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Abstract—In robot-assisted cardiac surgery, predicting 

heart motion can help improve the operation accuracy and 
safety of surgical robots. Different from the conventional 
prediction schemes which model the point of interest (POI) 
with only temporal correlation of past observations, this 
paper proposes an LSTM-based method by exploiting the 
spatio-temporal correlation of the 3D movements of POI 
and auxiliary points (APs) on the same surface of the heart. 
Three different LSTM models are investigated. The first 
two models define the POI prediction as a pure time-series 
forecasting problem based on past POI trajectory, and the 
third model combines the past observations of POI and new 
observations of APs to take into consideration the extra 
spatial correlations for prediction. Experimental 
comparison studies based on 3D coordinates obtained from 
real stereo-endoscopic videos demonstrate the superior 
performance of the proposed spatio-temporal LSTM model. 

  
Index Terms— Motion prediction, LSTM, beating heart, robotic 

surgery, spatio-temporal correlation. 
 

I. INTRODUCTION 

n recent years, robot technology has been increasingly used 
to break the bottleneck of manual minimally invasive surgery 
(MIS). However, as indicated by Mountney et al. [1], robot-

assisted MIS has been developing slowly in some complex 
surgical scenarios due to the challenges brought by the dynamic 
surgical environment. A typical example is the off-pump 
coronary artery bypass graft surgery (CABG). The off-pump 
surgery avoids damages and side-effects to patients caused by 
using heart-lung machines (on-pump). However, operation on a 
beating heart is very challenging because the rapid heart 
movements are difficult to deal with manually [2], and the 
teleoperation mode adopted by surgical robot systems further 
increases the difficulty of the motion compensation.  

Active motion compensation (AMC) technology has been 
put forward to improve the maneuverability of surgical robots  
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on dynamic soft tissues such as the beating heart [3]. By 
tracking the point of interest (POI) on the tissue surface, the 
operating robot can actively compensate for the physiological 
motion of soft tissue and thus create a virtually stable operating 
environment for surgeons. Two fundamental issues, motion 
measurement and control, are involved in the AMC, and the 
motion prediction of POI plays an essential role in addressing 
both issues [2]. For recursive tracking schemes [4-8] that are 
usually adopted for efficient POI measurement, once the 
tracking chain is interrupted (often due to dynamic effects in 
complex MIS, e.g., motion blurring or instrument occlusions), 
it is difficult to recover on its own. In this case, a well-designed 
motion prediction algorithm can bridge the interrupted tracking 
and provide proper initialization for the forthcoming 
uninterrupted sampling period [2]. Motion prediction is also 
crucial for the control synthesis of AMC systems, which often 
resort to predictive techniques to handle heart motion of high 
bandwidth, especially with measurement sensors of significant 
time delay or slow sampling rates, e.g., ultrasound imaging [9].  

Traditional time-series prediction technologies have been 
used for the POI prediction, such as the Taken’s theorem (TT) 
based methods [10], [11], vector autoregressive (VAR) [12], 
[13], and Kalman filter-based methods [2], [14]. Most of the 
existing methods predict the motion of POI from its past 
trajectory by assuming that the motion is periodic or quasi-
periodic and, therefore, can be modeled using the temporal 
correlation of past observations. However, from a clinical point 
of view, it is difficult to predict the long-term behavior of 
dynamic tissues solely based on time-dependent methods 
because during the prediction phase the state of the prediction 
model cannot be updated with new observations, and the state 
deviation will accumulate as the number of prediction steps 
increases. As shown in our previous work [2], the temporal-
correlated methods, including the TT, VAR, extended Kalman 
filter (EKF), and dual Kalman filter (DKF), usually achieve 
acceptable results for short-term predictions or for phantom 
hearts with regular periodic movements but perform 
unsatisfactorily for long-term predictions, especially for real 
beating hearts which exhibit highly dynamic quasi-periodic 
movements. 

Recently recurrent neural network (RNN), a popular deep 
learning technology, has shown significant advantages in 
processing time-series data [15-17]. To address the long-term 
dependence problem [18] that is inherent in standard RNN, a 
variant RNN, so-called long short-term memory (LSTM) [19], 
has been developed and widely used in regression and 
prediction tasks such as audio-noise power spectral density 
estimation [20] and pedestrian trajectory prediction [21]. The 
RNN-based methods represent new promising and efficient 
solutions for time-dependent tasks in general. This type of 
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methods fits well in addressing the prediction problem of the 
beating heart thanks to the powerful ability to model nonlinear 
dynamic systems. However, to the best of the authors’ 
knowledge, the RNN or its variants have not been explored for 
the beating heart motion prediction so far. 

In this letter, the LSTM-based prediction is investigated and 
verified based on motion data measured from stereo-endoscopic 
videos which were recorded through the da Vinci® (Intuitive 
Surgical Inc.) robot. Although the network structure is rather 
simple, composed of a single-layer LSTM followed by a fully 
connected (FC) regression layer, the results obtained through 
this work are encouraging and have important implications for 
predicting beating heart motion and thus improving the 
maneuverability of surgical robots on dynamic soft tissues. The 
main contributions of this work are summarized as follows: 1) 
The feasibility of modeling heartbeat with simple LSTM 
networks is verified; 2) A spatio-temporally correlated LSTM 
prediction model is proposed, which for the first time exploits 
the spatial correlation between multiple points on the same 
heart surface to improve heartbeat motion predictions. 

II. METHODOLOGY 

This work aims to predict the future location of a POI on the 
surface of a beating heart from its past observations (3D 
coordinates). Three LSTM prediction models, depending on the 
input and output, are developed: 1) single-point input single-
step prediction model, denoted by 1-step LSTM, 2) single-point 
input multi-step synchronous prediction model, denoted by M-
step LSTM, and 3) multi-point input spatio-temporal joint 
prediction model, denoted by ST-LSTM.  

The same base network, a single-layer LSTM + an FC 
regression layer, is adopted by all three models for a fair 
comparison, which is unfolded in time dimension as shown in 
Fig. 1. Given an input ( )kx  at time k  , the state of the 
LSTM module can be updated as 

  ( ), ( ) LSTM ( ), ( 1), ( 1)k k k k k  h c x h c ,  (1) 

where ( )kh  and ( )kc  are the hidden and cell states, 
respectively (for more details, please refer to Olah’s blog [22]).  

The FC layer is a purely linear transformation with a 
trainable weight matrix, outputting an estimate 

 ( ) FC ( )k ky h .       (2)  

For concision, the base network can be represented in an end-
to-end form by hiding its states as 

 ( ) Model ( )k ky x        (3) 

A. 1-step LSTM 

Given K past observations   1
( )

K

k
k


x , the 1-step model can be 

trained by defining the loss function as the sum of squared 
errors between the estimated and real-observed 3D positions, 

1
2
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k

Loss k k




   y x ,     (4) 

where the output of the model at time k is the estimate at the 
next time, i.e., 3ˆ( ) ( 1)k k  y x  . 

Letting   denote a trained model, the single-step predicting 
at the starting point K is written as  

 *( ) Model ( )K Ky x .        (5) 

For continuous multi-step predicting, the cyclical pattern is 
adopted: 

 *( ) Model ( 1)k k y y , for k K .    (6) 

Being trained to match the position at the next step, the 1-
step LSTM can usually achieve good short-term prediction 
performance. For prediction shorter than 1 step, e.g., serving a 
predictive controller, interpolation techniques can be used to 
increase the sampling rate of observed signals. On the other 
hand, it is difficult for 1-step models to handle long-term 
forecasts because the prediction errors will accumulate rapidly 
as the number of prediction cycles increases. 

 
Fig. 1.  Unfolded base prediction network. 

B. M-step LSTM 

To alleviate the error accumulation problem, M-step LSTM 
is developed by extending the output to the future M steps, 

  3ˆ ˆ ˆ( ) ( 1),  ( 2),  , ( ) Mk k k k M    y x x x  .   (7) 

The loss function for training is formulated as 

2

2
1

( ) ( )
K M

k

Loss k k




  y d ,      (8) 

where ( )kd  is the truth vector concatenated by M observations. 
The prediction at the starting point K is the same as (5). There 

is no error accumulation within the first M steps due to the 
synchronous prediction. However, error accumulation cannot 
be totally eliminated in practice as the number of predicted steps 
required for bridging tracking chains cannot be determined in 
advance. The cyclical pattern has to be adopted for longer 
predictions than M steps, though the number of cycles 
compared with the 1-step model is reduced by a factor of M.  
Let k K nM  with n , then the cyclical pattern can be 
written as 

 * ˆ( ) Model ( )k ky x ,          (9) 

where ˆ( )kx is the M-th estimate in ( )k My .  
As the limited network resources are balanced for fitting 

multiple steps, the short-term performance of the M-step model 
(corresponding to the estimation of the first several outputs) 
may be compromised. Besides, the training sequence available 
is actually shortened, in which only the first K M  
observations can be input for training. Consequently, the M-
step model usually requires more network resources and 
training data. Compared with the 1-step model, the gap from the 
latest training sample ( )K Mx  to the prediction start ( )Kx  is 
widened to M steps. This means that there is a high probability 
that the state at the start of the prediction will deviate from the 
states in training and therefore lead to significant prediction 
errors even within short steps.  
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C. ST-LSTM 

Both the aforementioned single and multi-step models utilize 
the temporal correlation within the POI sequence data to 
estimate the future motion, which can be viewed as the 
nonlinear extensions of the VAR models [12], [13]. Good 
performance may be achieved by such models for stationary or 
less dynamic quasi-periodic movements. However, in a real 
dynamic setting, it is unrealistic to predict long-term trends 
based only on the temporal correlation, considering the error 
accumulation. Tuna et al. [13] suggested that physiological 
signals (e.g., ECG and RPS) may be incorporated for robust 
prediction. However, this idea faces challenges from 
multimodal data acquisition and synchronization. Moreover, 
the correlation between the POI movement and physiological 
signals remains unclear, and there are some motion components 
that physiological signals cannot adequately explain. The 
effectiveness of physiological signals in improving prediction 
accuracy and coping with dynamic effects such as arrhythmias 
remains unproven.  

We propose a more practical approach by introducing the 
auxiliary points (APs) on the same surface area of the heart to 
deal with the error accumulation caused by the long-term 
blocking of POI observations. There are obvious spatial 
correlations between different points on the same soft-tissue 
surface according to soft tissue characteristics. In MIS, the 
dynamic effects that interrupt the POI measurement are usually 
concentrated around the POI, so some stable APs without being 
blocked can always be found whose observations can be used 
to update the state of the predictive model in time. In addition, 
the POI and APs can be easily measured synchronously with a 
visual tracker from stereo-endoscopic images [5-7], [23], [24]. 
Artificial markers can also be fixed on beating heart surfaces, 
as APs, for robust tracking. 

Assuming the number of used APs is N, the input of the ST-
LSTM is extended to 3( 1)N   by concatenating the observations 
of the POI and APs. Considering that the state can be updated 
in time by the latest observations of APs, the ST-LSTM adopts 
the single-step prediction scheme, i.e., ˆ( ) ( 1)k k y x . 

In the prediction phase, the cyclical pattern is only applied to 
the POI, written as 

* ( 1)
( ) Model

( )APs

k
k

k

 
  

 

y
y

x
, for k K .   (10) 

where APsx  is concatenated by the observations of the N APs. 
The interpolation techniques and multi-step or skipping 

prediction schemes can be easily integrated into the ST-LSTM 
for solving the mismatch of predicted steps caused by too low 
or too high sampling rates. Since only POI is input cyclically 
during prediction, the ST-LSTM, with effective training, will 
learn to rely more on the APs to update its state as the number 
of predicted steps increases, thus avoiding the error 
accumulation. In addition, with more inputs, the ST-LSTM has 
the potential for more accurate short-term prediction than the 1-
step model, and this many-to-one regression is easier to train. 

III. EXPERIMENTAL RESULTS 

The 3D motion datasets used for validation were calculated 
from two stereo-endoscopic videos recorded through the da 
Vinci robots using a model-based 3D tracking method [7]. 

Figure 2 shows the left images of the first frames in these two 
videos. The phantom video records the movements of a 
phantom heart model [23, 25], and the in vivo video was 
captured from a real off-pump CABG surgery [4]. Each video 
contains 750 stereo frames with a frame rate of 25 Hz. An 
isosceles triangle region is delineated in the first left image of 
each video as a template for 3D tracking, where o denotes the 
POI and is set as the circumcenter of the triangle template, and 
the vertices {a, b, c} are set as the APs. The triangle template is 
warped with a triangular cubic spline deformation model of 4 
control points, corresponding to {a, b, c, o}, to match pixels at 
subsequent stereo frames. The 3D coordinates of the 4 control 
points, corresponding to 12 deformable degrees of freedom, are 
estimated at each frame with the iterative optimization 
algorithm in [7]. As a result, a 12 750  motion data matrix is 
obtained from each video.  

     
(a) Phantom video.                (b) In vivo video. 

Fig. 2.  The left images of the first frame in stereo-endoscopic videos with the 
triangle templates for 3D tracking. 

Five models were tested, including the 1-step LSTM, the ST-
LSTM, and three M-step LSTM models with M = 10, 20, 40. 
The source codes as well as the motion data for both videos are 
publicly available on Github1. All models employ the same 
number (300) of hidden state nodes for a fair comparison. 
Figure 3 shows the 100-step prediction results of five models at 
the starting point 600K  . The predicted curves on the 
phantom dataset are very close to the observed curves for all 
five models due to the well-defined periodicity of the phantom 
heart. In contrast, the motion of the in vivo heart (see Fig. 3(b)) 
is highly dynamic and thus more difficult to be predicted. The 
ST-LSTM performs much better than the other four temporal-
correlated models, whose predicted curves gradually deviate 
from the observed curves after about 10 steps, and the 
cumulative errors are clearly observable.  

To avoid assessment biases caused by the specific starting 
points and the random initialization of model weights, 50 
different prediction starting points (from K = 600 to 649) were 
tested for the 100-step prediction, and each starting point was 
repeated 20 times. The RMSE values over the 50 20  tests at 
each future step are given in Fig. 4. As a reference, the RMSE 
values of using the mean of past observations as future 
estimates were also computed and denoted by mean prediction, 
which indicate the validity of long-term prediction. The validity 
of short-term prediction can be indicated by the 1-step 
prediction RMSE of using the last observation as the current 
estimation, denoted no prediction. 

On phantom data, all models achieved satisfactory errors (see 
Fig. 4(a)), which are consistent with the results in Fig. 3(a). All 
RMSE curves are far lower than the line of mean prediction 
(about 1.6 mm), and the errors at the first step are also lower 

1 https://github.com/zwr-04/ST-LSTM. 
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(a) Phantom dataset. 

 
(b) In vivo dataset. 

Fig. 3.  100-step prediction results of five models at starting point K = 600. 

than the no prediction (1.04 mm), which show the effectiveness 
of the five models for regular motion. The 1-step LSTM yielded 
fairly good results in the first few steps; however, significant 
error accumulation occurred in the subsequent steps. The 
RMSE curves of 10 and 20-step LSTM are very close, and both 
are better than the 40-step LSTM, which indicates that too large 
M may lead to poor prediction with the same state resources, 
and the analyses in Section II B are hence justified. The results 
of ST-LSTM are comparatively much better. The total RMSE 
over 50 20 100   points is 0.059 mm, even reaching the noise 
level of visual measurement. 

For in vivo data, the 1-step errors of the four temporal-
correlated models are all lower than the no prediction (0.583 
mm). However, their error curves are close to the mean 
prediction line after about 30 steps. It shows that the temporal-
correlated models cannot track the real states of the heartbeat. 
They simply updated themselves recurrently based on the 
patterns learned from training data, which inevitably led to the 
accumulation of prediction errors. It can also be seen from Fig. 
4(b) that the model with a smaller M value has some advantages 
in short-term prediction, while with larger M performs slightly 
better in long-term prediction. 

 
(a) Phantom dataset                          (b) In vivo dataset 

Fig. 4.  Prediction errors (RMSE) for five models on two datasets. 

The performance of the ST-LSTM on the in vivo data is 
superior to those of the other four models, with low error levels 
and no error accumulation. The total RMSE is 0.252 mm, also 
significantly lower than the error levels ( 0.6 mm) of the 
traditional prediction techniques reported in [2], including the 
TT, VAR, EKF and DKF. It verifies that there are clear and 
solid spatial correlations between the points on the same soft-
tissue surface, and through training, the LSTM can learn how, 

when and to what extent the spatial correlations from APs 
should be used to predict the future POI. In terms of single-step 
prediction, the ST-LSTM also outperforms the 1-step LSTM, 
thus verifying that the spatial correlation can improve not only 
long-term but also short-term predictions.  

At last, the average learning curves over 1000 tests were 
compared. Since the numbers of training epochs required by 
five models are different, only the first 50 epochs are shown in 
Fig. 5 for trend comparison. All five models used the same 
optimization algorithm (Adam) and hyperparameter settings. 
The ST-LSTM is easier to train than the other four models by 
showing the fastest convergence speed on both datasets. The 
learning curves of the four temporal-correlated models are 
similar on phantom data but significantly different on in vivo 
data, which shows that the training on the dynamic in vivo data 
is more complex and sensitive to the selection of M, where 
larger M usually leads to harder training.  

The average training time is calculated based on our platform 
(Matlab 2019b at Xeon E3-1231 CPU with 8G Memory and 
NVIDIA Quadro K620 GPU). On the in vivo data, the ST-
LSTM and 1, 10, 20 and 40-step LSTM need 50, 100, 200, 150 
and 50 epochs of training, respectively, and the average training 
time (for 600 frame data) is 4.2, 9.2, 17.1, 13.6 and 4.4 s 
respectively, which demonstrate the advantages of ST-LSTM 
in training. 

 
  (a) Phantom dataset                      (b) In vivo dataset 

Fig. 5.  Average learning curves over 1000 trainings on two datasets. 

IV. CONCLUSION 

This paper presents a novel spatio-temporal correlated 
heartbeat prediction method based on LSTM. As far as we 
know, this is the first work in the literature to predict POI 
motion by considering the spatial correlation of points on the 
same heart surface. The LSTM-based prediction models were 
tested systematically through extensive experiments using 
phantom and in vivo data recorded through real surgical robot 
devices. Multi-step prediction presents a fair option for regular 
phantom data, but the number of synchronized steps and model 
complexity need to be carefully chosen. For dynamic in vivo 
data, the single-step LSTM is acceptable for short-term 
prediction. All temporal-correlated LSTM models performed 
poorly in long-term prediction, and their prediction errors 
accumulated rapidly as the number of predicted steps increased. 
Comparatively, the performance of the spatio-temporal LSTM 
is highly satisfactory on the phantom heart and encouraging on 
in vivo heart with stable prediction error curves. As a first study 
of using RNN techniques for robotic-assisted physiological 
motion compensation, this work verifies the feasibility of using 
simple LSTM networks for modelling heart beating and shows 
superior performance of introducing spatial correlation towards 
achieving accurate and robust motion prediction in robotic MIS 
with dynamic operating environment.  
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