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Modeling interpretable artificial intelligence (AI) for flood forecasting represents a serious challenge:
both accuracy and interpretability are indispensable. Because of the uncertainty and nonlinearity of flood,
existing hydrological solutions always achieve low prediction robustness while machine learning (ML)
approaches neglect the physical interpretability of models. In this paper, we focus on the need for flood
forecasting and propose an interpretable Spatio-Temporal Attention Long Short Term Memory model
(STA-LSTM) based on LSTM and attention mechanism. We use dynamic attention mechanism and
LSTM to build model, Max-Min method to normalize data, variable control method to select hyperparam-
eters, and Adam algorithm to train the model. Emphasis is placed on the visualization and interpretation
of attention weights. Experiment results on three small and medium basins in China suggest that the pro-
posed STA-LSTM model outperforms Historical Average (HA), Fully Connected Network (FCN),
Convolutional Neural Networks (CNN), Graph Convolutional Networks (GCN), original LSTM (LSTM), spa-
tial attention LSTM (SA-LSTM), and temporal attention LSTM (TA-LSTM) in most cases. Visualization and
interpretation of spatial and temporal attention weights reflect the reasonability of the proposed
attention-based model.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

As one of the most widespread natural disasters, flood can be
destructive and poses a great threat to society. Practical and effec-
tive flood forecasting methods are conducive to the rapid response
of disaster prevention and relief, protecting lives and property, and
upholding stability of society. However, technologies and methods
for flood forecasting, especially for small and medium basins, are
imperfect. Researchers around the world have made great efforts
to lessen the damage caused by floods. At the beginning of the
research on flood forecasting, hydrology experts mainly estab-
lished models of the river basin with hydrodynamics, underlying
surface analysis, and other hydrological theories. Despite the good
performance of hydrological models, researchers find it still diffi-
cult to calibrate models and the portability of the model is poor.
With abundant hydrological infrastructure and data, various data
analysis techniques, such as signal processing methods wavelet
transform [1] and probabilistic analysis methods Bayesian theory
[2–4], have been used to analyze hydrological time series. Machine
learning and neural network theories, including SVM [5,6] and
neural network [7,8], also developed rapidly.

Flood forecasting models can be typically divided into two cat-
egories: hydrological models [9–14] and data-driven intelligent
models [15,3,5,16,8]. Hydrologic modeling methods usually ana-
lyze hydrological features and describe runoff confluence physi-
cally. Based on the hydrodynamics theory, researchers usually
derive confluence equations by combining the physical laws of
mass, momentum, and energy conservation. Despite different
applications of hydrological models (e.g., conceptual models, dis-
tributed models), parameters of hydrological models have certain
physical significance. Calibration for models can be performed
according to observation or data analysis, which puts forward high
requirements for researchers.

Data-driven intelligent models mainly analyze existing obser-
vation data to build input-output mapping relations and predict
specific hydrological quantities. With developing computing
power and algorithms, hundreds of data analysis and mining tech-
nologies have marched rapidly. These technologies include not
only regression analysis, EM algorithm, Bayesian theory [17,16],
and other classical probability and statistical methods, but also
SVM [5,6] and other classical machine learning methods. Novel
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recurrent neural networks (RNN) [18,15], convolutional neural net-
works(CNN) [19], graph convolutional networks (GCN) [20], and
other artificial intelligence methods [8,21,7,22] are also growing
fast. Under the existing data conditions, the results of these studies
are satisfactory. And with the further development of technology,
many other fields’ research results are of great significance for
hydrological prediction. Despite the progress made by state-of-
the-art approaches on intelligent flood forecasting, deep neural
network (DNN) methods still suffer from the following two
limitations:

1) Traditional DNN models, such as original LSTM, do not suffi-
ciently and properly handle the 3D spatial and temporal infor-
mation inherent in hydrological data.
2) As far as we know, existing data-driven (especially attention-
based) intelligent flood forecasting models have not yet been
proposed with physical interpretation.

In this paper, we propose a data-driven intelligent flood fore-
casting model based on spatio-temporal attention and LSTM.
Hourly rainfall and flow data from three small and medium basins
in China, i.e., Tunxi basin, Changhua basin, and Heihe basin, are
used to train and evaluate the proposed model respectively. A ser-
ies of testing experiments are conducted to realize a better setting
of hyperparameter for models. We compare and analyze the accu-
racy of each model according to five evaluation metrics most used
in hydrology and statistics fields. The results suggest the proposed
STA-LSTM model outperforms baselines in most. We also prelimi-
narily analyze the spatial and temporal attention weights for inter-
preting the physical reasonability of our model. The main
contributions of this paper are summarized as follows:

1) An interpretable data-driven flood forecasting model is pro-
posed based on LSTM and spatio-temporal attention
mechanism.
2) Visualization and preliminary interpretation of spatial and
temporal attention weights are presented with hydrological
progress.
3) Hyperparameter selection and comparative experiments are
conducted to optimize and evaluate the proposed STA-LSTM
model, respectively.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 describes the main concepts used in this
paper. Section 4 introduces details of the STA-LSTM model. The
experimental evaluation of STA-LSTM is presented in Section 5.
Finally, Section 6 gives conclusions and suggestions for future
work.
2. Related work

This part briefly reviews relevant researches inspired us to
design the STA-LSTM model, mainly including flood forecasting
models, LSTM-based models, and attention-based models.
2.1. Flood forecasting

Hydrological Models: Hydrological models can be divided into
hydro-physical models and hydro-mathematical modes. Both of
them mainly consider the physical process of a flood, i.e., runoff
generation and confluence. In China, the most famous hydro-
mathematical model is Xinanjiang model [9]. In addition, Paquet
et al. [10] proposed a semi-continuous rainfall-runoff simulation
method for extreme flood estimation. Kabir et al. [12] used a
process-based distributed modeling approach to estimate the sed-
iment budget at a river basin scale. And Nam et al. [14] predicted
short-term flood inundation prediction using hydrological-
hydraulic models forced with downscaled rainfall from global
numeric weather prediction.

Data-Driven Models: Data-driven models for flood forecasting
or time series analysis have developed for a long time accompanied
by machine learning, neural network, and other technologies. Sri-
vastava et al. [23] successfully predicted the inflow of Tarbela
reservoir by using regression and neural network fusion model.
Cheng et al. [24] proposed an artificial neural network model based
on the quantum particle swarm optimization algorithm to predict
the daily flow of reservoirs. Ma et al. [25] proposed a hybrid SVM-
BP model and evaluated it on the Changhua river basin data. The
experiments indicated the combination of SVM and BP model is
beneficial to flood prediction. Yan et al. [18] performed small
watershed streamflow forecasting based on LSTM, which achieved
satisfactory results in river flow predicting and provided a new
method for flood forecasting in a small watershed. Recently, Wu
et al. [26] proposed a context-aware LSTM network model, which
uses the context attention module in each step of LSTM to achieve
a high prediction accuracy.
2.2. LSTM-based methods

Long Short Term Memory (LSTM) is a modified version of recur-
rent neural networks, which is proposed to solve the problem of
long-distance (time) dependence by Hochreiter and Schmidhuber
[27]. Liu et al. [28] proposed an LSTM network model integrating
global situational awareness and attention to realize human 3D
motion recognition. Yang et al. [21] used the LSTMmodel to realize
traffic flow with feature enhancement. The proposed LSTM-based
model performed well in the experiments. Further, Li et al. [22]
combined LSTM and attention mechanism to predict stock price.
The results suggested that attention-based LSTM can make a better
prediction than baselines.
2.3. Attention-based methods

The attention mechanism in deep learning is similar to the
human selective visual attention mechanism, which uses limit
attention to select more critical information from numerous input
features. Attention has been widely applied in various tasks, such
as machine translation, image caption, and video motion recogni-
tion. Song et al. [29] proposed an end-to-end spatio-temporal
attention model to realize the recognition and prediction of human
actions in the video. Chen et al. [30] proposed a model of spatial
and channel attention and image labeling combined with convolu-
tional neural networks, which performed well in the experimental
dataset. Zhai et al. [31] combined channel attention mechanism
and dilated convolutional neural networks to address problems
in optical flow estimation. And they also tackled that problem in
[19] with a dual self-attention pyramid network. All experimental
results showed that the attention mechanism is beneficial for opti-
cal flow estimation. Ran et al. [32] proposed an attention-based
LSTM model to predict travel time. The experimental results
showed that the attention-based models can achieve better accu-
racy than the baselines.

Inspired by the above models, we propose a spatio-temporal
attention LSTM model for flood forecasting. In the next part, some
preliminaries and the principle of the model will be introduced in
detail.
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3. Preliminaries

3.1. Long short term memory methods

Since the basic RNN usually retains the information of
the last several moments, it can hardly handle the long-
distance-dependence task. To tackle that problem, LSTM adapts
basic RNN with three gates and preserve more useful information
of input. As shown in Fig. 1, main structure of LSTM network
includes:

Input gate. The input gate generates it based on the current
input xt and previous hidden layer state ht�1. The input coefficient
it determines how much information from xt can be used to calcu-
late cell state ct .

Forget gate. Forget coefficient f t is produced by forget gate and
determines how much ct�1 is kept in ct .

Output gate. ht ¼ ot tanh ctð Þ indicates how the output coeffi-
cient ot controls final output ht of the network.

These gates of LSTM help capture long-term as well as short-
term dependencies of input time series data and prevent the
gradient diminishing or exploding of information transmission.
The key of LSTM to realize long-term memory lies in keeping
the input information of each step in the memory unit. The hid-
den layer state of each output contains all input information
before the current moment. Since the hidden layer state is usu-
ally represented by a vector of a certain length, the network
gradually compresses all the information as time goes by. How-
ever, such indiscriminate compression will weaken the differ-
ence in time between input features to some extent and may
fail to highlight important information in historical information.
Hence, proper improvement is needed to enhance the discrimi-
nation of LSTM.
3.2. Attention mechanism

The most shared attention framework is demonstrated in Fig. 2.
The attention mechanism is usually used to optimize sequence-
handling models. The preprocessed input sequence is processed
by a neural network or by mapping function to generate raw atten-
tion weights. Then with the softmaxed attention weights and raw
input value, we can calculate the final output. According to the
value of attention weights, attention models can be divided into
two types: hard attention and soft attention. Hard attention refers
to the one-hot selection of the input data features, which means
attention weight can only be 0 or 1. The soft attention refers to that
the weight is between 0 and 1, and the weight selection range is
more flexible.
Fig. 1. Illustration of LSTM structure.
4. Methodology

To make full use of spatio-temporal information of input, we
modify the original LSTMwith attentionmechanism. Firstly, spatial
weights (or feature weights) are dynamically assigned to input fea-
tures in a single time step. Afterward, the hidden layer state of each
step of LSTM is fully utilized to dispatch temporal attentionweights
to the hidden layer state of each time step. The overall structure of
the model is shown in Fig. 3. We take rainfall and streamflow as
input features, and the output of our model is the prediction of
the next n-time-step streamflow. Spatial and temporal attention
weights affect the inputs and the outputs of LSTM cells. With the
help of spatial attention module and temporal attention module,
we can dynamically adjust the attentionweights as well as improve
the performance of LSTM cell. We adopt Adam algorithm [33] to
train models. The spatial attention operation and temporal atten-
tion operation are demonstrated with details subsequently.

4.1. Spatial attention operation

Suppose there is a 2D spatio-temporal feature matrix X 2 Rm�k,
in which m represents the number of features in a single time step
and k is the number of time steps. The hydrology features usually
include rainfall and flow of multiple stations. As shown in Fig. 3,
the input feature matrix X can be divided into k m-dimension vec-
tors like Eq. (1).
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Fig. 4 shows the calculation process of spatial dynamic atten-
tion weights. After the calculation of monolayer neurons, the input
feature vector is activated by Sigmoid xð Þ ¼ 1

1þe�x. And then with the

normalization of Softmax xið Þ ¼ e�xiPn

i¼1
e�xi

, we can generate the spatial

attention weight at (See Eq. (2)). Softmax is usually used for nor-
malization to ensure the limited additivity of weights. Note that
� in Eq. (3) is Hadamard product, i.e., element-wise product
operation.

4.2. Temporal attention operation

The spatial-attention-weighted sequence data is poured into
LSTM cell step by step. The hidden layer state output sequence is
obtained successively as Eq. (4) shown.

H ¼ h1; h2; . . . ;hk½ �k�s ð4Þ

b ¼ TA Hð Þ ¼ b1;b2; . . . ;bk½ �1�k ð5Þ



h

txtxt kxt kx

txtxt kxt kx
m k

t
mf

tf

tf

tt kt k
m k

tptp
n

tp

atth atth att
sh s

m k

t t
m mf

t tf

t tf

kh kh

m

k

h h kh kh

h h h
1 s

k s

Fig. 3. Framework of the proposed Spatio-Temporal Attention LSTM model. Spatial
and temporal attention modules weigh the inputs and the outputs of LSTM cells.
With the help of spatial attention module and temporal attention module, we can
dynamically adjust the attention weights as well as improve the accuracy of LSTM
cell.

Fig. 4. Illustration of the spatial attention operation.
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hatt ¼ b� H ¼
Xk

i¼1

bihi;hatt 2 R1�s ð6Þ

p ¼ O hattð Þ;p 2 R1�n ð7Þ
Afterward, the temporal attention weight b is generated after
ReLU activation (ReLU xð Þ ¼ max 0; xð Þ) and Softmax normalization
as suggested in Fig. 5 and Eq. (5). � in Eq. (6) denotes matrix prod-
uct. Output layer generates final prediction p without activation as
shown in Eq. (7).
4.3. Interpretability

We introduce previously the overall model architecture as well
as the principle of the spatial and temporal module. In this part, we
will propose a validation scheme for the interpretation of model
attention weights.

Fig. 6 shows diagram of a certain basin. Usually, rainfall influ-
ences the downstream flowwith delay(confluence time). In a small
basin, the average confluence time can be used to replace the con-
fluence time of the whole basin to simplify the calculation. In the-
ory, our spatio-temporal attention weight will also change with the
change of input rainfall and flow data. For certain basins, the
change law of temporal attention weight should conform to that
of the confluence process.
q xd; yd; t þ 1ð Þ / q xd; yd; t � ið Þjk�1
i¼0 &p x; y; t � Dt � jð Þjk�Dt

j¼0 ð8Þ
The t þ 1 downstream flow q xd; yd; t þ 1ð Þ relates to

q xd; yd; t � ið Þjk�1
i¼0 and p x; y; t � Dt � jð Þjk�Dtj¼0 as presented in Eq. (8).

The focus of temporal attention should translate over time while
the Dt is related to the confluence time tc as shown in Fig. 7. We
conduct experiment to verify the interpretability of our STA-LSTM
model. Details will be presented later in the experiment section.
5. Experiments

This part intends to show implementation details and results of
our experiments. Datasets and Data Preprocessing introduce the
used three datasets and preprocessing. Baselines and Implementa-
tion Setting show details of baselines and model structures and
parameters. Evaluation Metrics lists five common evaluation met-
rics. Results and Discussions give experiment results and our
discussions.
5.1. Datasets

We use data of Tunxi basin, Changhua basin, and Heihe basin in
our experiments. The hydrological features include hourly rainfall
data from all hydrological stations and hourly flow data from out-
let stations in those basins. Please check more details of the data-
sets in Table 1. The input covers 12 h (including current) rainfall
and streamflow of each basin. The output is the outlet flow in
the next 6 h (each hour).

Tunxi is a 49532-samples dataset covers 12 rainfall stations and
1 flow station, as shown in Fig. 8(a). Tunxi basin has a catchment

area of 2696.76 km2. The period of the dataset is from June
27, 1981 to March 18, 2007.

Changhua contains 9354 samples from 8 rainfall stations and 1
flow station, as shown in Fig. 8(b). The period of the Changhua
dataset is from April 7, 1998 to July 20, 2010. Changhua basin

locates in Zhejiang province, China and has an area of 3444 km2.
Heihe has 5423 samples from 10 rainfall stations and 1 flow sta-

tion, as shown in Fig. 8(c). Heihe basin covers an area of 1350 km2

and the period is from April 1, 2003 to November 10, 2010.
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5.2. Data preprocessing

Data Cleaning: We use the average completion to handle the
missing or low-level outlier xt as shown in Eq. (9). And we directly
eliminate complex outliers from the dataset.

x0t ¼
xt�1 þ xtþ1

2
ð9Þ

where xt�1 and xtþ1 are the values of the previous time and the next
time.

Feature Extraction: We use all the spatial and temporal fea-
tures available in the dataset, including the hourly rainfall of each
station in the basin and the hourly flow of the outlet flow station.

Max-Min Normalization: Since different input features may
have different magnitude, we standardize input features to the
range [0,1] with Max-Min normalization as shown in Eq. (10).

xnorm ¼ x� xmin

xmax � xmin
ð10Þ

where x represents a value in the sequence of primitive variables,
xmax and xmin represent the maximum and minimum values in vari-
ables, respectively.

5.3. Baselines

We compare the proposed STA-LSTM with the following 1 sta-
tistical method, 4 non-attention-based neural network models,
and 2 attention-based models:

� HA:Historical Average. A statistical method for time series anal-
ysis. We use an average of 12 past steps to predict the next 1
step with 6 iterations.

� FCN: Fully Connected Networks. A simple and robust form of
neural network. As shown in Fig. 9, the FCN model mainly con-
sists of three parts, input layer, FCN layer, and output layer.
� CNN: Convolutional Neural Networks. As shown in Fig. 9, the
CNN model mainly consists of three parts, input layer, CNN
layer, and output layer.

� GCN [20]: Graph Convolutional Networks. A novel spectral
graph convolutions solution with 1st-order Chebyshev approxi-
mation. As shown in Fig. 9, the GCN model mainly consists of
three parts, input layer, GCN layer, and output layer.

� LSTM [27]: Long Short-Term Memory networks, a famous vari-
ant of RNN. LSTM in Fig. 9 shows the LSTM model.

� SA-LSTM: Spatial Attention LSTM Networks. As shown in Fig. 9,
the SA-LSTM model adds a spatial attention module based on
the original LSTM model. The main structure and parameters
of the model are the same as LSTM.

� TA-LSTM: As shown in Fig. 9, the TA-LSTMmodel adds a tempo-
ral attention module on the basis of the original LSTM model.
The main structure and parameters of the model are also the
same as the LSTM.

5.4. Implementation settings

Parameters Settings: All experiments are implemented on a
Linux server (CPU:Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz,
GPU: NVIDIA GeForce TITAN Xp, 12 GB). We look backward 12
timesteps(12 h) and predict 6 timesteps (6 h). For all datasets,
80% of data is used for training, 20% for testing. Before we perform
the final experimental evaluations, we pre-train our models to
calibrate some hyperparameters. We assume that the learning rate,
training times (epoch), and the number of neurons in the hidden
layer (hidden dimension) make up the core hyperparameter space
of the model. A robust solution can be obtained by searching for
the hyperparameter space.

Fig. 10(a)–(c) show the relations between model performance
and learning rate, hidden dimension, and epoch. According to the
experiment result, we train all models 60 epochs with Adam opti-
mizer to ensure convergence and efficiency. Adam weight decay is
set to 1e�4 and random seed is fixed at 7. The initial learning rate
is 5e�2 with a decay rate of 0.7 after every 20 epochs and batch
size is 200. In addition, kernel size for CNN is set to 1� 3, out chan-
nel number is 3. For GCN, the hidden dimension is set to k�m� 2
which is more adaptive to different datasets. Table 2 lists details of
parameters and structures in the models.

Structures Settings: We explore the impact of activation of
attention modules on our STA-LSTM in this part. Fig. 10(d) shows
the impact of different combinations of activations.

The spatial attention module is at the shallow end of the model.
Shallow features are usually concentrated in a narrow range of val-
ues. Hence, the spatial attention weights obtained from Sigmoid
are relatively soft and comprehensive (because the weights are
always in range (0,1)). Temporal attention operation, on the other
hand, deals with the features after LSTM cell. ReLU can increase the
differentiation of features and that makes the weights harder. Fea-
tures less than zero will be compressed and features greater than
zero will become more prominent after Softmax.



Table 1
Dataset Characteristics.

Datasets Dataset Size Mean Variance Standard Median Kurtosis Skewness Fetures Time

Total Training Testing Deviation Resolution

Tunxi 49532 39625 9907 197.59 187150.70 432.60 75.56 40.88 5.60 rainfall, streamflow 1 h
Changhua 9354 7483 1871 146.80 41068.11 202.64 80.50 21.36 3.98 rainfall, streamflow 1 h
Heihe 5423 4338 1085 101.38 15214.98 123.34 59.83 28.15 4.21 rainfall, streamflow 1 h
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The experimental results show the performance of the sig-relu
model is better on multiple datasets with the most stable perfor-
mance, followed by the sig-sig model. To keep better robustness of
ourmodel,we take the sig-relu combination as our activation setting.

5.5. Evaluation metrics

We adopt Root Mean Square Error (RMSE), Determination Coef-
ficient (R2), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and forecast Qualification Rate (QR) as evaluation
metrics in experiments.

RMSE evaluates the accuracy of regression results, as shown in
Eq. (11).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi � qið Þ2
vuut ð11Þ

where yi represents the forecast value, qi denotes the real flow
value, and n is the number of test samples.

R2 indicates the correlation between two random variables, as
shown in Eq. (12).

R2 ¼ 1�
Pn

i¼1 yi � qið Þ2Pn
i¼1 qi � qð Þ2

ð12Þ

where yi represents the forecast value, qi denotes the real value, q is
the average value of the real value sequence, and n means the num-
ber of test samples.

MAE is the average of the absolute value of the sum of the devi-
ations of all individual observations from the arithmetic mean. Eq.
(13) is the formula of MAE.

MAE ¼ 1
n

Xn
i¼1

yi � qij j ð13Þ

MAPE is the mean absolute percentage error of predictions as
shown in Eq. (14).
Fig. 8. Station maps of three basins. (a) is Tunxi Basi
MAPE ¼ 1
n

Xn
i¼1

yi � qi

qi

����
����� 100% ð14Þ

QR refers to the ratio of qualified predictions (m) to total sam-
ples (n) in the test dataset, as shown in Eq. (15). The qualified pre-
diction refers to the prediction whose error is less than 20% of the
real value.

QR ¼ m
n
� 100% ð15Þ

QR and R2 are often used to judge the quality of the prediction
model. As shown in Table 3, the determination coefficient of the
predictions shall not be less than 0.5, and the forecast qualification
rate shall not be less than 60%.

5.6. Results and discussions

The following subsections introduce accuracy comparison, error
analysis, time-space consumption, and model interpretation with
details respectively. Considering the actual application scenario,
we only evaluate models on data with flow above 100. The exper-
iments are conducted with the following four research targets:

1) Evaluating the accuracy of the proposed STA-LSTM model
and exploring the benefits of spatio-temporal attention.
2) Analyzing the model error and finding out the direction for
improving the accuracy of predictions.
3) Comparing the time and space consumption of models and
finding the method of optimization and acceleration of intelli-
gent models.
4) Visualizing spatial and temporal attention weights, and giv-
ing a preliminary physical interpretation from a hydrology
perspective.

5.6.1. Benefits of spatio-temporal attention
Table 4 list the average performances of models in this 6-h flow

prediction task. On all datasets, our STA-LSTM models outperform
baselines in most cases. The basic statistical method HA gets the
n, (b) is Changhua Basin, and (c) is Heihe Basin.
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Table 2
Structures and Parameters of Models.

Models Layer_in Layer_hidden Layer_out Parameters

dimension activation dimension activation dimension activation learning rate epoch hidden dimension

FCN linear: k�m; k�mð Þ sigmoid linear: k�m; sð Þ relu linear: s;nð Þ – 0.05 60 300
CNN linear: k�m; k�mð Þ sigmoid cnn: k�m; sð Þ relu linear: s;nð Þ – 0.05 60 k� 2ð Þ �m� 3
GCN linear: k�m; k�mð Þ sigmoid gcn: k�m; sð Þ relu linear: s;nð Þ – 0.05 60 k�m� 2
LSTM linear: k�m; k�mð Þ – lstm: k�m;m; sð Þ relu linear: s;nð Þ – 0.05 60 300
SA-LSTM linear: k�m; k�mð Þ – lstm: k�m;m; sð Þ relu linear: s;nð Þ – 0.05 60 300

linear: m;mð Þ sigmoid
TA-LSTM linear: k�m; k�mð Þ – lstm: k�m;m; sð Þ relu linear: s;nð Þ – 0.05 60 300

linear: k� s; kð Þ relu
STA-LSTM linear: k�m; k�mð Þ – lstm: k�m;m; sð Þ relu linear: s;nð Þ – 0.05 60 300

linear: m;mð ) sigmoid
linear: k; kð Þ relu
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last position on all datasets. The results suggest the neural net-
works are more adaptive to the uncertainty of flood. The
attention-based models are more accurate and robust than the
original LSTM model. The attention modules decrease the RMSE
and increase R2 and QR of LSTM models. And in most cases, our
proposed STA-LSTM outperforms the novel CNN and GCN models,
which also reflects the benefits of the proposed spatial-temporal
attention.

The RMSE of the predictions from models in experiments is
shown in Fig. 11. On Tunxi dataset, the proposed STA-LSTM model
has the best accuracy at all 6 moments. On Changhua and Heihe
datasets, the STA-LSTM model has the best accuracy at most
moments. At the same time, SA-LSTM and TA-LSTM also performed
better, which is better than LSTM model mostly. At t þ 1, all the
models perform well, and errors increase to different degrees with
time. Fig. 12 is the R2 results of different models, which suggests
our proposed STA-LSTM model outperform others in most times
on all datasets. However, we can also infer that datasets size has
a great impact on model accuracy according to Table 3 and
Fig. 12. Models trained with Tunxi data have better performance
while the average level of models trained by the other two datasets
is lower.

As shown in Figs. 13 and 14, the attention-based model, espe-
cially the STA-LSTM model, performs well on different datasets.
Smaller MAE and MAPE represent the error between the predicted
value and the real value of the model is smaller, and the average
predictive power of the model is more robust.

In most cases, our proposed STA-LSTM model outperforms
other basic models. The performance of the LSTM model with
attention module is better than the original LSTM model, which
indicates the attention modules have a positive effect on models.
With the existing experiment results, we can find the accuracy of
the TA-LSTMmodel is slightly better than SA-LSTM on certain time
steps. Considering Table 3 and Fig. 15, the predictions of NN mod-
els can reach at least B level on Tunxi dataset. On the Heihe and
Changhua river basins, performances of models are less impressive
while STA-LSTM can reach almost Level B.

5.6.2. Error analysis
Despite the good accuracy of models, there are prediction errors

in testing. The errors also show obvious temporal variation trend.
Because of the imperfect forecasting architecture and input infor-
mation, the model loses accuracy gradually. In this part, we ana-
lyze and discuss the performance of models at a different time in
different datasets. We can summarize the following conclusions:

1) The prediction error of each model will increase with time.
As time goes on, the information provided by the input feature
is no longer enough.
2) The causes of complicated floods are difficult to analyze,
especially in the small and medium-sized river basins. In this
paper, we only select the key rainfall and flow as model input,
which may lead to incomplete input information. Part of the
error may come from the incompleteness of the input
information.
3) MAE or other average metrics cannot fully reflect the predic-
tive performance of the model. Multiple indicators should be
taken into account for comprehensive evaluation.
Table 3
Prediction level.

Level A Level B Level C

R2 � 0:90 0:90 > R2 � 0:70 0:70 > R2 � 0:50
QR � 85:0% 85:0% > QR � 70:0% 70:0% > QR � 60:0%
4) Among the models adopted in the experiments, the models
based on attention performed well. Specifically, the proposed
STA-LSTM model performs best in most cases while the error
variation trend is similar to the others.
5) The performance of the model is related to the number of
samples in the data set, that is, the training level. Tunxi dataset
is the largest one used and the model trained on Tunxi dataset
can give out better prediction. A large dataset is needed to opti-
mize the parameters of complex models.

5.6.3. Time-space consumption
Table 5 lists training time and model size of the models used in

experiments. FCN consumes the least time and GCN takes up the
least storage space while our proposed STA-LSTM model is in the
opposite end. The size of TA-LSTM model is the closest to STA-
LSTM model, suggesting the temporal attention module is larger
than the spatial attention module. The spatial attention module
is small, however, it leads to a large increase in model training
time.

Although the time-space consumption of the attention-based
model is larger than that of other models (the actual value is still
small), the performance of the model is greatly improved. Besides,
the temporal and spatial consumption gap between the STA-LSTM
and the original LSTM model is not large. In addition, the GCN
model has good performance while takes less, which may spark
important ideas for our next research.

5.6.4. Model interpretation
In previous subsections, we compare the performances of sev-

eral models based on experimental details and generally analyze
the difference between them. The conclusion can be drawn as
attention-based models perform better. And in this section, we
visualize the temporal and spatial attention weights of our pro-
posed STA-LSTMmodel and mainly analyze the time-varying trend
of weights.

Fig. 16 is the visualization of spatio-temporal attention weights
from our STA-LSTM model. The six subfigures represent the six
moments respectively. The input is data from Tunxi dataset. The
X-coordinate is the input hydrology feature, and the Y-coordinate
is the historical moment. The spatio-temporal attention weights
are similar to the weight of time, which is also gradually moving
forwards. However, because of the existence of spatial attention
weight, the changing trend of the overall weight is relatively slow
and not obvious.

Fig. 17 depicts the change of temporal attention weight in three
datasets under actual flood input. The X-coordinate is the forecast
time, and the Y-coordinate is the historical time. It can be seen
that, as the forecast time goes on, the temporal attention weight
also goes forwards gradually. The temporal attention weight goes
forwards from time t � 6, and the advance speed synchronizes
with the forecast speed.

With Figs. 17 and 16, we can preliminarily draw the following
three conclusions:

1) The temporal attention module focuses on the different past
moments at different prediction moments. The increasing trend
of temporal attention weight is almost linear and is similar to
the progress of confluence.
2) Different initial time delay of different basins may be related
to basin area and topography. And this index may indicate the
confluence time.
3) The error of spatio-temporal attention weight may lead to
the error of prediction results to a certain extent even a large
extent. As we find in Fig. 17, the trend of the curve is not strictly
increasing. The TX curve is almost strictly increasing except for
the last time step. CH and HH curves are much more fluctuant



Table 4
Average performance of models on Tunxi, Changhua and Heihe.

Models Tunxi Changhua Heihe

RMSE R2 MAE MAPE QR RMSE R2 MAE MAPE QR RMSE R2 MAE MAPE QR

HA 231.65 0.73 79.39 18.00% 81.84% 118.24 0.37 84.77 27.17% 66.25% 94.34 0.29 96.86 34.67% 48.24%
FCN 117.09 0.93 43.46 10.50% 92.99% 87.87 0.65 37.05 15.00% 79.95% 65.77 0.77 31.36 13.83% 85.14%
CNN 101.88 0.95 38.29 9.67% 95.15% 86.41 0.72 41.92 17.00% 80.57% 63.94 0.83 30.51 12.67% 93.06%
GCN 99.88 0.96 38.15 9.00% 95.22% 85.99 0.71 37.97 14.00% 85.00% 64.34 0.80 31.27 12.50% 94.37%
LSTM 106.65 0.96 38.31 8.67% 94.40% 88.46 0.73 37.49 14.50% 85.28% 61.95 0.77 33.84 13.50% 90.41%

SA-LSTM 102.04 0.95 40.17 8.67% 95.18% 88.31 0.67 37.86 13.67% 87.08% 65.23 0.83 35.29 13.50% 91.81%
TA-LSTM 103.23 0.95 40.23 8.17% 96.18% 84.71 0.69 38.8 15.50% 85.86% 62.86 0.79 31.11 12.17% 92.41%
STA-LSTM 97.03 0.96 37.49 8.00% 96.19% 82.43 0.75 40.13 14.17% 87.82% 61.87 0.84 33.53 11.50% 94.88%

Fig. 11. RMSE comparison of prediction from different models on three datasets.

Fig. 12. R2 comparison of prediction from different models on three datasets.

Fig. 13. MAE comparison of prediction from different models on three datasets.

Fig. 14. MAPE comparison of prediction from different models on three datasets.
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Table 5
Time-Space Consumption of Models.

Models Size (KB) Training (s) Testing (s)

HA 2 – 2
FCN 265 48 2
CNN 24 56 2
GCN 12 63 2
LSTM 1572 131 2
SA-LSTM 1574 203 2
TA-LSTM 1743 190 2
STA-LSTM 1744 267 2

epoch = 60, CPU: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz, GPU: NVIDIA
GeForce TITAN Xp, 12 GB.

Fig. 15. QR comparison of prediction from different models on three datasets.

Fig. 16. This figure is the visualization of spatio-temporal attention weights of STA-LSTM
The X-coordinate is the input hydrology features, and the Y-coordinate is the historica
indicating larger weights and blue indicating smaller weights.
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which may lead to greater error. Models trained on Tunxi data-
set can give out better predictions with the less-error temporal
attention module.

6. Conclusions and future work

In this paper, we propose a flood forecasting LSTM model (STA-
LSTM) based on the attention mechanism. HA, FCN, CNN, GCN,
LSTM, SA-LSTM, TA-LSTM, and STA-LSTM models, are designed
and evaluated in the experiment on Tunxi, Changhua, and Heihe
datasets. Under the verification of RMSE, R2, MAE, MAPE, and QR,
the attention-based LSTM model used in the experiment perform
better than the LSTM model and the FCN model. The STA-LSTM
model with both spatial and temporal attention modules performs
best among the models used, which reflects the benefits of the pro-
posed spatio-temporal attention. Consequently, we analyze the
model on Tunxi dataset. The six subgraphs represent the six moments respectively.
l time. Different colors represent different weights of different sizes, with yellow



Fig. 17. This figure depicts the change of temporal attention weight in three
datasets under actual flood input. The X-coordinate is the forecast time, and the Y-
coordinate is the historical time.
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temporal variation of the spatio-temporal attention weight and
puts forward three inferences for model interpretation. Existing
experiment results also suggest dataset size and quality may have
a great relationship with the training level.

Inspired by the performance of the GCN model, our next
research will consider further improving the performance of the
model by utilizing the graph information of basins. Current and
future works are aimed at flood data augmentation, flow trend
control, and physical interpretation of data-driven models.
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