is commonly used for dimen
 at country, school, and individual student levels sionality reduction or as a data preprocessing method,
 were considered and component loadings related to as with any nonspatial application. Examples can be
 responses to individual questions in the tests were found in many of the geosciences: in environmental
 estimated at school and country levels. sciences for environmental indices (Tran et al. 2002;

 In this model-based approach, Bayesian estimation Parinet, Lhote, and Legube 2004); for atmospheric,
 of the loadings can also be used and through techniques soil, and water pollution (Hernández, Adarve Alcazar,
 such as Markov chain Monte Carlo (MCMC) estima- and Pastor 1998; Felipe-Sotelo et al. 2006; Zhang
 tion, a very wide portfolio of models and modifications 2006); in environmental geochemistry (Zhang and
 to existing models can be considered. For example, the Selinus 1998; Reid and Spencer 2009); in environ
 variables in the data matrix might be categorical and the mental management (Bastianoni et al. 2008); and in
 link between the component scores and the observed biogeography for wildlife and vegetation distribution
 data might take the form of a logistic regression. studies (Antunes et al. 2008). There are also numerous

 instances of such simple PCA applications in the social
 „ , i -i. t . , * o . i r-v sciences; for example, as a data preprocessor prior to
 Standard Nonspatial PCA on Spatial Data stadjdcal modeling_Ke the regression modeling of

 We have identified four main methodologies for us- fire and rescue incidents (Corcoran et al. 2007) and the
 ing standard nonspatial PCA (as described in previous nonstationary regression modeling of hedonic house
 section) on spatial data, which we refer to as follows: price data (Bitter, Mulligan, and Dall erba 2007).

 A common application in the social sciences is
 • Spatial objects PCA to develop composite social indices for development,
 • Raster data PCA health, or quality of life from the first few PCs using
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 Table 1. Use of four different standard principal components analysis methodologies on spatial data

 Spatial objects Raster data Atmospheric
 Discipline  PCA  PCA  science PCA  PCA on flows

 Atmospheric science, climatology, meteorology  X

 Biogeography: Ecology, vegetation, and wildlife  X  X

 Dendrochronology  X

 Environment: Atmospheric pollution  X  X

 Environment: Soil and groundwater pollution  X  X

 Environmental geochemistry  X

 Environmental management  X

 Remote sensing  X

 Geology, sedimentology  X  X

 Historical geography: Regionalization  X

 Human geography: Migration and spatial interaction  X

 Human geography: Regionalization  X

 Seismology  X

 Social indicators research: Composite indices  X  X

 Social sciences: Preprocessing/orthogonalization  X

 Transportation  X

 Underwater acoustics  X

 Note: PCA = principal component analysis.

 sociodemographic input variables. Here PCA is used compositional PCA is applied (Thomas and Aitchison
 on administrative units, both for dimensionality re- 2005; Thió-Henestrosa and Martín-Fernández 2005;
 duction and to explore relationships between variables Reyment 2006; van den Boogaart and Tolosana
 (Boelhouwer and Stoop 1999; Booysen 2002; Fotso Delgado 2008). These same disciplines are also at the
 and Kuate-Defo 2005; Anselin, Srihdaran, and Ghol- forefront in the application of robust forms of PCA and
 ston 2007; Lengen and Blasius 2007; Kelly and Teljeur outlier detection (Filzmoser 1999; Filzmoser, Garrett,
 2007). Spatial objects PCA has also been used to link and Reimann 2005; Filzmoser, Hron, and Reiman
 remotely sensed (RS) data with area census data for 2009).
 quality of life indices (Lo 1997).

 In human (social and economic) geography, spatial Raster Data PCA
 objects PCA has been used for regionalization (Gould
 1967; Daultrey 1976; Hall 1977). Here PCs are cal- Our second identified methodology for applying
 culated on areal data with the goal being to aggre- PCA occurs in the analysis of raster data. Here PCs are
 gate similar areal units into regions (internally cohe- calculated for a data set where data elements are cells
 sive larger spatial units) through the first few PCs (via of raster surfaces (or locations in the center of raster
 their respective PC scores). Identified regions can be cells) with measurements of several variables at each
 environmental, geographical, or social, depending on location. This type of PCA focuses on the creation of
 the study. Examples of this (more spatially oriented) PCA maps—new rasters, where each pixel is assigned
 use of standard PCA can be found in Skânes and Bunce a value or score in each new PC dimension (Eastman
 (1997) with respect to landscape dynamics, Horner and 2003). As with the analogous methods in the previous
 Grubesic (2001) with respect to transportation plan- section, geographical effects are not accounted for in
 ning, and Campbell and Power (1989) with respect to the calculation of the PCs, as the analysis is run strictly
 historical geography. on attribute space only. It should be noted that, math

 Finally, spatial objects PCA is routinely applied in ematically, this methodology is a variation of spatial
 geological studies (Davis 1986). Examples include the objects PCA from the previous section; the only differ
 study of marine mineral properties (Andrews 2008) ence is that in this case "spatial objects" correspond to
 and seabed classification from acoustic data (Preston regular grid cells or locations of their centers. Based on
 2009). Commonly in geological (and geochemical) the studies that we found, however, we decided that it
 studies, sample data are compositional and, as such, warrants a separate description because, in contrast with
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 Figure 1. Spatial objects principal
 component analysis (PCA).

 Measurements of N physical characteristics
 in all locations Loci, Loc2, ... LocP

 Spatial dataset Attributes
 = Characteristics

 Attl Att2 Att3 AttN

 Loci

 Data elements

 = Locations
 Loc2

 Loc3

 Sampling locations or
 centroids of areas

 Principal Component Analysis +
 sometimes Post-Rotation of

 Components
 Visualisation:

 PC1=a1, Att1+...+ a, N AttN maps of PC scores for PC1=a1t1 Att1+...+a1iNAttN

 PC2=a2,Att1+...+ a2NAttN * regionalisation PC2=a21 Att1+...+ a2NAttN

 Result 1:

 PCN=aNl1 Att1+...+ aN N AttN summary
 through
 dimensionality

 Result 2: reduction

 data orthogonalisation
 as pre-processing
 for clustering/classification

 Composite indices

 Regionalisation

 the previous methodology, there is a focus on the spatial underwater acoustic bathymetry data (Verfaillie et al.
 distribution of results. The new PCs are almost always 2009), and other topics in the environmental sciences
 displayed in map form and often used in subsequent (e.g., Arbia, Griffith, and Haining 2003; Li et al. 2006;
 spatial analysis based on map algebra. The schematic Maina et al. 2008; Shi et al. 2009).
 flow of this methodology is shown in Figure 2. Again with RS data, raster data PCA can be used

 This methodology is commonly used when satellite for change detection, feature detection of natural
 or other RS data need to be combined with other types and man-made features, and classification of spectral
 of raster data; for example, with interpolated surfaces classes. This has been done for a variety of RS source
 of some meteorological or soil variables, with inter- data; for example, Landsat TM bands (Collins and
 polated animal counts in zoology, and with rasters of Woodcock 1996; Floras and Sgouras 1999; Aminzadeh
 socioeconomic and census data in the social sciences. and Samani 2006), multispectral and hyperspectral
 Analysis is usually performed using the PCA function- imagery (Goovaerts, Jacquez, and Marcus 2005; Panda,
 ality provided in a GIS, typically Idrisi Kilimanjaro or Hoogenboomb, and Pazb 2009), and near-infrared
 ArcGIS Spatial Analyst. Statistical software is rarely astronomical imagery (Klassen 2009). An example
 used. in the social sciences can be found in Lo and Faber

 Raster PC maps are often used to produce composite ( 1997), where RS data are linked with census data to
 indices that describe a certain subset of data with par- develop composite social indices,
 ticular properties. Again, indices are derived using the In some studies, input rasters are weighted by multi
 first few PCs and describe inter-variable relationships. plying them with another raster that describes a partic
 Examples include ecological susceptibility (Hoersch, ular spatial relationship or distribution, resulting in the
 Braun, and Schmidt 2002), wildlife distribution so-called spatially weighted PCA method (W. Wang
 patterns (Khaemba and Stein 2000; Brito et al. 2008; and Cheng 2008; this is not to be confused with the
 Ngene et al. 2009), water pollution (Satapathy, Salve, geographically weighted PCA method described in the
 and Katpatal 2009), the ecogeographical analysis of next section, which is an entirely different method with
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 Raster datasets representing measurements of N
 physical characteristics: R1, R2, RN
 All rasters have the same spatial extent and resolution.

 Cell-by-cell
 assembly

 Multi-dimensional Attributes
 spatial dataset = Raster datasets

 Data elements Loci

 = locations of \_oc2
 centres of

 raster cells Loc3

 I

 R1 R2 R3 RN Loci
 Loc2 Loc3

 Loc4

 a

 Principal Component Analysis + _ Result 1 and spatial visualisation:
 sometimes Post-Rotation of maps of PC values, PC,, as new raster
 Components / datasets

 PC1=a1, R1+...+ a, N RN

 PC2=a21 R1+...+ a2NRN

 PCN=aN : R1+...+ aN N RN

 \  PC1 PC2 PCN

 Result 2: data summary through ^ Composite indices derived from first
 dimensionality reduction K components, K«N

 Result 3:

 data orthogonalisation as pre-processing for clustering/classification,
 change detection, feature detection

 Figure 2. Raster data principal com
 ponent analysis (PCA) and its spatial
 visualization—raster principal compo
 nent (PC) maps. Location is only rele
 vant for visualization, not computation,
 as PCA is run on attribute space only.

 different objectives; see the final subsection of the next standard analytical tool in climatology and meteorology
 section for disambiguation). and has been in use since the 1950s.

 Data for atmospheric science PCA consist of time
 series of measurements of one particular meteorologi

 Atmospheric Science PCA cal field variable (this can be air temperature, sea-level
 pressure, or similar), measured at equidistant time in

 Our third methodology comes from the atmospheric tervals at each sampling location. Observe that only
 sciences, where standard PCA is applied to spatio- one variable is measured in this approach, as opposed
 temporal data; that is, a time series of measurements to the previous two methodologies, in which several
 collected at specific spatial locations. It is considered a variables are measured. Sampling locations are either
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 Figure 3. Atmospheric science
 principal component analysis (PCA)
 and its spatial visualization—empirical
 orthogonal functions (EOFs)/spatial
 principal components. Location is im
 plicitly involved in the process through
 inversion of the spatio-temporal data
 set, where sampling locations are
 considered attributes and sampling
 times data elements of the data set on
 which the PCA is run.

 Time series measurements

 of one characteristic in all locations .
 Loci, Loc2, ... LocN at the y

 TimeP

 Synoptic stations | ' L"og4* Time3
 on the island of Ireland Loc2 Locjxj* Time2

 Timel

 Loci Loc2 Loc3 LocN Attnbutes
 Timel

 Time2

 Time3

 = Locations

 of stations

 a, j at each location

 X
 Inverted

 spatio-temporal
 dataset

 Data elements .
 = Times of measurement p<-:1

 PC^a,, Loc1+...+ a., N LocN

 Principal / PC2=a,. Loc1+...+ a,N LocN PC2 \ EOF2
 Component * ^ v
 Analysis + ^ \ f
 sometimes \ /
 Post-Rotation \ /
 of Components PC loadings

 a,.

 Interpolation + Contour Maps

 EOF N

 Result: maps of PC loadings

 a n,3
 n.4

 Spatial Visualisation: Empirical Orthogonal Functions (EOFs) = Spatial Principal Components

 locations of meteorological stations or centers of grid that, because of the conceptual inversion of the data
 cells of meteorological raster data. In the previous two set, covariance/correlation is calculated between each
 approaches, sampling locations represent data elements pair of sampling locations and not between two mea
 and field measurements variables. Atmospheric science sured variables as before. Therefore, location does play
 PCA inverts this concept and considers sampling loca- a role in calculation of the PCs, albeit implicitly. Figure
 tions as variables and sampling times as data elements. 3 schematically shows this process.
 Thus, PCs are calculated from the transposed data set, As mentioned in the previous section, wheri deal
 where the covariance/correlation matrix is n x m (as ing with space—time series data there are six differ
 opposed to m x n in the nontransposed case). Again ent operational modes of use of PCA: O, P, Q, R, S,
 the number of PCs is bounded by min(n,m). Note and T. These modes are defined by having the data
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 matrix for PCA defined by two out of the three sub- atmospheric PCA, in spite of the controversy over post
 spaces of the space-time data set. The three subspaces PCA rotation being necessary or not (see subsection on
 of the space-time data set are geographic space, tempo- PCA and factor analysis). In meteorology it has been
 ral space, and attribute space. The six modes are then observed that such rotated PC/EOF maps are more sim
 defined as follows (Richman 1986): ilar to particular observed weather situations (Yarnal

 et al. 2001; Jolliffe 2002; Zwiers and Von Storch 2004).
 O-mode data matrix is between attributes and time It is important to note the difference in the
 (i.e., attributes are considered data elements and information represented by this approach compared
 sampling times variables for PCA). to raster data PCA and the difference in their spatial
 P-mode: time vs. attributes (i.e., sampling times are visualizations. Raster PC maps show values (scores) of
 data elements and attributes variables). PCs (latent variables) at each location (represented
 Q-mode: attributes vs. locations. as a grid cell), as each location is considered as a data
 R-mode: locations vs. attributes (spatial objects PCA element in the spatial data set. This is in contrast to
 and raster PCA). atmospheric science PC/EOF maps, which show PC
 S-mode: time vs. locations (atmospheric science loadings at each location (because each location is
 PCA). considered to be a variable and not a data element). To
 T-mode: locations vs. time. emphasize the difference between the two, the PC/EOF

 maps present a spatial distribution of the importance
 Different modes provide different insights into of one single meteorological variable at each particular

 data—details of which can be found in Richman location, whereas raster PC maps show the distribution
 (1986). The S-mode is the most common one in at- of values of each latent variable (PC) at each loca
 mospheric science, however, and is the one described tion, where each PC is a linear combination of the
 in the preceding text. original variables, thus reflecting several variables, not

 The resulting PCs are sometimes referred to as just one.
 empirical orthogonal functions (EOFs, termed empirical Detailed historical reviews of atmospheric science
 because they originate from observed values of the mete- PCA can be found in Jolliffe (2002) and Esteban,
 orological field; North, Bell, and Cahalan 1982; Jolliffe Martin-Vide, and Mases (2006). Some noteworthy
 2002). Because each PC/EOF is a linear combination uses include investigating sea-level pressure (Esteban,
 (i.e., a weighted sum) of all locations, a map can be Martin-Vide, and Mases 2006; Lopez-Bustins et al.
 produced for each PC/EOF. Here the calculated weights 2007), precipitation (Widmann and Schâr 1997;
 of the respective PC/EOF at each sampling location are Krepper and Garcia 2004), and synoptic climatology
 spatially interpolated to form a contour map, which is (Yarnal et al. 2001). Again, this use of PCA often
 then inspected for spatial patterns. Often patterns from precedes the use of some clustering or classification al
 several of the first few PC/EOF maps correspond to gorithm; for example, circulation pattern classification,
 typical situations in the atmosphere at particular times classification of weather types, climate regionalization,
 of the temporal period studied (Jolliffe 2002). Further- atmospheric circulation reconstructions, circulation
 more, the PCs/EOFs are often rotated postanalysis (as anomalies associated with natural climatic variabil
 in FA) to facilitate the interpretation of the resulting ity, and climate series reconstruction (see Esteban,
 component maps. In atmospheric science, there are Martin-Vide, and Mases [2006], for a review). There is
 several types of rotations, some of which are orthogonal also a linkage between atmospheric science PCA and
 (e.g., varimax, quartimax, and equimax rotations, the modeling of nonstationary spatial autocorrelation
 which preserve the orthogonality of the PCs) and structures in spatiotemporal data sets (Obled and
 others oblique (these produce correlated rotated PCs). Creutin 1986; Sampson, Damian, and Guttorp 2001).
 The aim of all of these rotations is to discover a trans- This topic directly relates to the methods of the next
 formation of the PCs that results in a so-called simple section, but its description is beyond the scope of
 structure—a description of the data set with the smallest this study.
 necessary number of rotated PCs, which are oblique yet Finally, the use of atmospheric science (i.e., S
 still constitute a set of linearly independent vectors in mode) PCA can also be found in other disciplines that
 original PC space (Richman 1986). This structure was similarly collect long-term time series data at spatial
 defined by Thurstone (1947) for FA (cited in Richman locations—one example is the dendrochronological
 1986), but simple structure rotation is often applied in study of Frank and Esper (2005), where time series
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 of tree ring width and wood density were converted is spatial. Second, we describe a PCA technique that
 into PC/EOF maps, which were then compared with directly accounts for spatial autocorrelation in the
 climate maps to identify similarities between properties data via Moran's I statistic and, in doing so, has links
 of tree growth and climatic conditions. Other examples to related models concerning eigenfunction spatial
 can be found in environmental pollution analysis filtering. Third, we look at the use of PCA for exploring
 (Ibarra-Berastegi et al. 2009) and in seismology different structures of the variogram, a measure of
 for earthquake series data (Savage 1988; Holliday spatial autocorrelation commonly used in geostatistics,
 et al. 2006). and, in turn, link these established techniques to more

 contemporary and sophisticated spatial FA models.
 PCA on Flows Finally, as a caveat to this section, we discuss the

 ambiguities that are often found in the literature when
 Our fourth methodology is very different than the labeling a PCA technique as spatial,

 previous three and concerns the use of PCA in the
 identification of structure in flow matrices (Berry 1966,

 1968a, 1968b). Flow matrices are spatial in that they LWPCA and GWPCA: Moving from Global PCA
 can be, for example, a data matrix of the flow of mi- to Local pCA in Attribute or Geographic Space
 grants between countries (Magee 1971; Hay and Rai

 han Sharif 1986). In this particular example (both ref- LWPCA (Tipping and Bishop 1999; Skocaj,
 erences analyzed the same data), after conducting a Leonardis, and Bischof 2007; Hoffmann, Schaal, and
 standard PCA on the raw data flow matrix, one can Vijayakumar 2009; Charlton et al. 2010) is applied to
 relate each PC to a subsystem of flows emanating from the situation when the data are not described well by a
 a country (or countries) and terminating in another, universal set of PCs but where there are localized regions
 where the first PC has the strongest subsystem of flows. jn attribute data space where a suitably localized set of
 Again, in this example, flows originating from Spain PCs provide a better description. That is, in different
 and Portugal and terminating in France were found to parts Qf the data space, a different set of PCs is needed,
 be the strongest, reflecting their position as neighbor- Jbis technique uses a moving window weighting ap
 ing countries and their political and economic status proach in the data space where PCs are found in the
 at the time of the study. Other examples of this use locality of some point x in the data space. For each indi
 of PCA can be found in Goddard (1970) with taxi vidual LWPCA around x, neighboring data points are
 data, Black (1973) with transportation of commodi- first weighted according to some distance-decay kernel
 ties, and both Goddard (1973) and Clark (1973) with function (e.g., bi-square, Gaussian, etc.) where Maha
 phone call data. These studies belong to geography s lanobis (attribute space) distances of the neighboring
 historical literature and are often labeled as factorial points to x are used. Each observation is then multiplied
 ecology (see introduction). A more recent application by its respective weight and a standard PCA algorithm
 of the same underlying methodology can be found in is (locally) applied to this weighted data. As a different
 Reades, Calabrese, and Ratti (2009), where the spatio- PCA is computed for every point x, the results vary
 temporal structure of a rasterized representation of a continuously through the data space. The size of the
 mobile phone network in Rome, Italy, is characterized window over which a local PCA might apply is con
 using PCA. trolled by the bandwidth. Small bandwidth values lead

 to more rapid variation in the results, whereas very large

 PCA Adapted for Spatial Effects bandwidths give subspaces increasingly close to the uni
 versal (global) PCA solution.

 In this section, we describe three truly spatial PCA GWPCA models (Fotheringham, Brunsdon, and
 techniques that are specifically designed for, or account Charlton 2002; Charlton et al. 2010; Lloyd 2010; Ku
 for, spatial effects in spatial data. First, we look at two mar, Lai, and Lloyd in press) are similar to LWPCA
 closely related PCA techniques that are adapted locally models, but in this case it is assumed that there are
 in attribute and in geographical space, respectively. regions of geographical space in which distinct PCA
 These techniques adopt a nonparametric, kernel-based models apply (i.e., the study data set or process is spa
 approach and are termed bcally weighted PCA tially heterogeneous and should be modeled as such).
 (LWPCA) and geographically weighted PCA The technique is identical to LWPCA except that now
 (GWPCA). These can be considered nonstation- the distance-decay weights are based on geographical
 ary forms of PCA, where only the second technique (usually Euclidean) distances between some point z and

This content downloaded from 
�����������73.249.199.99 on Sat, 23 Mar 2024 04:18:12 +00:00������������ 

All use subject to https://about.jstor.org/terms



 118 Demsar et al.

 Figure 4. Geographically weighted
 principal component analysis (GW
 PCA). A local model is calculated at
 each location based on a geographi
 cally weighted subset of neighboring
 data points. A.j to Àn are eigenval
 ues, ordered from largest to smallest.
 PCI to PCN are principal components,
 defined as respective eigenvectors. In
 a global principal component analy
 sis model, eigenvalues and eigenvec
 tors are constant, whereas in GWPCA,

 they become dependent on geographic
 location (Loci, ... LocP).

 its neighboring data points. As for LWPCA, a different relation. Jombart et al. (2008) presented such a spatial
 PCA is computed for every z, but now the results vary modification of PCA (termed sPCA) to investigate the
 continuously over geographic space and, as such, they spatial pattern of genetic variability with respect to the
 can be mapped (Figure 4). (multivariate) genetic characteristics (termed alleles)

 Spatial patterns in the behavior of local eigenvalues of a set of individuals or populations under study,
 from GWPCA inform on the complexity and local Spatial autocorrelation is measured using Moran's I
 intrinsic dimensionality of the data and could be used (Moran 1950) and incorporated within the sPCA
 for local dimensionality reduction. Local PCs describe algorithm. The sPCA technique provides PC scores
 local relationships between original variables at each that summarize both the aspatial genetic variability in
 location and could be used to derive local composite attribute space and the spatial autocorrelation structure
 indices that depend on local environmental circum- in geographical space among the individuals or popu
 stances. GWPCA could also serve as a locally defined lations. Here statistical (Monte Carlo) tests are used to
 orthogonalization prior to the application of some partition the spatial structure into random, local, and
 other local statistical method, such as geographically global variance patterns, where local patterns are taken
 weighted regression (GWR; Fotheringham, Brunsdon, to relate to highly negative spatial autocorrelation and
 and Charlton 2002), as an alternative to a global PCA global patterns are taken to relate to highly positive
 orthogonalization in combination with GWR (Bitter, spatial autocorrelation. Observe that it is unlikely that
 Mulligan, and Dall'erba 2007). Currently, and unlike this should be viewed as clear-cut separation of spatial
 GWR, GWPCA is rather limited in that there are no structures, as vectors with relatively small positive
 associated diagnostics to indicate whether it provides eigenvalues produce local patterns of positive spatial
 an advantage over its global counterpart. Preliminary autocorrelation. The technique can be implemented
 research in addressing this drawback is reported in and its output visualized using functions provided in
 Charlton et al. (2010). the R (Ihaka and Gentlemen 1996) adeganet package

 (Jombart 2008), where its application in related re
 PCA with Spatial Autocorrelation search areas, such as those found in ecology, should be

 straightforward. Applications of sPCA should only be
 Spatial effects can also be taken into account when viewed as explorative, especially as its output depends

 PCA is combined with a measure of spatial autocor- strongly on the particular (often arbitrary) connection
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 network that needs to be specified when computing empirical variogram(s) and cross-variogram(s) for MFK
 Moran's I. (i.e., our measures of spatial autocorrelation). FK and

 The sPCA technique can be viewed as a direct al- MFK estimate and map the different sources of vari
 ternative to GWPCA for incorporating spatial effects ation suggested by the nested variography and in do
 into a PCA, but whereas GWPCA accounts for first- ing so can provide a greater understanding of the pro
 order (nonstationary) spatial effects, sPCA accounts for cess under investigation. Similarly, FK and MFK can
 second-order (stationary) spatial effects. Such method- be used as a data filter, where one (or more) of the
 ological differences are analogous to the use of a GWR spatial components are filtered from the data so that
 or a regression with a spatially autocorrelated error term the primary analysis can focus on the behavior of the
 when choosing a regression model to study spatially ref- residual process, which in this case is considered more
 erenced data. A natural extension would be to adapt important.
 sPCA locally to provide a GWsPCA hybrid. It is only for MFK that applications of PCA

 are needed. Here PCA is used to decompose the
 Linkages and Related Techniques. The sPCA variance-covariance (i.e., coregionalization) matrices

 technique has strong conceptual links to the multivari- that describe the correlation structure of multiple vari
 ate spatial correlation technique of Wartenberg (1985a, ables at characteristic spatial scales. Outputs from such
 1985b) where both techniques require the computation matrix decompositions are commonly visualized using
 of a spatial weighting matrix W to account for spatial a circle of correlation plots, one for each spatial scale
 autocorrelation between spatial units. Furthermore, of interest. Here any significant change in the relation
 Dray (2011) provided useful linkages concerning how ships between variables at the different spatial scales
 the spectral decomposition of W has been used in differ- should become immediately apparent. Software to im
 ent contexts. For example, in quantitative geography, plement MFK can be found in Pardo-Igùzquiza and
 the eigenvectors of W are used in spatial filtering where Dowd (2002); as with any kriging method, MFK can
 spatial autocorrelation is removed from the residuals of be embedded with a conditional simulation algorithm
 a statistical model and, in turn, can be used for spatial to provide an assessment of spatial uncertainty for vari
 prediction (e.g., see Griffith 1996, 2000; Griffith and ables with coregionalized components (Larocque et al.
 Amrhein 1997; Getis and Griffith 2002). The same 2006).
 eigenvectors are also used in ecology for multivariate Numerous applications of FK and MFK can be found
 spatial exploration and prediction (Dray, Legendre, in the geosciences and include Galli, Gerdill-Neuillet,
 and Peres-Neto 2006; Griffith and Peres-Neto 2006; and Dadou (1984) in geophysics (FK); Bourgault and
 Jombart, Dray, and Dufour 2009). Useful linkages Marcotte (1991), Lin et al. (2006), and Imrie et al.
 can also be made between spatial filtering and GWR (2008) in geochemistry (all MFK); Goovaerts (1992)
 (Griffith 2008), and Chun (2008) adapted a spatial (FKandMFK) andCastrignanó, Buttafouco, andPuddu
 interaction model using spatial filtering to improve its (2008; MFK) in soil science; Goovaerts, Sonnet, and
 parameter estimates when modeling migration flows. Navarre ( 1993 ) in hydrogeology ( FK and MFK) ; and Ma

 and Royer (1988) and Rodgers and Oliver (2007 ) in im

 Regionalized PCA: A Geostatistical Methodology a§e anal7sis and remote sensin8(both bK)' Applications
 outside of the geosciences are rarer, and more recent and

 In the classical geostatistics framework, a univariate examples include (FK only) Goovaerts, Jacquez, and
 spatial prediction algorithm such as ordinary kriging Greiling (2005) and Goovaerts (2010) for health data;
 (OK) and its multivariate extension, ordinary cokrig- Kerry et al. (2010) for crime data; and Nagle (2010) for
 ing (OCoK), can each be adapted to decompose the employment data.
 data into spatial components. This results in the (uni- The key drawback to any application of FK and MFK
 variate) factorial kriging (FK) and multivariate facto- is that the output depends wholly on the form of the
 rial kriging (MFK) algorithms, respectively (Matheron nested variogram model(s), which tend to be arbitrar
 1982; Goovaerts 1997; Wackernagel 2003). Here the ily fitted to the empirical variography. In this respect,
 geostatistical objective is no longer spatial prediction, any nested behavior observed in the empirical variog
 but an exploration of the origins of the data, where raphy should always be expertly related to any physical
 spatial variability (and covariability for MFK) is inves- knowledge of the given process. Appropriate techniques
 tigated at different spatial scales. Such scale-dependent to minimize the effects of outlying data on the FK and
 variation is typically revealed by nested structures in the MFK analysis are also recommended. Furthermore, each
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 spatial component that is identified is assumed station- we list studies in our literature search, aside from sPCA,
 ary (or constant) across space. For processes where such that explicitly use this term.
 an assumption is unrealistic, a wavelet approach (which In most cases "spatial PCA" refers to raster data
 identifies local changes in variation across a range of PCA. Examples are mainly found in the environmental
 spatial scales) can provide a useful alternative (e.g., see sciences: to define indices of environmental vulnera
 Oliver, Bosch, and Slocum 2002). bility or quality (Li et al. 2006; Ruimin and Zhenyao

 2007; Shi et al. 2009), to analyze susceptibility to
 j * i jnixj-rc- r> i coral bleaching (Maina et al. 2008), in environmental Linkages and Related techniques. Conceptual . , . . .
 , . , . , t un, , . ., , . . geology (Satapathy, Salve, and Katpatal 2009), and relationships between MFK. and similar multivariate , , , /r. i -.aaox
 i. / i j , ■ i pAv i also in biogeography (Bnto et al. 2008).

 techniques (commonly termed spatial FA) proposed 7 / i c
 . i r i_ -1 j- • d -i The second explicit use of the term refers to spa

 outside of the geostatistical paradigm are given in Bailey _ ,
 i . /->AAA\ \ ¡ r a. j tial objects PCA. two examples that we found were

 and Krzanowski (ZUUU). Moving on from these predom- ' , , i i
 i , , . . , r a il/ PCA on areas—watersheds to calculate environmen

 mantly exploratory techniques to spatial FA models (or , ,
 i) i , tal indicators (Iran et al. 2002) and PCA on point spatial latent variable models, see also subsection on , , . ,

 ■ ji \i • • ■ r measurements at sampling locations in lakes (Parinet,
 latent variable modeling), where estimation, inference, T1 1T .
 i . i i. . , c n j i Lhote, and Legube 2004).

 and spatial prediction procedures are formally devel- . .
 i ,r j. . ,A . ,1AAt The third explicit use of the term refers to atmo oped, can be found in Chnstensen and Amemiya( 2001, A

 Tom ->nm\ u i ji j i spheric science PCA, where EOFs are called spatial 2002, 20ÜJ). Here the models are demonstrated using JL
 simulated soil geochemical data. F. Wang and Wall ^ repper an arcia ).
 /ociai j i i • i ca j i We would also like to clarify the difference between
 (2001, 2003) used a related spatial FA model to ana- ... . . . , . „
 i i .j i , i i i . i j spatially weighted FLA (SWPCA) and geographically lyze health data, where their second article extends to , , . r
 n • i j i a .u n • , .FA weighted PCA (GWPCA). SWPCA applies to raster a Bayesian methodology. Another Bayesian spatial FA \ ri
 ji i rj-Ti j-Fu • AAA/1 j PCA, where each of the input rasters (e.g., bands of

 model was described in Hogan and 1 chernis (2004) and r,0 i i -fi
 i „ i, .i ji i./ .IV, . Rb images) is weighted by another weight raster. This was used to model social and health (material) depnva- i r i a

 . j. A . ^ , CA j i i . i . weight raster is a surface that represents some type of tion indices. A spatiotemporal FA model, also within 6 1 r
 ri • c 1 i r i-i n spatial relationship that is important in the context of a Bayesian framework, can be found in Lopes, Gamer- ; 1 _ ' .

 jci /min j j . . j the respective input raster. For example, it can be a dis man, and oalazar (2011) and was demonstrated using rr i
 meteorological data (and links to the use of EOFs de- tanc^ SUrfac* from each Pixe t0 a Certa,m ,obJfCt (^'"

 •ij i- \ c i j rs j i")ooq\ » j ore deposits) or to areas with extremely high or low scribed earlier). Folmer and Oud (2008) presented a , , /W7 .' . 6
 i i i - i i i , t -il values in the input raster (W. Wang and Cheng 2008). structural equation model with spatial latent variables ^ 6 6

 ij. • j j u . i This is not to be confused with GWPCA (see relevant and in doing so provided an alternative to spatial re
 gressions that require the spatial weighting matrix W subsection three subsections ago), where geographically
 from previous subsection (linkages).

 local PCA models are calculated at the location of each

 spatial object in the data set. The two methods, SW
 PCA and GWPCA, are therefore completely different

 Disambiguation of the Term Spatial PCA and Its from one another and are meant for different types of
 Variations data and for different purposes and should not be con

 fused.
 We identified a number of studies that claim to use a

 method termed "spatial PCA". In a geographical con
 text, the term seems to have originated in the first half  Further Topics

 of the last decade (we were not able to find any ex- jn tjqs section we lGOk at three recent variants of

 plicit reference to "spatial PCA" pre-2002 in geogra- pCA from the statistics> machine learning, and pat
 phy, although there are earlier studies using spatial, tern recognition communities and discuss their poten
 "temporal," and "spatiotemporal PCA" in, for example, tial usefulness in a spatial context, either in a basic form
 neuroscience; see Spencer, Dien, and Donchin [1999, or some spatially adapted form. In particular, we look at
 2001], but we found that its meaning differs). The term simple pCAj sparse pCA) and multilinear PCA.
 can refer either to one of the first three methodologies

 for standard PCA on spatial data (identified in the pre- Simple PCA
 vious section) or else (and more appropriately) to the
 spatial adaptation of PCA or sPCA (from two subsec- Spatial data sets are often highly dimensional (some
 tions ago). To address this confusion in terminology, times containing several hundreds of dimensions) and
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 very large; for example, acoustic marine data sets con- Sparse PCA
 tain hundreds of millions of data points and hundreds
 of attributes represented by statistical features calcu- Although PCA is a very powerful tool for di
 lated from the sonar backscatter (Preston 2009). Basic mensionality reduction, it is often difficult to relate
 PCA methods, which are often used on such data sets patterns in the resulting latent variables back to
 as discussed in the previous sections, are matrix based, physical quantities or determine which variables are
 which means that they require an explicit calculation significant contributors to the patterns. This is because
 and diagonalization of the variance-covariance matrix. tbe loadings obtained by PCA are linear combinations
 This is computationally a very demanding process that ob variables in the data set. Furthermore, if a group
 in practice is often not viable for such large or highly ob h'gfdy correlated (or collinear) variables contributes
 dimensional data sets. There exist several recent de- to a latent variable, their contribution is distributed

 velopments, however, that calculate approximations of evenly across all variables in the group. This so-called
 mathematical PCs in a way that is computationally fast, grouping effect is a property of linear least squares
 but they have not been used widely in a spatial con- regression and by extension PCA (Zou and Hastie
 text. One such development is simple PCA, which is 2005). Although this is a desirable property in terms
 an approximation of the traditional PCA algorithm, of averaging out noise, it masks the significance of
 such that the PCs are calculated by an iterative cal- variables, making the identification of key variables
 culation of one approximated component at a time. It difficult. This issue has motivated the development of
 therefore does not require the explicit calculation of the extensions to PCA that result in PCs that are sparse
 variance-covariance matrix. (be- with manV zero coefficients). The methods are

 Simple PCA works by using a training procedure, based on the sumption that many real-life data sets
 similar to those in neural networks, to calculate the first exhibit a low-dimensional structure in a sparse form.

 PC from the data. This is done by iteratively computing As discussed previously, an early method developed
 a series of linear transformations to a set of orthogonal to imptove the interpretability of PCA is varimax ro
 axes (approximations of PCs), one axis at a time. In tation <Kaiser 1958b which involves rotating the sub'
 each step a linear transformation is found such that the sPace defined bV selected PCs so that a sma11 number
 variance of the data with respect to only one axis is of the coefficients in the loading vectors have much
 maximized—this is the PC that is being sought in this 8reater values than the remaining coefficients. To ob
 particular iteration. This component is then removed tain sParse components, the smaller coefficients are
 to ensure that it is not found again in the next step. then simPl7 set to zero" Jeffers (1967> Prosed setting
 The process of removing the effect of one component sma11 coefficients of the original PCs to zero as a means
 from the data is called deflation and in the next step the of obtaining sParse components, although this can lead
 search for the next component is rerun on the deflated to a selection deficiency when the variables have high
 data. This iterative process is repeated until the de- mutual correlations (Cadima and Jolliffe 1995). It also
 sired number of components is reached. There are two invalidates the orthogonality of the resulting compo
 main algorithms for simple PCA, those by Partridge and nents.
 Calvo (1998) and Vines (2000). ^ first true alg°rithmic method for achieving

 Simple PCA is a data-oriented method (as opposed sParse loadin8s was Prosed by Jolliffe, Trendafilov
 to matrix-based methods such as traditional PCA). It and Uddin <2003 > and is known as Simplified Component
 has been shown to be more efficient for highly dimen- Technique for Least Absolute Shrinkage and Selection
 sional data sets than basic matrix-based PCA methods (SCOTLASS). This employs a penalty term referred
 (Partridge and Calvo 1998). There also exists an even to as the Least AbsoluCe Shrinkage and Selection Operator
 more efficient variation of simple PCA (Oyama et al. (LASSO; Tibshirani 1996) to force loadings to be
 2008) that deals with data incrementally; that is, by sparse. Unlike a ridge penalty, which encourages param
 adding one data point at a time in a process called mere- eters to be small>the LASSO Penalty has the attractive
 mental learning. This procedure enables the calculations ProPerty that ir forces Parameters to be exactly zero,
 to be performed on extremely large data sets that are SCOTLASS has a relatively high computation cost
 fed to the algorithm sequentially instead of all at once. with the result that several researchers have developed
 Therefore, simple PCA offers a promising practical al- alternative implementations that are substantially
 ternative for large and highly dimensional spatial data more efficient (Zou, Hastie, and Tibshirani 2006;
 sets.  D'Aspremont et al. 2007; Shen and Huang 2008).
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 In the context of spatial data analysis, sparse PCA To counter this problem, tensor data analysis sug
 has not often been used but seems promising for prob- gests that PCA is run in either 2D mode (Yang et al.
 lems where there are a large number of attributes (vari- 2004; Ye, Janardan, and Li 2004) or 3D mode (Lu,
 ables) and there is a need to determine the key factors Plataniotis, and Venetsanopoulos 2008). In both these
 contributing to the underlying spatial patterns being approaches, input data are represented in their natural
 investigated. multidimensional form as tensors, bound by a 2D or

 3D spatial area. This keeps the basic tensor elements

 Multilinear PCA of Tensor Objects to8ether with sPatial correlation and proximity taken
 into consideration.

 With the unprecedented advances in data collection, Such approaches are increasingly common in areas
 many disciplines collect spatial data that fill a certain such as face recognition, gait recognition, medical
 spatially constrained area and where the phenomenon imaging, and shape analysis (Aguirre et al. 2007; Lu,
 under observation is continuously distributed in this Plataniotis, and Venetsanopoulos 2011). Typical tasks
 area. These are the so-called tensor data objects. Ex- include 3D object recognition tasks, content-based
 amples include 2D tensors, such as gray-level images in retrieval of patterns, gait or gesture recognition,
 computer vision and pattern recognition, or 3D ten- and activity recognition in data of various very
 sors, such as MRI scans in medical imaging. In terms complex types, such as medical images, spatial video
 that are familiar to geographers, these tensors could be sequences, and space-time series (Lu, Plataniotis, and
 seen as 2D rasters and 3D volumes, examples of which Venetsanopoulos 2008; Leibovici 2010).
 include hyperspectral satellite imagery for the former Given the similarity of data type, these approaches
 and geological volumetric data for the latter. could also be of interest to geographers. In particular,

 Tensors can be understood as n-dimensional 2D mode PCA could replace raster PCA, whereas 3D
 bounded areas, separated into regular meshes, where mode PCA would be welcome, for example, in geology
 each mesh element (pixel in 2D or voxel in 3D) and seismology, which often deal with pattern recogni
 represents a measurement of an attribute. Tensor data tion in 3D volumetric data (Gao 2009; Hsieh, Chen,
 are therefore highly dimensional: a 100 x 100 x 100 and Ma 2010). An example of a tensor mode PCA ap
 volume has a million voxels and each of these voxels is plied in spatial context was given in Leibovici (2010),
 a separate attribute. However, these attributes are not where it was used to solve a spatiotemporal ecoclimatic
 independent. The spatial proximity of their position delineation problem,
 in the volume and continuity of the phenomenon
 observed or measured entails that there is a high level

 of spatial correlation present (Lu, Plataniotis, and Conclusions
 Venetsanopoulos 2011).

 Feature extraction and pattern recognition in tensor In this article we surveyed the use of PCA on
 data (e.g., patterns in MRI scans) are usually performed spatial data in an attempt to identify methodological
 through dimensionality reduction, where the goal is to characteristics of its use and also to investigate uses that
 map the tensor space onto a lower dimensional subspace take into account particular characteristics of spatial
 that captures most of the signal variation present in data (spatial heterogeneity and spatial autocorrela
 the original tensorial representation. This is often done tion). Studies reviewed were primarily from geography
 with PCA in several different ways (Lu, Plataniotis, and and the geosciences, where we found that standard
 Venetsanopoulos 2011). nonspatial PCA is commonly applied in one of four

 The standard way is to employ basic linear PCA, methodological ways: on spatial objects, on raster data,
 where the tensors are represented as highly dimensional on meteorological space-time series data, and on flow
 vectors of attributes. Imagine a 3D volume being "un- matrices. Although such applications of PCA have
 wound" into a long row vector by taking rows of voxels merit, they overlook spatial effects that could furnish a
 one by one off the 3D volume. Each tensor object is greater understanding of a given process. In this respect,
 then represented as one such vector. This results in a we reported on adapted PCA methods that account for
 vector with as many dimensions as there are voxels but spatial heterogeneity (with respect to nonstationary
 breaks the natural structure in the data in that it com- mean response effects) and spatial autocorrelation (with
 pletely ignores any spatial correlation and proximity of respect to stationary variance effects). For the former
 voxels (Lu, Plataniotis, and Venetsanopoulos 2011). we described a geographically weighted PCA method,
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 whereas for the latter we used a PCA method that could

 account for spatial autocorrelation via the calculation
 of Moran's I. Furthermore, we described how PCA
 can be used to investigate multiple scales of spatial
 autocorrelation (from the geostatistical literature) and
 also attempted to provide links to more sophisticated
 techniques and models from the statistical literature.

 Perhaps rather surprisingly, in surveyed literature
 we found proportionally few studies that use spatially
 adapted versions of PCA to analyze their data. There
 seems to be a need to promote such spatially aware
 techniques and this is something that we hope that this
 article will achieve—that the reader will consider the

 fact that geographic space can often matter and there
 fore look into alternatives that account for this.

 We also attempted to bridge the gap between recent
 developments in the statistics, machine learning, and
 pattern recognition communities with geography and
 the geosciences by suggesting alternative algorithms for
 direct application on spatial data or eventual spatial
 adaptation. Here we reviewed methods that are com
 putationally faster (simple PCA), facilitate easier in
 terpretation of PCs (sparse PCA) than standard PCA,
 and those that might have use in 2D and 3D raster-type
 data sets (multilinear PCA). These all seem promising
 for use in a spatial context.

 Consequently, this article serves as a useful catalyst
 to increased recognition of the issues involved in using
 PCA with spatial data and the potential uses for alter
 native PCA methodologies on spatial data that perhaps
 could be explored by geographers and that to date re
 main relatively underused.
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