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Summary. Spatio-temporal c1ustering is a process of grouping objects based on their spa
tial and temporal similarity. It is relatively new subfield of data mining which gained high 
popularity especially in geographie information scienees due to the pervasiveness of all kinds 
of location-based or environmental devices that record position, time or/and environmental 
properties of an object or set of objects in real-time. As a consequence, different types and 
large amounts of spatio-temporal data became available that introduce new challenges to data 
analysis and require novel approaches to knowledge discovery. In this chapter we concentrate 
on the spatio-temporal c1ustering in geographic space. First, we provide a c1assification of dif
ferent types of spatio-temporal data. Then, we focus on one type of spatio-temporal c1ustering 
- trajectory c1ustering, provide an overview of the state-of-the-art approach es and methods 
of spatio-temporal c1ustering and finally present several scenarios in different application do
mains such as movement, ceIIular networks and environmental studies. 

44.1 Introduction 

Geographic and temporal properties are a key aspect of many data analysis problems in busi
ness, government, and science. Through the avaiIabiIity of cheap sensor devices we have wit
nessed an exponential growth of geo-tagged data in the last few years resulting in the availabil
ity of fine-grained geographic data at small temporal sampling intervals. Therefore, the actual 
chaIlenge in geo-temporal analysis is moving from acquiring the right data towards large-scale 
analysis of the available data. 

Clustering is one approach to analyze geo-temporal data at a higher level of abstraction by 
grouping the data according to its similarity into meaningful clusters. While the two dimen
sional geographie dimensions are relatively manageable, their combination with time results 
in a number of chaIlenges. It is mostly application dependent how the weight of the time di
mension should be considered in a distance metric. When tracking pedestrians, for example, 
two geographically c10se sampIe points co-occurring within aminute interval could belong to 
the same cluster, whereas two sampIe points at near distance within a time interval of a few 
nanoseconds in a physies experiment might belong to different clusters. In addition to this, 
representing temporal information on a map becomes extremely challenging. 

When considering a group of points in time as a single entity, more complex data types 
such as trajectories emerge. Analysis questions might then deal with the correlation of these 
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trajectories among each others, resulting in extraction of patterns such as important places 
from trajectories or c1ustering of trajectories with common features. 

Yet on a higher level, the problem of moving clusters arises. An exemplary analysis ques
tion might therefore be if there are groups of commuters within a city that move from one 
area of the city to another one within a particular time frame. This kind of analysis can give 
meaningful hints to city planners in order to avoid regular trafik jams. 

The rest of this chapter first details basic concepts of spatio-temporal c1ustering and then 
Iists a number of applications for spatio-temporal c1ustering found in the literature. After
wards, we identify open issues in spatio-temporal c1ustering with a high need for future re
search . Finally, the last section summarizes our view on spatio-temporal c1ustering. 

44.2 Spatio-temporal clustering 

Whatever the analysis objective or the computational schema adopted, the c1ustering task 
heavily depends on the specific characteristics of the data considered. In particular, the spatio
temporal context is a large container, wh ich includes several kinds of data types that exhibit 
extremely different properties and offer sensibly different opportunities of extracting useful 
knowledge. In this section we provide a taxonomy of the data types that are available in the 
spatio-temporal domain, briefly describe each c1ass of data with a few examples taken from 
the spatio-temporal c1ustering literature, and finally report in detail the state-of-art of c1uster
ing methods for a particular kind of data - trajectories - that constitute the main focus of this 
chapter. 

44.2.1 A classification of spatio-temporal data types 

Several different forms of spatio-temporal data types are available in real applications. While 
they all share the availability of some kind of spatial and temporal aspects, the extent of such 
information and the way they are related can combine to several different kinds of data ob
jects. Figure 44.1 visually depicts a possible c1assification of such data types, based on two 
dimensions: 

• the temporal dimension describes to which extent the evolution of the object is captured 
by the data. The very basic case consists of objects that do not evolve at all, in which case 
only a static snapshot view of each object is available. In slightly more complex contexts, 
each object can change its status, yet only its most recent value (i.e., an updated snapshot) 
is known, therefore without any knowledge about its past history. Finally, we can have the 
extreme case where the full history of the object is kept, thus forming a time series of the 
status it traversed; 

• the spatial dimension describes whether the objects considered are associated to a fixed 
location (e.g., the information collected by sensors fixed to the ground) or'they can move, 
i.e., their location is dynamic and can change in time. 

In addition to these two dimensions, a third, auxiliary one is mentioned in our classifica
tion, which is related to the spatial extension of the objects invol ved. The simplest case, which 
is also the most popular in real world case studies, considers point-wise objects, while more 
complex cases can take into consideration objects with an extension, such as Iines and areas. 
In particular, Figure 44.1 focuses on point-wise objects, while their counterparts with spatial 
extension are omitted for the sake of presentation. 
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In the following we briefty describe the main classes of data types we obtain for point-wise 
objects. 

ST events. A very basic example of spatio-temporal information are spatio-temporal events, 
such as earth tremors captured by sensors or geo-referenced records of an epidemic. Each 
event is usually associated with the location where it was recorded and the correspond
ing timestamp. Both the spatial and the temporal information associated with the events 
are static, since no movement or any other kind of evolution is possible. Finding clusters 
among events means to discover groups that Iie close both in time and in space, and pos
sibly share other non-spatial properties. A classical example of that is (Kulldorff( 1997»'s 
spatial scan statistics, that searches spatio-temporal cylinders (i .e., circular regions con
sidered within a time interval) where the density of events of the same type is higher than 
outside, essentially representing areas where the events occurred consistently for a signifi
cant amount of time. In so me applications, such as epidemiology, such area is expected to 
change in size and location, therefore extensions of the basic scan statistics have been pro- . 
posed that consider shapes different from simple cylinders. For instance, (Iyengar(2004» 
introduces (reversed) pyramid shapes, representing a small region (the pinpoint of the 
pyramid, e.g. the origin of an epidemic) that grows in time (the enlarging section of the 
pyramid, e.g. the progressive outbreak) till reaching its maximal extension (the base of 
the pyramid). From another viewpoint, (Wang et al(2006)Wang, Wang, and Li) proposed 
two spatio-temporal clustering algorithms (ST-GRID and ST-DBSCAN) for analysis of 
sequences of seismic events. ST-GRID is based on partitioning of the spatial and tem
poral dimensions into cells. ST-DBSCAN is an extension of the DBSCAN algorithm to 
handle spatio-temporal clustering. The k-dist graph proposed in (Ester et al( I 996)Ester, 
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KriegeI, Sander, and Xu) as a heuristic for determination ofthe input parameters was used 
in both approaches. Hence, in the first step, the k-dist graptJ was created using spatial and 
temporal dimensions. By means of the graph, the analyst could infer the suitable thresh
olds for the spatial and temporal celllengths. In the second step, the inferred celllengths 
are provided to ST-GRID algorithm as an input and the dense clusters are extracted. ST
DBSCAN introduced the second parameter of the neighborhood radius in addition to the 
spatial neighborhood radius e, namely temporal neighborhood radius er. These two pa
rameters were determined using k-dist graph and provided to ST-DBSCAN as an input. 
Thus, point p is considered as core when the number of points in the neighborhood is 
greater or equal to the threshold MinPts within spatial and temporal thresholds. 

Geo-referenced variables. When it is possible to observe the evolution in time of some phe
nomena in a fixed location, we have what is usually ca lied a geo-referenced variable, 
i.e. , the time-changing value of some observed property. In particular, the basic settings 
might allow only to remember the most recent value of such variable. In this case, the 
clustering task can be seen as very similar to the case of events discussed above, with the 
exception that the objects compared refer to the same time instant (the actual time) and 
their non-spatial features (variables) are not constant. A typical problem in this context 
consists in efficiently computing a clustering that (i) takes into account both the spatial 
and non-spatial features, and (ii) exploits the clusters found at the previous time stamp, 
therefore trying to detect the relevant changes in the data and incrementally update the 
clusters, rather than computing them from scratch. 

Geo-referenced time series. In a more sophisticated situation, it might be possible to store 
the whole history of the evolving object, therefore providing a (geo-referenced) time
series for the measured variables. When several variables are available, they are usually 
seen as a single, multidimensional time series. In this case, clustering a set of objects 
requires to compare the way their time series evolve and to relate that to their spatial 
position. A classical problem consists in detecting the correlations (and therefore form
ing clusters) among different time series trying to filter out the effects of spatial auto
correlation, i.e. , the mutual interference between objects due to their spatial proximity, 
e.g., (Zhang et al(2003)Zhang, Huang, Shekhar, and Kumar). Moreover, spatio-temporal 
data in the form of sequences of images (e.g., fields describing pressure and ground tem
perature, remotely sensed from satellites) can be seen as a particular ca se where location 
points are regularly distributed in space along a grid. 

Moving objects. When (also) the spatiallocation of the data object is time-changing, we are 
dealing with moving objects. In the simplest case, the available information about such 
objects consists in their most recent position, as in the context of real-time monitoring 
of vehicles for security applications, and no trace of the past locations is kept. As in the 
case of geo-referenced variables, a typical clustering problem in this context consists in 
keeping an up-to-date set of clusters through incremental update from previous results, 
trying to detect the recent changes in the data (in particular, their recent movements) that 
were significant or that are likely to be followed by large changes in the close future, 
e.g., due to a change of heading of the object. An example is provided by the work in (Li 
et al(2004a)Li, Han, and Yang), where a micro-clustering technique based on direction 
and speed of objects is applied to achieve a large scalability. 

Trajectories. When the whole history of a moving object is stored and available for analysis, 
the sequence of spatial locations visited by the object, together with the time-stamps of 
such vi sits, form what is called a trajectory. Trajectories describe the movement behavior 
of objects, and therefore clustering can be used to detect groups of objects that behaved in 
a similar way, for instance by following similar paths (maybe in different time periods), by 
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moving consistently together (i.e., keeping c10se to each other for long time intervals) or 
by sharing other properties of movement. Recent literature is relatively rich of examples 
in this area, which will be the focus of this chapter and will be described in detail in the 
following sections. 

Analogous c1asses of data type's can be obtained through similar combination of the tem
poral and spatial properties on objects that possess a spatial extension, such as lines (e.g., road 
segments) and areas (e.g., extension of a tornado) . In these cases, a dynamic spatial attribute 
can result not only to movement, but also to a change of shape and size. Due to the Iimited 
availability of this form of information in real scenarios and the absence of studies of specific 
analysis methods - especially for the dynamic cases - these contexts will not be further exam
ined in this chapter, which instead will focus on point-wise objects in the richest setting, i.e., 
trajectories of moving objects. 

44.2.2 Clustering Methods for Trajectory Data 

Here we will focus on the context of moving objects that can be traced along the time, re
sulting in trajectories that describe their movements. On one hand, trajectories represent the 
most complex and promising (from a knowledge extraction viewpoint) form of data among 
those based on point-wise information. On the other hand, point-wise information is becom
ing nowadays largely available and usable in real contexts, while spatio-temporal data with 
more complex forms of spatial components are still rarely seen in real world problems - ex
ception made for a few, very specific contexts, such as c1imate monitoring. 

Clustering is one of the general approaches to a descriptive modeling of a large amount 
of data, allowing the analyst to focus on a higher level representation of the data. C1ustering 
methods analyze and explore a dataset to associate objects in groups, such that the objects in 
each groups have common characteristics. These characteristics may be expressed in different 
ways: for example, one may describe the objects in a cluster as the population generated by a 
joint distribution, or as the set of objects that minimize the distances from the centroid of the 
group. 

Descriptive and generative model-based clustering 

The objective of this kind of methods is to derive a global model capable of describing the 
whole dataset. Some of these methods rely on adefinition of multivariate density distribu
tion and look for a set of fitting parameters for the model. In (Gaffney and Smyth(l999» it 
is proposed a c1ustering method based on a mixture model for continuous trajectories. The 
trajectories are represented as functional data, i.e. each individual is modeled as a sequence 
of measurement given by a function of time depending on a set of parameters that models 
the interaction of the different distributions. The objects that are likely to be generated from 
a core trajectory plus gaussian noise are grouped together by means of the EM algorithm. 
In a successive work (Chudova et al(2003)Chudova, Gaffney, Mjolsness, and Smyth), spatial 
and temporal shift of trajectories within each cluster is also considered. Another approach 
based on a model-based technique is presented in (Alon et al(2003)Alon, Sclaroff, Kollios, 
and Pavlovic), where the representative of a cluster is expressed by means of a Markov model 
that estimates the transition between successive positions. The parameter estimation task for 
the model is performed by means of EM algorithm. 
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Distance-based clustering methods 

Another approach to cluster complex form of data, like tn~ectories, is to transform the com
plex objects into features vectors, Le. a set of multidimensional vectors where each dimension 
represents a single characteristic of the original object, and then to cluster them using generic 
clustering algorithms, like, for example, k-means. However, the complex structure of the tra
jectories not alway allows an approach of this kind, since most of these methods require that 
all the vectors are of equallength. In contrast to this, one of the largely adopted approach to the 
clustering of trajectories consists in defining distance functions that encapsulate the concept 
of similarity among the data items. 

Using this approach, the problem of clustering a set of trajectories can be reduced to the 
problem of choosing a generic clustering algorithm, that determines how the trajectories are 
joined together in a cluster, and a distance function, that determines which trajectories are 
candidate to be in the same group. The chosen method determines also the "shape" of the 
resulting clusters: center-based clustering methods, like k-means, produce compact, spherical 
clusters around a set of centroids and are very sensitive to noisy outliers; hierarchical clus
ters organize the data items in a multi-level structure; density-based clustering methods form 
maximal, den se clusters, not limiting the groups number, the groups size and shape. 

The concepts of similarities of spatio-temporal trajectories may vary depending on the 
considered application scenario. For example, two objects may be considered similar if they 
have followed the same spatio-temporal trajectory within a given interval, i.e. they have 
been in the same places at the ,same times. However, the granularity of the observed move
ments (Le. the number of sampled spatio-temporal points for each trajectory), the uncer
tainty on the measured points, and, in general, other variations of the availability of the 10-
cations of the two compared objects have required the definition of several similarity mea
sures for spatio-temporal trajectories. The definition of these measures is not only tailored 
to the cluster analysis task, but it is strongly used in the field of Moving Object Databases 
for the similarity search problem (Theodoridis(2003», and it is influenced also by the work 
on time-series analysis (Agrawal et al(1993)Agrawal, Faloutsos, and Swami, Berndt and Clif
ford(1996), Chan and chee Fu(l999» and Longest Common Sub Sequence (LCSS) model 
(Vlachos et al(2002)Vlachos, Kollios, and Gunopulos, Vlachos et al(2003)Vlachos, Hadjieleft
heriou, Gunopulos, and Keogh, Chen et al(2005)Chen, Özsu, and Oria), The distance func
tions defined in (Nanni and Pedreschi(2006),Pelekis et al(2007)Pelekis, Kopanakis, Marketos, 
Ntoutsi, Andrienko, and Theodoridis) are explicitly defined on the trajectory domain and take 
into account several spatio-temporal characteristics of the trajectories, like direction , velocity 
and co-Iocation in space and time. 

Density-based methods and the DBSCAN family 

The density-based clustering methods use a density threshold around each object to distin
guish the relevant data items from noise, DBSCAN (Ester et al(l996)Ester, Kriegei , Sander, 
and Xu), one of the first example of density-based clustering, visits the whole dataset and tags 
each object either as core object (Le. an object that is definitively within a cluster), border 
object (i .e. objects at the border of a cluster), 01' noise (Le. objects definitively outside any 
cluster). After this first step, the core objects that are close each other are joined in a cluster. 
In this method, the density threshold is espressed by means of two parameters: a maximum 
radius e around each object, and a minimum number of objects, say MinPts, within this inter
val. An object p is defined a core object if its neighborhood of radius e (denoted as Ne(p) 
contains at least MinPts objects. Using the core object condition, the input dataset is scanned 
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and the status of each object is determined. A cluster is determined both by its core objects 
and the objects that are reachable from a core object, i.e. the objects that do not satisfy the 
core object condition but that are contained in the Eps-neighborhood of a core object. The 
concept of "reachable" is express in terms of the reachability distance. It is possible to define 
two measures of distances for a core object c and an object in its c-neighborhood: the core 
dislance, which is the distance of the MinPls-th object in the neighborhood of c in order of 
distance ascending from c, and the reachabilily dislance, i.e. the distance of an object P from 
c except for the case when P's di stance is less than the core distance; in this case the distance 
is normalized to the core dislance. Given a set of core and border object for a dataset, the 

. clusters are formed by visiting all the objects, starting from a core point: the cluster formed by 
the single point is extended by including other objects that are within areachability distance; 
the process is repeated by including all the objects reachable by the new included items, and so 
on. The growth of the cluster stops when all the bord er points of the cluster have been visited 
and there are no more reachable items. The visit may continue from another core object, if 
avaiable. 

The OPTICS method (Ankerst et al(1999)Ankerst, Breunig, Kriegei, and Sander) pro
ceeds by exploring the dataset and enumerating all the objects. For each object p it checks if 
the core object conditions are satisfied and, in the positive case, starts to enlarge the potential 
cluster by checking the condition for all neighbors of p. If the object p is not a core object, the 
scanning process continues with the next unvisited object of D. The results are summarized 
in areachability plot: the objects are represented along the horizontal axis in the order of vis
iting them and the vertical dimension represents their reachability distances. Intuitively, the 
reachability distance of an object Pi corresponds to the minimum distance from the set of its 

. predecessors Pj, 0 < j < i. As a consequence, a high value ofthe reachability distance roughly 
means a high distance from the other objects, i.e. indicates that the object is in a sparse area. 
The actual clusters may be determined by defining areachability distance threshold and group
ing together the consecutive items that are below the chosen threshold in the plot. The result 
of the OPTICS algorithm is insensitive to the original order of the objects in the dataset. The 
objects are visited in this order only until a core object is found . After that, the neighborhood 
of the core object is expanded by adding all density-connected objects. The order of visiting 
these objects depends on the distances between them and not on their order in the dataset. It is 
also not important wh ich of density-connected objects will be chosen as the first core object 
since the algorithm guarantees that all the objects will be put c10se together in the resulting 
ordering. A formal proof of this property of the algorithm is given in (Ester et al( 1996)Ester, 
Kriegei, Sander, and Xu). 

It is c1ear that the density methods strongly rely on an efficient implementation of the 
neighborhood query. In order to improve the performances of such algorithms it is neces
sary to have the availability of valid index data structure. The density based algorithms are 
largely used in different context and they take advantages of many indices Iike R-tree, kd-tree, 
etc. When dealing with spatio-temporal data, it is necessary to adapt the existing approaches 
also for the spatio-temporal domain (Frentzos et al(2007)Frentzos, Gratsias, and Theodoridis) 
or use a general distance based index (e.g. M-tree, (Ciaccia et al( I 997)Ciaccia, Patella, and 
Zezula» 

The approach of choosing a c1ustering method and a distance function is just a starting 
point for a more evolute approach to mining. For example, in (Nanni and Pedreschi(2006» 
the basic notion of the distance function is exploited to stress the importance of the temporal 
characteristics oftrajectories. The authors propose a new approach called temporaljocusing to 
bettel' exploit the temporal aspect and improve the quality of trajectory c1ustering. For exam
pie, two traj ectories may be very different if the whole time interval is considered. However, if 
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only a small sub-interval is considered, these trajectories may be found very similar. Hence, it 
is very crucial for the algorithm to efficiently work on different spatial and temporal granular
ities. As mentioned by the authors, usually so me parts of trajectories are more important than 
others. For example, in rush hours it can be expected that many people moving from ho me 
to work and viceversa form movement patterns that can be grouped together. On weekends, 
people's activity can be less ordered where the local distribution of people is more influential 
than collective movement behavior. Hence, there is a need for discovering the most interest
ing time intervals in which movement behavior can be organized into meaningful clusters. 
The general idea of the time focusing approach is to cluster trajectories using all possible time 
intervals (time windows), evaluate the restiits and find the best c1ustering. Since the time focus
ing method is based on OPTICS, the problem of finding the best clusters converges to finding 
the best input parameters. The authors proposed several quality functions based on density 
notion of clusters that measures the quality of the produced c1ustering and are expressed in 
terms of average reachability (Ankerst et al( 1999)Ankerst, Breunig, Kriegei, and Sander) with 
respect to a time interval land reachability threshold e'. In addition, ways of finding optimal 
values of e' for every time interval I were provided. 

Visual-aided approaches 

Analysis of movement behavior is 'I complex process that requires understanding of the na
ture of the movement and phenomena it incurs. Automatic methods may discover interesting 
behavioral patterns with respect to the optimization function but it may happen that these 
patterns are trivial or wrong from the point of view of the phenomena that is under investiga
tion. The visual analytics field tries to overcome the issues of automatic algorithms introduc
ing frameworks implementing various visualization approaches of spatio-temporal data and 
proposing different methods of analysis including trajectory aggregation, generalization and 
c1ustering (Andrienko and Andrienko(2006), Andrienko et al(2007)Andrienko, Andrienko, 
and Wrobel, Andrienko and Andrienko(2008), Andrienko et al(2009)Andrienko, Andrienko, 
Rinzivillo, Nanni, Pedreschi, and Giannotti,Andrienko and Andrienko(2009». These tools of
ten target different application domains (movement of people, animals, vehicles) and support 
many types of movement data (Andrienko et al(2007)Andrienko, Andrienko, and Wrobel). 
The advantages of visual analytics in analysis of movement data is c1ear. The analyst can con
trol the computational process by setting different input parameters, interpret the results and 
direct the algorithm towards the solution that better describes the underlying phenomena. 

In (Rinzivillo et al(2008)Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, and An
drienko) the authors propose progressive c1ustering approach to analyze the movement behav
ior of objects. The main idea of the approach is the following. The analyst or domain expert 
progressively applies different distance functions that work with spatial, temporal, numerical 
or categorical variables on the spatio-temporal data to gain understanding of the underlying 
data in 'I stepwise manner. This approach is orthogonal to commonly used approaches in ma
chine learning and data mining where the distance functions are combined together to optimize 
the outcome of the algorithm. 

Micro cIiJstering methods 

In (Hwang et al(2005)Hwang, Liu, Chiu, and Lim) 'I different approach is proposed, where 
trajectories are represented as piece-wise segments, possibly with missing intervals. The pro
posed method tri es to determine 'I dose tirne interval, Le. 'I maximal time interval where '111 
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the trajectories are pair-wise c10se to each other. The similarity of trajectories is based on 
the amount of time in which trajectories are c10se and the mining problem is to find all the 
trajectory groups that are c10se within a given threshold. 

A similar approach based on an extension of micro-clustering is proposed in (Li 
et al(2004b)Li, Han, and Yang). In this case, the segments of different trajectories within a 
given rectangle are grouped together if they occur in similar time intervals. The objective of 
the method is to determine the maximal group size and temporal dimension within the thresh
old rectangle. 

In (Lee et al(2007)Lee, Han, and Whang), the trajectories are represented as sequences of 
points without explicit temporal information and they are partitioned into a set of quasi-linear 
segments. All the segments are grouped by means of a density based c1ustering method and a 
representative trajectory for each cluster is determined. 

Flocks and convoy 

In so me appl ication domains there is a need in discovering group of objects that move together 
during a given period of time. For example, migrating animals, flocks of birds or convoys of 
vehicles. (Kalnis et al(2005)Kalnis, Mamoulis, and Bakiras) proposed the notion of moving 
clusters to describe the problem of discovery of sequence of clusters in which objects may 
leave or enter the cluster during some time interval but having the portion of common objects 
higher than a predefined threshold. ather patterns of moving clusters were proposed in the 
literature: (Gudmundsson and "an Kreveld(2006), Vieira et al(2009)Vieira, Bakalov, and Tso
tras) define a flock pattern, in which the same set of objects stay together in a circular region 
of a predefined radius, while (Jeung et al(2008)Jeung, Yiu, Zhou, Jensen, and Shen) defines 
a convoy pattern, in which the same set of objects stay together in a region of arbitrary shape 
and extent. 

(Kalnis et al(2005)Kalnis, Mamoulis, and Bakiras) proposed three algorithms for discov
ery of moving clusters. The basic idea of these algorithms is the following. Assuming that the 
locations of each object were sampled at every timestamp during the lifetime of the object, a 
snapshot S/= i of objects' positions is taken at every timestamp t = i. Then, DBSCAN (Ester 
et al(1996)Ester, Kriegei, Sander, and Xu), a density-based c1ustering algorithm, is applied 
on the snapshot forming clusters C/=i using density constraints of MinPts (minimum points 
in the neighborhood) and c (radius of the neighborhood). Having two snapshots clusters C/ = i 

and C/ = i+l, the moving cluster Ct =iCt=i+1 is formed if iC'=~8c' ="1 i > e, where e is an integrity 
Ct = 1 C'= H- I 

threshold between 0 and 1. 
(Jeung et al(2008)Jeung, Yiu, Zhou, Jensen, and Shen) adopts DBSCAN algorithm to 

find candidate convoy patterns. The authors proposed three algorithms that incorporate trajec
tory simplification techniques in the first step. The distance measures are performed on the 
segments of trajectories as opposed to commonly used point based distance measures. They 
show that the c1ustering oftrajectories at every timestamp as it is performed in moving clusters 
is not applicable to the problem of convoy patterns because the global integrity threshold e 
may be not known in advance and time constraint" (lifetime) is not taken into account, which 
is important in convoy patterns. Another problem is relclted to the trajectory representation: 
Some trajectories may have missing timestamps or be measured at different time intervals. 
Therefore, the density measures cannot be applied between trajectories with different times
tamps. To handle the problem of missing timestamps, the authors proposed to interpolate the 
trajectories creating virtual time points and apply density measures on segments of the trajec
tori es. Additionally, the convoy was defined as candidate when it had at least k clusters during 
k consequent timestamps. 
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Five on-line algorithms for discovery Hock patterns in spatio-temporal databases were 
presented in (Vieira et al(2009)Vieira, Bakalov, and Tsotras). The Hock pattern cP is defined 
as the maximal number of trajectories and greater or equal to density threshold iJ. that move 
together during minimum time period 8. Additionally, the disc with radius f./2 with the center 
c~ of the Hock k at time t; should cover all the points of Hock trajectories at time li. All the 
algorithms employ the grid-based structure. The input space is divided into cells with edge size 
f.. Every trajectory location sampled at time li is placed in one of the cells. After processing 
all the trajectories at time li, a range query with radius f. is performed on every point p to 
find neighbor points whose distance from p is at most f. and the number of neighbor points 
is not less than iJ. . Then, for every pairs of points found, density of neighbor points with 
minimum radius f./2 is determined. If the density of a disk is \ess than iJ., the disk is discarded 
otherwise the common points of two valid disks are found . If the number of common points 
is above the threshold then the disk is added to a list of candidate disks. In the basic algorithm 
that generate Hock patterns, the candidate ·disk at time I; is compared to the candidate disk 
at time li- l and augmented together if they have the common number of points above the 
threshold. The Hock is generated if the augmented clusters satisfy the time constraint 8. In 
other four proposed algorithms, different heuristics were applied to speed up the performance 
by improving generation of candidate disks. In one of the approaches called CluSler Fillering 
Evalualion, DBSCAN with parameters iJ. as a density threshold and f. for neighborhood radius 
is used to generate candidate disks. Once candidate disks are obtained, the basic algorithm for 
finding Hocks is applied. This approach works paIticularly weil when trajectory dataset is 
relatively small and many trajectories have similar moving patterns. 

Important pi aces 

In the work of (Kang et al(2004)Kang, Welbourne, Stewart, and Borriello), the authors pro
posed an incremental clustering for identification of important places in a single trajectory. 
Several factors for the algorithm were defined: arbitrary number of clusters, exclusion of as 
much unimportant pi aces as possible and being not computationally expensive to allow run
ning on mobile devices. The algorithm is based on finding important pi aces where many 10-
cation measurements are clustered together. Two parameters controlled the cluster creation -
distance between positions and time spent in a cluster. The basie idea is the following. Ev
ery new location measurement provided by a location-based device (PI ace Lab, in this ease) 
is compared to the previous location. If the distance between previous location is less than 
a threshold, the new loeation is added to the previously created cluster. Otherwise, the new 
candidate cluster is created with the new loeation. The candidate cluster becomes a cluster of 
important places when the time difference between first point in a cluster and the last point 
is greater than the threshold. Similar ideas of finding interesting pi aces in trajectories were 
used in later works (Alvares et al(2007)Alvares, Bogorny, Kuijpers, de Macedo, Moelans, and 
Vaisman, Zheng et al(2009)Zheng, Zhang, Xie, and Ma). 

A similar task was performed in (Palma et al(2008)palma, Bogorny, Kuijpers, and AI
vares), this time by using speed characteristics. For this, the original definition of DBSCAN 
was altered to accommodate the temporal aspecl. Specifieally, the point p of a trajectory called 
core point if the time difference between first and last neighbor points of p was greater or equal 
to some predefined threshold MinTime (minimum time). This definition corresponds to the 
maximum average speed condition f.IMinTime in the neighborhood ofpoint p. Since original 
DBSCAN requires two parameters to be provided for clustering: f. - radius of the neighbor
hood and MinPls - minimum number of points in the neighborhood of p, similarly, the adopted 
version required providing two parameters: f. and MinTime. However, without knowing the 
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characteristic of the trajectory it is difficult for the user to provide meaningful parameters. The 
authors proposed to regard the trajectory as a list of distances between two consecutive points 
and obtain means and standard deviations of these distances. Then, Gaussian curve can be 
plotted using these parameters that should give some information about the properties of the 
trajectory and inverse cumulative distribution function can be constructed expressed in terms 
of mean and standard deviation. In order to obtain e, the user should provide a value between 
o and I that reftects the proportion of points that can be expected in a cluster. '. 

Borderline cases: patterns 

Patterns that are mined from trajectories are called trajectory patterns and characterize inter
esting behaviors of single object 01' group of moving objects (Fosca and Dino(2008)). Different 
approach exist in mining trajectory patterns. We present two examples. The first one is based 
on grid-based c1ustering and finding dense regions (Giannotti et al(2007)Giannotti, Nanni, 
Pinelli, and Pedreschi), the second is based on partitioning of trajectories and c1ustering of 
trajectories' segments (Kang and Yong(2009)). 

(Giannotti et al(2007)Giannotti, Nanni, PinelIi, and Pedreschi) presented an algorithm to 
find frequent movement patterns that represent cumulative behavior of moving objects where 
a pattern, called T-pattern, was defined as a sequence of points with temporal transitions be
tween consecutive points. AT-pattern is discovered if its spatial and temporal components 
approximately correspond to the input sequences (trajectories) . The meaning of these patterns 
is that different objects visit the same places with similaI' time intervals. Once the patterns are 
discovered, the c1assical sequence mining algorithms can be applied to find frequent patterns. 
Crucial to the determination of T-patterns is the definition of the visiting regions. For this, the 
Region-oJ-!nterest (Ro!) notion was proposed. A Ro! is defined as a place visited by many 
objects. Additionally, the duration of stay can be taken into account. The idea behind Roi is to 
divide the working region into cells and count the number of trajectories that intersect the cell. 
The algorithm for finding popular regions was proposed, which accepted the grid with cell 
densities and a density threshold (5 as input. The algorithm scans the cells and tri es to expand 
the region in foul' directions (Jeft, right, up, down). The direction that maximizes the average 
cell density is selected and the cells are merged. After the regions of interest are obtained, the 
sequences can be created by following every trajectory and matching the regions of interest 
they intersect. The timestarnps are assigned to the regions in two ways: (1) Using the time 
when the trajectory entered the region 01' (2) Using the starting time if the trajectory started in 
that region. Consequently, the sequences are used in mining frequent T-patterns. The proposed 
approach was evaluated on the trajectories of 273 trucks in Athens, Greece having 112,203 
points in total. 

(Kang and Yong(2009)) argues that methods based on partition of the working space 
into grids may lose some patterns if the cell lengths are too large. In addition, so me meth
ods require trajectory discretization according to its recorded timestarnps which can lead to 
creation of redundant and repeating sequences in which temporal aspects are contained in the 
sequentially ordered region ids. As a workaround to these issues, the authors proposed two 
refinements: (1) Partitioning trajectories into disjoint segments, which represent meaningful 
spatio-temporal changes of the movement of the object. The segment is defined as an area 
having start and end points as weil as the time duration within the area. (2) Applying c1uster
ing algorithm to group similaI' segments. AST-pattern (Spatio-temporal pattern) was defined 
as a sequences of segments (areas) with time duration described as a height of 3-dimensional 
cube. Thus, the sequences of ST-patterns are formed by c1ustering similar cubes. A four-step 
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approach was proposed to mine frequent ST-paUerns. In the first step, the trajectories are sim
plified using the DP (Douglas-Peucker) algorithm dividing the trajectories into segments. The 
segments are then normalized using linear transformation to allow comparison between seg
ments having different offsets. In the next step, the spatio-temporal segments are c1ustered 
using the BIRCH (Zhang et al(1996)Zhang, Ramakrishnan, and Livny) algorithm. In the fi
nal step, a DFS-based (depth-first search) method is applied on the c1ustered regions to find 
frequent patterns. 

44.3 Applications 

The literature on spatio-temporal c1ustering is usually centered around concrete methods rather 
than application contexts. Nevertheless, in this chapter, we would like to bring examples of 
several possible scenarios where spatio-temporal c1ustering can be used along with other data 
mining methods. . 

For the sake of simplicity, we divide spatio-temporal data into three main categories ac
cording to the way these data are collected: movement, cellular networks and environmental. 
Movement data are often obtained by location based devices such as GPS and contain id of 
an object, its coordinates and timestarnp. Cellular network data are obtained from mobile op
erators at the level of network bandwidth. Environmental data are usually obtained by censor 
networks and RFID technology. 

The specificity of properties of these data require different approaches for analysis and 
also result in unique tasks. For example, in movement data the possible analysis tasks could be 
analysis of animal movement, their behavior in time, people's mobility and tracking of group 
objects. Phone calls that people make in a city can be used in the analysis of urban activity. 
Such information will be valuable for local authorities, service providers, decision makers, etc. 
Environmental processes are analyzed using information about locations and times of specific 
events. This information is of high importance to ecologists and geographers. 

Table 44.1 summarizes the categories of spatio-temporal data, tasks considered in these 
categories, examples of applications, the basic methods used for solving tasks and the selected 
li terature. 

44.3.1 Movement da ta 

Trajectory data obtained from location-aware devices usually comes as a sequence of points 
annotated by coordinate and time. However, not all of these points are equally important. 
Many application domains require identification of important parts from the trajectories. A 
single trajectory or a group of trajectories can be used for finding importailt parts. For exam
pie, in analysis of people's daily activities, so me places like horne or work could be identified 
as important while movement from one place to another would be considered as not important. 
Knowledge of such pi aces can be used in analysis of activity of an object or group of objects 
(people, animals). Moreover, the information can be used in personalized applications (Kang 
et al(2004)Kang, Welbourne, Stewart, and Borriello). Usually, the place can be considered 
as important if the object spends in it considerable amount of time or the place is visited 
frequently by one or many objects. GPS-based devices are the main source of movement tra
jectories. However, the main disadvantage is that they loose signal indoor. A new approach to 
data collection using PI ace Lab (Schilit et al(2003)Schilit, LaMarca, Borriello, Griswold, Mc
Donald, Lazowska, Balachandran, Hong, and Iverson) was proposed in which a WiFi enabled 
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device can get location positions from various wireless access points installed in cities. This 
approach can be used by mobile devices in real time applications even when the person is in
side a building. In the example presented by (Kang et al(2004)Kang, Welbourne, Stewart, and 
Borriello), the mobile de~ice should identify the important place and act according to some 
scenario. For example it can switch to a silent mode when the person enters a public place. 
For this, incremental spatio-temporal c1ustering was used to identify important places. 

Two fictitious but possible scenarios of analysis of movement were proposed at VAST 
2008 mini challenge (Grinstein et al(2008)Grinstein, Plaisant, Laskowski , OConnell, Scholtz, 
and Whiting) and addressed in (Andrienko and Andrienko(2009)). In the first scenario called 
Evacuation traces, abornb, set up by a religious group, exploded in the building. All employ
ees and visitors in the building wore RFID badges that enabled recording location of every 
person. Five analytical questions were asked: Where was the device set off, ldentify potential 
suspects and/or wilnesses to the event, ldentify any suspects and/or wilnesses who managed 
to escape the building, ldentify any casualties, Describe the evacuation. C1ustering of trajec
tori es comes in handy for answering the second and third questions. In order to find suspects 
of the event, the place of the explosion epicenter was identified and people's trajectories were 
separated into normal (trajectories not passing through the place of explosion) and suspected. 
In order to answer the third question, trajectories were c1ustered according to the common 
destination. This enabled to find people who managed to escape the building and those who 
didn't. The second scenario called Migrant boats, described a problem of illegal immigration 
of people by boats to the USo The data consisted, among the others, of the following fields: 
location and date where the migrant boat left the pI ace and where the boat was intercepted or 
landed. The questions were to characterize the choice ollanding siles and their evolution over 
the years and characterize the geographical patterns 01 interdiction. Spatio-temporal c1uster
ing with different distance functions was applied on the data and the following patterns were 
found: landings at the Mexican coast and period of migration started from 2006 and increased 
towards 2007, while the number of landings at the coast of Florida and nearby areas was sig
nificantly smaller during 2006-2007 than on 2005. It was shown that the strategy of migration 
changed over the years. The migration routes increased and included new destinations. Conse
quently, the patrolling extended over larger areas and the rate of successfullandings increased. 

44.3.2 Cellular networks 

Until recently, surveys were the only data collection method for analysis of various urban 
activities. With the rapid development of mobile networks and their global coverage, new 
opportunities for analysis of urban systems using phone call data have emerged. (Reades 
et al(2007)Reades, Calabrese, Sevtsuk, and Ratti) were one of the first who attempted to an
alyze urban dynamics on a city levelusing Erlang data. Erlang data is a measure of network 
bandwidth and indicate the load of cellular antenna as an average number of calls made over 
specific time period (usually hour). As such, these data are considered spatio-temporal, where 
the spatial component relates to the location of a transmitting antenna and temporal aspect is 
an aggregation of phone calls by time interval. Since the data do not contain object identifiers, 
only group activity can be learned from it. 

The city of Rome was divided into cells of 1,600m2 each, 262, 144 cells in total. The Er
lang value was computed for every cell taking into consideration the signal decay and positions 
of antennas. For each cell, the average Erlang value was obtained using 15 minutes interval 
during 90 day period. Thus, every cell contained seven (for every day of the week) obser
vations of phone call activities during 90 days and 96 measurements for each day (using 15 
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minutes interval). Initially, six cells corresponding to different parts of the city and types of ac
tivities (residential areas, touristic places, nighttime spots) with significantly different Erlang 
values were selected. The analysis of these places revealed six patterns in the daily activity 
when there were rapid changes in cellular network usage: la.m. , 7a.m., Ila.m. , 2p.m.,5p.m. , 
and 9p.m .. To check this hypothesis, k-means was applied on all 262,144 cells using 24-
dimensional feature vector of six daily periods averaged for Monday through Thursday and 
separate six daily periods for Friday, Saturday and Sunday. The result .of clustering suggested 
that the phone call activity is divided into eight separate clusters. The visual interpretation of 
these clusters revealed the correspondence of pl<lces to expected types of people's activity over 
time. 

44.3.3 Environmental data 

Very early examples of spatio-temporal analysis of environmental data, including clustering, 
are given in (Stolorz et al( I 995)Stolorz, Nakamura, Mesrobian, Muntz, Santos, Vi, and Ng) 
as applications of an exploratory data analysis environment called CONQUEST. The system 
is specifically devoted to deal with sequences of remotely-sensed images that describe the 
evolution of some geophysical measures in. some spatial areas. A most relevant application 
example is cyclones detection, i.e., extracting locations of cyclones and the tracks (trajecto
ries) they follow. Since cyclones are events rather than physical objects, and there is not a 
straightforward way to locate them, cyclone detection requires a multi-step analysis process, 
where spatio-temporal data is subject to transformations from a data type to another one. First, 
for each time instant all candidate cyclone occurrences are located by means of a local min
ima heuristics based on sea level pressure, i.e. spatial locations where the sea level pressure 
is lower than their neighbourhood (namely, a circle of given radius) are selected. The result is 
essentially a set of spatio-temporal events, so far considered as independent from each other. 
Then, the second step consists in spatio-temporally clustering such cyclone occurrences, by 
iteratively merging occurrences that aie temporally close and have a small spatial distance. 
The latter condition is relaxed when the instantaneous wind direction and magnitude are co
herent with the relative positions of the occurrences - Le., the cyclone can move fast, if wind 
conditions allow that. The output of this second phase is a set of trajectories, each describing 
the movement in time of acyclone, which can be visually inspected and compared against 
geographical and geophysical features of the territory. In summary, this application shows 
an interesting analysis process where original geo-referenced time series are collectively an
alyzed to locate complex spatio-temporal events, and such events are later connected - i.e., 
assochlted to the same entity - to form trajectories. 

More recentiy (Birant and Kut(2006), Birant and Kut(2007)) studied spatio-temporal ma
rine data with the following attributes: sea surface temperature, the sea surface height residual, 
the significant wave height and wind speed values of four seas (the Black Sea, the Marmara 
Sea, the Aegean Sea, and the eastern part of the Mediterranean). The authors proposed ST
DBSCAN algorithm as an extension of classical DBSCAN to find seawater regions that have 
similar physical characteristics. In particular, the authors pursued three goals: (l) to discover 
regions with a similar sea surface temperature (2) to discover regions with similar sea surface 
height residual va lues and (3) to find regions with significant wave height. The database that 
was used for analysis contained measurements of sea surface temperature from 5340 stations 
obtained between 2001 and 2004, sea surface height collected over five-day periods between 
1992 and 2002 and significant wave height collected over ten-day periods between 1992 and 
2002 from 1707 stations. The ST-DBSCAN algorithm was integrated into the interactive sys
tem to facilitate the analysis. 
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44.4 Open Issues 

Spatio-temporal properties ofthe data introduce additional complexity to the data mining pro
cess and to the clustering in particular. We can differentiate between two types of issues that 
the analyst should deal with or take into consideration during analysis: general and appli
cation dependent. The general issues involve such aspects as data quality, precision and un
certainty (Miller and Han(2009». Scalability, spatial resolution and time granularity can be 
related to application dependent issues. 

Data quality (spatial and temporal) and precision depends on the way the data is generated. 
Movement data is usually collected using GPS-enabled devices attached to an object. For 
example, when a person enters a building a GPS signal can be lost or the positioning may be 
inaccurate due to a weak connection to satellites. As in the general data preprocessing step, 
the analyst should decide how to handle missing or inaccurate parts of the data - should it be 
ignored, tolerated or interpolated. 

The computational power does not go in line with the pace at which large amounts of 
data are being generated and stored. Thus, the scalability becomes a significant issue for the 
analysis and demand new algorithmic solutions or approaches to handle the data. 

Spatial resolution and timegranularity can be regarded as most crucial in spatio-temporal 
clustering since change in the size of the area over which the attribute is distributed or change 
in time interval can lead to discovery of completely different clusters and therefore, can lead 
to the improper explanation of the phenomena under investigation. There are still no gen
eral guidelines for proper selection of spatial and temporal resolution and it is rat her unlikely 
that such guidelines will be proposed. Instead, ad hoc approaches are proposed to handle the 
problem in specific domains (see for example (Nanni and Pedreschi(2006»). Due to this, the 
involvement of the domain expert in every step of spatio-temporal c1ustering becomes essen
tial. The geosp<itial visual analytics field has recently emerged as the discipline that combines 
automatic data mining approaches including spatio-temporal c1ustering with visual reasoning 
supported by the knowledge of domain experts and has been successfully applied at differ
ent geographical spatio-temporal phenomena ( (Andrienko and Andrienko(2006), Andrienko 
et al(2007)Andrienko, Andrienko, and Wrobel, Andrienko and Andrienko(20 I 0»). 

A class of application-dependent issues that is quickly emerging in the spatio-temporal 
c1ustering field is related to exploitation of available background knowledge. Indeed, most 
of the methods and solutions surveyed in this chapter work on an abstract space where loca
tions have no specific meanings and the analysis process extracts information from scratch, 
instead of starting from (and integrating to) possible apriori knowledge of the phenomena 
under consideration. On the opposite, apriori knowledge about such phenomena and about 
the context they take pi ace in is commonly available in real applications, and integrating them 
in the mining process might improve the output quality (Alvares et al(2007)Alvares, Bogorny, 
Kuijpers, de Macedo, Moelans, and Vaisman, Baglioni et al(2009)Baglioni, Antonio Fernan
des de Macedo, Renso, Trasarti, and Wachowicz, Kisilevich et al(20 I O)Kisilevich, Keim, and 
Rokach). Examples of that include the very basic knowledge of the street network and land 
usage, that can help in understanding which aspects ofthe behavior of our objects (e.g., which 
parts of the trajectory of a moving object) are most discriminant and better suited to form ho
mogeneous clusters; or the existence of recurring events, such as rush hours and planned road 
maintenance in a urban mobility setting, that are known to interfere with our phenomena in 
predictable ways. 

Recently, the spatio-temporal data mining literature has also pointed out that the rele
vant context for the analysis mobile objects includes not only geographic features and other 
physical constraints, but also the population of objects themselves, since in most application 
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scenarios objects can interact and mutually interfere with each other's activity. C1assical ex
amples include traffk jams - an entity that emerges from the interaction of vehicles and, in 
turn, dominates their behavior. Considering interactions in the c1ustering process is expected 
to improve the reliability of clusters, yet a systematic taxonomy of relevant interaction types is 
still not available (neither a general one, nor any application-specific one), it is sti ll not known 
how to detect such interactions automatically, and understanding the most suitable way to 
integrate them in a c1ustering process is still an open problem. 

44.5 Conclusions 

In this chapter we focused on geographical spatio-temporal c1ustering. We presented a class i
fication of main spatio-temporal types of data: ST events, Geo-referenced variables, Moving 
objects and Trajectories. We described in detail how spatio-temporal c1ustering is applied on 
trajectories, provided an overview of recent research developments and presented possible sce
narios in several application domains such as movement, cellular networks and environmental 
studies. 
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