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ABSTRACT
Predicting traffic accidents is a crucial problem to improving trans-
portation and public safety as well as safe routing. The problem is
also challenging due to the rareness of accidents in space and time
and spatial heterogeneity of the environment (e.g., urban vs. rural).
Most previous research on traffic accident prediction conducted
by domain researchers simply applied classical prediction models
on limited data without addressing the above challenges properly,
thus leading to unsatisfactory performance. A small number of re-
cent works have attempted to use deep learning for traffic accident
prediction. However, they either ignore time information or use
only data from a small and homogeneous study area (a city), with-
out handling spatial heterogeneity and temporal auto-correlation
properly at the same time.

In this paper we perform a comprehensive study on the traffic
accident prediction problem using the Convolutional Long Short-
Term Memory (ConvLSTM) neural network model. A number of
detailed features such as weather, environment, road condition,
and traffic volume are extracted from big datasets over the state of
Iowa across 8 years. To address the spatial heterogeneity challenge
in the data, we propose a Hetero-ConvLSTM framework, where a
few novel ideas are implemented on top of the basic ConvLSTM
model, such as incorporating spatial graph features and spatial
model ensemble. Extensive experiments on the 8-year data over
the entire state of Iowa show that the proposed framework makes
reasonably accurate predictions and significantly improves the
prediction accuracy over baseline approaches.
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1 INTRODUCTION
Traffic accidents have been one of the most significant public safety
issues. According to the World Health Organization (WHO), more
than 1.25 million people die each year as a result of road traffic
accidents [29]. Road traffic injuries are the leading causes of death
among young population between 15 and 29. Reducing traffic ac-
cident is a crucial societal problem. The ability to understand and
forecast potential accidents in the future (e.g., where, when, or
how) is thus very useful not only to public safety stakeholders (e.g.,
police) but also to transportation administrators and individual
travelers.

Numerous research have shown that environmental attributes
such as weather, road conditions, and light condition might have
an impact on the risk of traffic accident [7, 15, 28]. With the rapid
development of data collection techniques and the availability of
big datasets in recent years, abundant environmental data, public
transportation records, and motor vehicle crash reports can be
collected and fused, which makes predicting traffic accidents more
realistic.

However, traffic accident prediction is a very challenging prob-
lem. First of all, the causes of traffic accidents are complex. Besides
the common factors listed above, random factors such as vehicle
mechanical problems, driver carelessness may also cause traffic acci-
dents. Second, traffic accidents are rare events. Precisely predicting
individual accidents is challenging due to lack of enough samples.
Finally, the factors that may cause traffic accidents vary from place
to place. For example, the main factors that lead to traffic accidents
in an urban region with busy local roads might be very different
from on a rural express way. Handling the spatial heterogeneity in
the data is challenging.

Commonly, the traffic accident prediction problem has been
formulated as a classification problem or a regression problem. For
example, some work aim to predict whether or not an accident will
occur at a specific location or in a specific area (e.g., road segment)
during each time window (e.g., hour, day) [9, 10, 12, 17]. Other
work [7, 8, 15, 23] predict the number of accidents at given time and
locations using regression models. These work, however, typically
use classical data mining methods and do not consider the unique
features of traffic accident data such as spatial heterogeneity and
temporal auto-correlation, leading to unsatisfactory performance.
A limited number of recent works have made attempts to solve
the problem using deep learning approaches, such as deep neural
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network or convolutional neural networks [11, 19, 26]. In this study,
the problem is formulated as an image prediction problem, where a
traffic risk map is generated by learning from the traffic accident
records and other data (e.g., satellite image, cell phone records).
These works, either ignore the temporal information (e.g., predict
a static risk map), or performed the analysis on datasets at small
spatial scales with very limited features, therefore lacking the ability
to forecast accidents at larger scale (e.g., in a state) with spatial
heterogeneity (e.g., both urban and rural areas).

In this paper we propose Hetero-ConvLSTM, a deep learning
approach for traffic accident prediction based on big heterogeneous
spatio-temporal data. The entire study area is partitioned into grid
cells. A number of fine-grained urban and environmental features
such as traffic volume, road condition, rainfall, temperature, and
satellite images are collected and map-matched with each grid
cell. Given the number of accidents as well as the other urban and
environmental features at each location, we learn a model to predict
the number of accidents that will occur in each grid cell in future
time slots. We adopt the Convolutional Long Short-Term Memory
(ConvLSTM) neural network model and incorporate spatial features
in the model to better capture the temporal trends and spatial
heterogeneity of the data. In addition, we propose a model ensemble
framework, where different models are learned for different regions
of the study area and the results are assembled to generate the
final prediction. To the best of our knowledge, this is the first
work that address spatial heterogeneity in the framework of
deep neural networks for traffic accident prediction. Also it
is the first work that uses ConvLSTM for traffic accident prediction.
Results show that our model outperforms classical models and
achieve higher accuracy.

We highlight our contributions as follows:

• We collect and fuse heterogeneous big datasets including road,
weather, time, traffic, and human factors for traffic accident pre-
diction. This, to the best of our knowledge, has not been done in
prior research
• For the first time in the literature of traffic accident prediction,
we incorporate the spatial structure of the road network into the
predictive models by leveraging new features generated through
eigen-analysis of the road network to address the spatial hetero-
geneity challenge
• We propose a deep learning framework using the Convolutional
Long Short-Term Memory (LSTM) Neural Network with a model
ensemble approach to further address the spatial heterogeneity
in the data and improve the accuracy of the prediction
• We perform comprehensive experiments on various parameter
settings, feature sets, and baseline approaches. We discover from
the results that the major factors for traffic accident change over
space. For rural areas weather and SpatialGraph features play
important roles and in urban areas road condition, traffic volume,
and holiday/weekday information are more important

The rest of the paper is organized as follows: Section 2 dis-
cusses the related work of this paper. Section 3 presents our datasets
and the problem formulation. Section 4 introduces our feature ex-
traction steps. Section 5 presents our Hetero-ConvLSTM approach.
Section 6 presents case studies and experimental results. Section 7

discusses the challenges of deploying our framework. Section 8
concludes the entire paper.

2 RELATEDWORK
TrafficAccident Prediction using Classical Techniques:A big
body of literature from public safety and injury prevention re-
searchers aim to classify each given road segment at given time
into binary classes {Accident, No Accident}. Chang [9] compared the
performance of Artificial Neural Network with that of a negative
binomial regression model over 1338 accidents. ANN achieved 64%
and 61.4% accuracy for training and testing, respectively. Chang et
al. [10] also applied the decision tree model on the same dataset to
predict highway accidents. The training and testing accuracy are
less than 55%. Olutayo et al. [12] applied decision tree and ANN
model on a dataset from Nigeria and achieved precision and recall
both around 0.52. Lin et al. [17] employed FP-Tree to select features
that are more likely to contribute to the prediction. Then they ap-
plied Random Forest, K-Nearest Neighbor, and Bayesian Network
to predict accidents along the same road. The best performance
archived is around 61%. Abellán et al. [5] used a Probabilistic Neural
Network (PNN) model to predict traffic accident based on real-time
road condition (e.g., traffic volume, speed).

Some other work aim at fitting regression or other models
to predict the number of traffic accidents on specific roads or in
certain regions. Many of them try to identify correlations between
attributes (e.g., weather, road conditions) and the accident risk.
Caliendo et al. [8] developed Poisson, Negative Binomial, and Neg-
ative Multinomial regression models to predict the number of acci-
dents on given roads. Oh et al. [23] employed a zero-inflated Pois-
son regression model to predict the number of crashes at railway-
highway intersections. They identified the correlation between a
number of factors and crash rate. Bergel-Hayat et al. [7] employed
an auto-regressive regression model to study the correlations be-
tween weather attributes and injury accidents. Eisenberg et al. [15]
used negative binomial regression model to study the relationship
between monthly precipitation and monthly fatal crashes. Tamerius
et al. [28] analyzed the Relative Accident Rate (RAR) to study the
relationship between precipitation and motor vehicle crashes over
space and time.

All of the above work simply apply classical data mining tech-
niques on small scale traffic accident data (e.g., one or a small
number of roads) with limited features. Also they typically don’t
address unique data properties such as time periodicity, spatial
auto-correlation and heterogeneity, therefore having relatively low
accuracy.
Deep Learning Models for Traffic Accident Prediction: Some
recent work have attempted to tackle the traffic accident analysis
problem using deep learning models. Chen et al. [11] utilized mobile
phone data and historical accident records to build a model for real-
time accident risk assessment. Najjar et al. [19] used Convolutional
Neural Netowrk (CNN) to predict traffic accident risk map using
historical accident data and satellite images. Both of the above
works, however, only predict a time-invariant accident risk map.
This is not suitable for real-time accident prediction for safety
planning. A recent work by Ren et al. [26] used Long Short-Term
Memory (LSTM) model to predict traffic accident risk in the near
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(a) Visualization of Traffic Accidents (b) Rainfall Map (c) RWIS Observation Stations

Figure 1: Illustrations of the Motor Vehicle Crash (2013), Rainfall, and RWIS datasets.

future. However, this work is a simple application of the model on
traffic accident data, without addressing spatial heterogeneity of
the data. The study area is also limited to urban region (Beijing).
By contrast, our paper proposes a few novel ideas to address the
spatial heterogeneity issues in the data we collect. We implement
these ideas on top of a LSTM neural network. To the best of our
knowledge, this is the first work using deep learning model to
address spatial heterogeneity in traffic accident forecasting.
Traffic Accident Hotspot Detection: Other work on traffic acci-
dent analysis include clustering and hotspot detection. Shi et al. [27]
proposed a likelihood-ratio test approach to identify road intersec-
tions with high traffic accident density. Oliver et al. [24] proposed
a linear hotspot detection approach to identify paths with signifi-
cantly higher density of traffic accidents compared to others. Wang
et al. [31] proposed an ontology-based approach, which considers
the severity level of accidents for traffic accident risk clustering and
mapping. These work are unsupervised analysis thus not directly
related to our paper.

3 OVERVIEW
This section presents the data we collected and introduces the
formulation of our problem.

3.1 Data Sources
We choose the state of Iowa, United State, as the study area. Iowa
is a state with both rural and urban environments, and various
extreme weather conditions (e.g., snow storm, heavy rains, torna-
does). Tamerius et al. [28] pointed out that Iowa is ideal for studying
the impact of precipitation on traffic accidents due to its varying
weather conditions. All the data we collected are about Iowa, as
detailed below.
Motor Vehicle Crash Data.We obtained motor vehicle crash data
from the Iowa Department of Transportation (DOT) [14]. The data
contains the crash records from 2006 to 2013. In addition to the
basic information, i.e., time and location of a traffic accident, the
dataset also contains many valuable features related to the accident
such as road information. Figure 1(a) shows the mapping of the
crash locations in Iowa on top of the major highway network in
2013.
High-ResolutionRainfall Data.We also obtained Stage IV radar-
rainfall product developed by the NWS [18]. The data contains
hourly precipitation amount (in millimeter) from radar at 4 kilome-
ter resolution. There are totally 8,026 observation tiles, which cover
the entire Iowa over the study time periods. Figure 1(b) shows the
map of the observation tiles.

RWIS (Roadway Weather Information System) Data. RWIS
is a project of monitoring the temperature change, maintained
by Iowa Department of Transportation (DOT) [22] . It contains
86 observation stations that are located near the primary roads of
Iowa, e.g., there are 14 stations along with Interstate-80. The project
mainly provides temperature and wind related features. We collect
the data from 2006 to 2013. Figure 1(c) shows the locations of the
observation stations.
RoadNetworks.We collected three different road network datasets
from Iowa DOT GIS data portal [21] with basic road information
in the state of Iowa, detailed speed limits of the road, and the most
recent estimated Annual Average Daily Traffic (AADT) volume
for the primary and secondary roads. The AADT data also include
detailed statistics of each type of vehicles, such as Single Unit Truck
AADT and Combination Truck AADT for every road.
Satellite Images. We also collect a satellite image of Iowa from
Google Earth [16].
Traffic Camera Data. We collect real-time traffic volume data
from a total of 128 camera stations along major highways in Iowa
from 2006 to 2013. The number of vehicles along both directions in
each hour are recorded at these locations.

3.2 Problem Formulation
We impose a spatial grid S on the study area, where each grid si
represents a d ×d square region. For example, if d = 5km, the entire
state of Iowa can be partitioned into 128 × 64 grids.

In this problem, we aim to learn a model to predict the total
number of accidents in each grid in S during each time slot. The
time slot could be, for example, an hour, a day, or a week. In this
paper, we choose each day (24 hours) as the length of t . However,
one can apply our proposed framework with different choice of d ,
and t . Note time-variant features such as weather, traffic volume
of day t are not available until day t has passed. So we only use
features for days up to t − 1 to predict the accidents on day t .

Specifically, we formulate the problem as follows:

• Given:
– A spatio-temporal field S × T , where S = {s1, s2, ..., sn } is a
spatial grid, and T = {t1, t2, ..., tn } is the time length of the
study period partitioned into equal-length slots

– A 3-D tensor of traffic accident count C , where C
(
s, t

)
is the

number of accidents in grid s ∈ S during day t ∈ T
– A list of m feature tensors F = { f1, f2, ..., fm }, where fk is
a three-dimensional tensor recording the corresponding at-
tribute in each grid si during each time slot t
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– A training data set Dtrain = {C
(
S, t

)
, F

(
S, t

)
} where t ∈

Ttrain , and a testing data set Dtest = {C
(
S, t

)
, F

(
S, t

)
} where

t ∈ Ttest
• Find:
– A model to predict C

(
S, t

)
for every t ∈ Ttest

• Objective:
– Minimize prediction error
• Constraints:
– The dependency between C and F vary spatially
– All accidents occur along the road network
– F

(
S, ti

)
is not available for prediction of C

(
S, ti

)
, ti ∈ Ttest

4 FEATURE EXTRACTION
To generate the features for our input, we match the collected
datasets with each

(
si , t

)
combination and aggregate the data to

extract a list of features.
Dependent Variable Tensor (C): For each grid si in each day

t , we count the total number of accidents (C
(
si , t

)
). We totally

matched 375,690 motor vehicle crashes over 8 years.
The extraction of independent features F are detailed below.

4.1 Time-Invariant Features
Road Network Mask Feature Map (N): We map the road net-
work (with primary and secondary roads) onto the grids and create
a mask layer. Although the entire study area is partitioned into
grid cells, it is obvious that traffic accidents can only occur on the
road network. To make sure that the prediction results make sense,
we convert the road network into a feature map. Since the road
network merely changes over years, this feature is time-invariant.
Specifically, for each grid si , we define the value of the feature
N
(
si , t

)
,

N
(
si , t

)
=

{
1 if there are roads in si

0 otherwise

Road Condition Features (RC): In addition to the network mask
layer, we calculate the average length of all the roads and the av-
erage speed limit of the roads in each grid cell and store each of
these measures as a feature. We also include the features relevant
to road property, such as, number of intersections, number of lanes,
road function, road curve and Annual Average Daily Traffic(AADT).
These features are time invariant. We obtain six features for each
grid si .
Google Earth Satellite Image (G):We obtain a snapshot satellite
image of the entire Iowa from Google Earth [16] and geo-register
the image to the map of Iowa based on the latitudes and longitudes
of the corners of the image. The image is decomposed to three color
channels (R, G, B), each as a feature. For each grid cell si for each
channel, the feature value is the average value of the pixels that
overlap with si . These three features are time invariant.

4.2 Time-Variant Features
Rainfall Feature (RA): We map each radar data tile from the
rainfall dataset [18] onto the grid cell si in our framework. For each
grid cell si , we find all the rainfall radar data tiles r j that overlap
with si . The rainfall amount RA

(
si , t

)
is calculated as the average

daily total rainfall of all such tiles r j on day t . This result in one
time-variant feature.
RWIS Weather Features (RW): Unlike traffic accidents, weather
features such as temperature are continuously distributed over the
entire space. Therefore we find the k-nearest RWIS stations to each
grid cell si in Euclidean distance. Then, we calculate the average
measure of the three stations in each hour as the hourly estimated
measure of si . Finally we extract the average hourly measures
at si for day t as feature values. Specifically, the feature x (e.g.,
temperature) at grid cell si for day t is

RWx
(
si , t

)
=

1
24

Σ23h=0
[ 1
|Nsi |

Σq∈Nsi
RWx

(
q,h

) ]
(1)

where q is a RWIS station, h is an hour of day t , Nsi is the set
of k nearest q of si . In our implementation we use k = 3. This
group includes 4 features: temperature, wind speed, dew point.
Traffic Volume Features (V): In addition, we obtain real-time
traffic volume information from the Iowa DOT traffic cameras in
the entire state of Iowa. For each grid cell, we identify the three
nearest cameras using network distance, on the road network.
Each camera records the total number of vehicles passed during
each hour along both directions.
Calendar Features (CL):We finally add calendar features for each
day, including the day of year (1 to 365), day of week (1 to 7), month
of year (1 to 12), quarter of year (1 to 4) and If_Holiday (0 or 1).
These features are non-spatial features, i.e., same value for all the
locations for each day.

4.3 SpatialGraph Features
To tackle the spatial heterogeneity, we also take the spatial relation-
ship of the roads into account. Although the spatial heterogeneity
can be captured to some degree by road specific and weather related
features, there are still many factors that could make the accidents
occurring pattern different in different areas. For example, from
Fig. 1 (a) we can see that more accidents are concentrated in urban
areas (e.g., Des Moines, Cedar Rapids) than in rural areas, which
can be attributed to different population density in different areas.

One solution is to include a new set of features that consider
the spatial relationship between different locations. The idea is
to construct a spatial graph between all roads and to conduct the
eigen-analysis of the induced Laplacian matrix [6]. We obtain the
resulting top eigen-vectors of the Laplacian matrix. These eigen-
vectors provide additional information about the topological feature
of each road with respective to potential spatial clusters in the road
network. Specifically, let L ∈ Rm×m denote the graph Laplacian
matrix computed based on the spatial graph, where each row of L
corresponds to a road segment in the data. LetV ∈ Rm×K denote the
top K eigen-vectors of L. Then we can use each row of V to induce
a new set of features for the corresponding road segment. This
approach is similar to spectral clustering [30], which first generates
the eigen-features based on the Laplacian matrix and then conduct
the k-means clustering based on the new features. We also use
the spectral clustering to visualize the generated features based on
the clustering results in Figure 1 (k=10). The feature construction
process is summarized in Algorithm 1. Note the last step is different
from spectral clustering.
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The above process will generate k spatialGraph features for each
road segment. Finally we map the features to each grid cell si . For
grid cells with only one road segment, the spatialGraph features
are directly assigned as those of the corresponding road segment.
For grid cells with multiple road segments, we pick the longest
road segment in si and use its spatialGraph features for si . This
approximation is reasonable because road segments in the same
grid cell are typically connected and tend to have very similar
spatialGraph features. In our implementation we choose k = 10,
resulting in 10 time-invariant spatialGraph features.

Figure 2: Visualization of Spectral Clustering when K = 10
(best viewed in color).

Algorithm 1: SpatialGraph Feature Construction
Data: Road Network N = {Rd1,Rd2, ...,Rdm }, spatial grid S ,

the number of features desired k
Result: k SpatialGraph features E ∈ R |S |×k for all grid cells in

S
1 Construct an adjacency matrixW of N and a degree matrix D

of N ;
2 Compute the normalized Laplacian Lnorm = D

−1
2 WD

−1
2 ;

3 Compute the first k eigenvectors v1, ....,vk of L;
4 Let V ∈ Rm×k be the matrix containing the vector v1, ...,vk as

columns;
5 For i = 1, ... ,m, let yi ∈ Rk be the vector corresponding to the

ith row of V ;
6 For sj ∈ S , E

(
sj
)
← yi , where Rdi is the longest road

s .t .Rdi ∩ sj , ∅

4.4 Summary of Features
We finally constructed 31 features, which are grouped into 7 cat-
egories: Road Network (N) (1 feature), Road Condition (RC) (6
features), Satellite Image (G) (3 features), Rainfall (RA) (1 feature),
Weather (RW) (4 features), Traffic Volume (V) (1 features), Calendar
Features (CL) (5 features), and SpatialGraph (E) (10 features). Each
feature is converted to a three-dimensional 64×128×1 tensor.

5 THE HETERO-CONVLSTM APPROACH
This section presents our solutions to the traffic accident prediction
problem. We first introduce the Convolutional LSTM and then dis-
cuss how we build the Hetero-ConvLSTM model with ConvLSTMs.

5.1 Convolutional LSTM
Long Short-Term Memory (LSTM) is a type of recurrent neural
network node structure known to have good performance when
handling time series data with temporal auto-correlations. A node
in a LSTM Neural Network consists of a memory cell, an input
gate, an output gate, and a forget gate. During the training phase,
a weighted function is learned in each of the gates in a LSTM
node to control the “memorizing” and “forgetting” capability of the
network.

The ConvLSTM model is a variation of LSTM to handle spatio-
temporal prediction problems, which was first introduced by Shi et
al. [32] for precipitation nowcasting. Each input feature of a ConvL-
STM network is a three-dimensional spatio-temporal tensor, where
the first two dimensions are the spatial dimension. Comparing with
the original LSTM model, the input-to-state and state-to-state tran-
sitions of the ConvLSTM cell involves convolutional operations
that outputs 3-dimensional tensors. This model can be further for-
mulated as the following equations. The ∗ denotes the convolution
operation and ◦ denotes the Hadamard product.

it = σ
(
Wxi ∗ Xt +Whi ∗ ht−1 + bi

)
(2)

ft = σ
(
Wxf ∗ Xt +Whf ∗ ht−1 + bf

)
(3)

ot = σ
(
Wxo ∗ Xt +Who ∗ ht−1 + bo

)
(4)

Ct = ft ◦Ct−1 + it ◦ tanh
(
Wxc ∗ Xt +Whc ∗ ht−1 + bc

)
(5)

ht = ot ◦ tanh
(
Ct

)
(6)

In the equations, it , ft , ot are the outputs of input gate, forget gate,
and output gate for time step t . Ct is the cell output at time step t .
ht is the hidden state of a cell at time step t .

Figure 3: The inner structure of a ConvLSTM cell.

The CovnLSTM has nice properties for traffic accident prediction
as the LSTM part may capture temporal auto-correlation in the data
and the convolution operator may capture local spatial features
(e.g., dangerous road intersections) that are important indicators of
potential accidents. However, ConvLSTM does not handle spatial
heterogeneity explicitly. Although we incorporate spatialGraph
features as detailed in Section 4.3, model accuracy might be affected
due to varying environmental conditions. Also training a single,
large ConvLSTM model may require excessive time.

To address the above limitations, we propose the Hetero-Conv-
LSTM framework. First, we use a moving window to obtain the data
of a sub-region in the study area and learn a ConvLSTM network
model for each window with different parameters. The size of the
window is chosen such that the model can be trained in reasonable
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time, while the region is still large enough to include sufficient
training samples. In our case, we choose a region with size 32 × 32.

After the models are trained, we obtain the prediction for every
grid from every model and use the ensemble of the outputs as the
final prediction.

Figure 4: The structure of the regional ConvLSTM model.

5.2 Regional Prediction Model
ConvLSTM Structure: For each regional window, we construct
a ConvLSTM model. In spatio-temporal prediction such as rain-
fall forecasting [32], there is only a single dependent variable but
no other features. The inputs X are the historical values of the
dependent variable. In our problem, we have additional features
incorporated and fed to the network. Therefore, in our problem,
the input data is 4-dimensional. The parameters Xt and ht−1 in
the above formulas are three-dimensional tensors rather than two-
dimensional images as in [32].

Four ConvLSTM layers are stacked, where each layer has 128
ConvLSTM filters (hidden states) to extract spatial features from
input data and the output of the previous time steps. Between
any two ConvLSTM layers, we apply batch normalization layer to
further accelerate the training processes. For pixel-wise prediction,
we concatenate all outputs and feed them into a 1 x 1 convolutional
forward layer to generate a two-dimensional map for each time
step t .

We also implement an additional filter on the final output to
smooth the outputs. The final output image for each time step t
is filtered by the network mask layer (N ) through a pixel-wise
AND operation. Any non-zero predicted value outside of the road
network are set to 0.

Figure 4 shows the overall architecture with the inputs and
outputs. Fig 3 shows the detailed structure of a single ConvLSTM
cell in our model.

Training and Testing:We construct the training samples in the
following way. Each training sequence consists of 14 days, where
the last 7 days are predicted based on the data in the first 7 days
(last 7 days are shifted by 1 day from first 7 days). All the feature
tensors of the 14 days are fed into the ConvLSTMmodel. We choose
7 days because traffic accidents are impacted by human activities,
which have a strong weekly pattern.

The model generates the prediction for one day t at a time based
on the features (including ground truth accident counts) up to day
t − 1. Then the ground truth C

(
S, t

)
is given as the input to the

next predictionC
(
S, t + 1

)
. Note we do not use any feature on day t

because these features may not be available before day t has passed.
All the features described in Section 4 are normalized to the range of
[0,1] before being used. We use cross-entropy as the loss function:

Loss = −Σs,tTs,t loдPs,t +
(
1 −Ts,t

)
loд

(
1 − Ps,t

)
(7)

where Ts,t and Ps,t are ground-truth and predicted crash map of
location s at time t .

5.3 Spatial Ensemble of ConvLSTM Models
In order to address the spatial heterogeneity problem, we build an
LSTM model for each different regions in the study area and use a
model ensemble method to generate the final results. The intuition
behind this design is to reduce the impact of data heterogeneity
(e.g., urban vs. rural). We use a moving window approach, where
the size of the moving window is 32 × 32. We take subsets of the
spatial framework S by moving the window from the top-left corner
(0,0)-(32,32) to the bottom-right corner (96,32)-(128, 64), with a step
of 16 grids on both of the horizontal and vertical directions. This
results in 21 different regions, where every pair of neighboring
regions have 50% grids overlapping with each other. The regions
are illustrated in Figure 5.

Figure 5: Map partitioning of spatial ensemble model
(stride=16).

We split the training set and the testing set each into 21 subsets
accordingly. For each regional window, we learn a ConvLSTM
model based on its own training set, and make predictions on its
testing dataset. The final prediction of a grid location si at each day
tj is calculated as a weighted average of predicted values at si on tj
from all the models, whose regions cover si . Formally,

Ĉ
(
si , tj

)
=

1
Σw

ΣNk=1
(
wk ˆCWk

(
si , tj

)
× I

(
si ∈Wk

) )
(8)

where N is the total number of windows that cover si , and wk is
the weight for windowWk . The optimal weights could be learned
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through a linear regression of regional model outputs. However for
simplicity in this paper we choose equal weights for eachw .

6 EXPERIMENTAL RESULTS
6.1 Experiment Settings
Data Preparation: We formulate our problem as prediction on
next 7-day traffic accident based on traffic accident and other related
conditions over last 7 days. Thus, we create each training and testing
sample as a sequence of 14 frames (7 frame for the training and next
7 frames for the prediction). The entire dataset (8 years, 2922 days)
is converted to 2915 sequences. All data are divided into 2 groups,
where the data for the first 7 years (2006-2012) is used as training
set, and the data in the last year (2013) is used as the testing set.
10% of the training set is selected to be the validation set.

As described in the previous section, we partition the state of
Iowa into 5km by 5km grids. For each day in 2013 we predict a
traffic accident map using the proposed Hetero-ConvLSTM model.
Evaluation Tasks: Through the experiments we wish to answer
the following questions: (1) Are the results of the proposed frame-
work better compared with baseline methods, including classical
predictive models and ordinary ConvLSTM? (2) Which features
have the most impact on the prediction accuracy in different re-
gions? (3) How does the performance of our proposed model vary
on different regions (e.g., urban, rural)? (4) Do the prediction results
make sense? Are the predicted accident locations correlated with
the ground truth spatially?
Evaluation Metrics: We evaluate the accuracy of the models by
using the following measures: mean squared error (MSE), root-
mean-square error (RMSE), Cross Entropy (CE). We also use the
Cross-K function [13] to evaluate the spatial correlation between
the predicted results and the ground truth.
Parameter Configurations:We train the proposed Hetero-Conv-
LSTM models by minimizing cross-entropy loss using Adam op-
timizer with the settings: α = 0.001, β1 = 0.9, β2 = 0.999 and
ϵ = 10−8. We also employ early-stopping technique during training.
We also identify a cut-off threshold θ , where predicted values below
θ are set to zero. This helps remove very small predicted values,
which are very unlikely to be real events and are negligible. We use
θ = 0.0595 through tuning on the validation set.
Platform:We set up the experiments on Argon High Performance
Computing System at the University of Iowa [20] using a 256GB
RAM computing node with 2.6GHz 16-Core CPU. For the training
of deep learning models, we use GPU node on Argon with Nvidia
Tesla P100 Accelerator Cards with the support of Tensorflow library.
Baseline Models: We compare our proposed framework with the
following baseline models: (1) Least Squares Linear Regression (LR),
(2) Decision Tree Regression (DTR), where the Information Gain
in ID3 algorithm by Ross Quinlan [25] is replaced by Standard
Deviation Reduction. (3)DNN. A two-layer fully-connected neural
network of 2048 hidden units each. In addition, we apply dropout
regularization to prevent overfitting. (4) FC-LSTM. For the FC-
LSTM, we use a two-layer LSTM network structure consisting of
2048 memory cells per layer. (5) ConvLSTM. Ordinary ConvLSTM
without spatial ensemble. (6) Historical Average. Average daily
accident counts over 7 years.

6.2 Results on Prediction Accuracy
Considering spatial heterogeneity, we present the results in three
different types of regions in the experiments. We define Type-1 as
urban region, e.g., Des Monies, Type-2 as rural region, e.g., western
Iowa, andType-3 as mixed region (between two urban regions), e.g.
region among, Waterloo, Iowa City and Cedar Rapids. We report
the evaluation measures of results on each region (in pixel level).

The results are presented in table 1. The Hetero-ConvLSTM
model achieves the best performance with the lowest MSE and
RMSE in all the three regions. Historical Average performs better
than other baseline models but worse than our proposed model
in all the regions. It reveals that daily average is generally a good
estimator for long-term prediction with low average error due to
the periodicity and seasonality pattern of traffic accidents. How-
ever it might not be good at predicting short-term traffic accidents,
especially when accidents are caused by weather condition or rare
events. In summary, the Hetero-ConvLSTM is an order of magni-
tude more accurate than all the other models.

Figure 6: Cross-K function between predicted and actual ac-
cidents.

6.3 Impact of Feature Groups
To investigate the effect of different features group on the results,
we run our trained model on all the 32x32 regions and present the
results on the three selected regions as well as the overall results
of the entire state. For each region, we add 1-2 feature groups at
a time and measure the MSE, RMSE, and Cross-Entropy of the
results. The results are summarized in table 2. We can observe that
generally more features lead to lower errors. However, some feature
groups might affect the accuracy negatively and the most important
features differ in different regions.

In Type-1 (urban), Road Network (N), Traffic Volume (V), Road
Condition (RC), and Calendar (CL) bring down errors. This can
be explained by higher density of population and stronger human
activity patterns. SpatialGraph features (E) have a very weak impact.
This might be due to lower heterogeneity of the area.

Interestingly, in Type-2 and Type-3 regions, the important fea-
ture groups changed. Rainfall (RA), other weather features such
as temperature and wind speed (RW), and SpatialGraph features
(E) bring down the error more effectively than other features. This
makes good sense since human related factors are less important
than environmental features in rural areas. The results also verify
that strong spatial heterogeneity exist in the data (especially ru-
ral regions) and our proposed SpatialGraph features contributed
to handling this challenge. The overall results show that over the
entire state, calendar (CL) and Road Condition (RC) features have
the most contributions on the accuracy of the results. However, the
impacts are marginal, due to spatial heterogeneity.
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Table 1: Model Performance

Model Type-1 Urban Type-2 Rural Type-3 Mixed
MSE RMSE CE MSE RMSE CE MSE RMSE CE

LR(C=0.1) 0.146 0.382 0.051 0.040 0.199 0.002 0.086 0.294 0.014
DTR(depth=30) 0.172 0.415 0.243 0.056 0.237 0.123 0.111 0.334 0.230
DNN(2048x2048) 0.140 0.374 0.033 0.036 0.190 0.023 0.082 0.286 0.011

FC-LSTM(2048x2048) 0.187 0.434 0.419 0.042 0.205 0.419 0.089 0.298 0.001
ConvLSTM (128x128x128x128) 0.117 0.343 0.074 0.037 0.192 0.025 0.077 0.278 0.071
Historical Average (7 years) 0.050 0.224 0.340 0.015 0.121 0.219 0.033 0.181 0.295

Hetero-ConvLSTM (128x128x128x128) 0.021 0.144 0.014 0.006 0.078 0.001 0.013 0.116 0.010

Table 2: Impact of Feature Groups

Model Type-1 Urban Type-2 Rural Type-3 Mixed All Regions
MSE RMSE CE MSE RMSE CE MSE RMSE CE MSE RMSE CE

N 0.120 0.346 0.089 0.063 0.251 0.212 0.082 0.286 0.068 0.049 0.222 0.047
N+RW+RA 0.126 0.356 0.073 0.038 0.195 0.046 0.076 0.276 0.087 0.056 0.237 0.074

N+RW+RA+V+RC 0.123 0.351 0.127 0.039 0.199 0.006 0.100 0.316 0.256 0.049 0.221 0.037
N+RW+RA+V+RC+G 0.148 0.384 0.247 0.038 0.194 0.039 0.080 0.283 0.050 0.048 0.219 0.043

N+RW+RA+V+RC+G+CL 0.118 0.344 0.075 0.046 0.216 0.100 0.082 0.286 0.018 0.048 0.220 0.030
N+RW+RA+V+RC+G+CL+E 0.117 0.343 0.074 0.037 0.192 0.025 0.077 0.278 0.071 0.049 0.222 0.026

Figure 7: Case study of traffic accidents on Dec. 8th, 2013.
From top to bottom: ground truth and predictions using
Hetero-ConvLSTM.

6.4 Result Quality: A Case Study
Finally, we evaluate the location accuracy of the prediction results
using the cross-K function [13]. Cross-K function is a measure of
spatial clustering tendency between two object types. In our case,
we calculate on average the density of predicted accidents within
every distanced of a real accident. Varyingd we obtain an empirical
curve. Figure 6 shows the curves. The bottom curve represents the
cross-K function for complete spatial randomness, where there is
no correlation between the ground truth and the prediction. In this
caseK

(
d
)
= Ap

(
2d+1

)2/Aд , whereAp andAд are spatial density of
predicted and real accidents. The top curve represents the empirical
cross-K function between Hetero-ConvLSTM predictions and the
ground truth. Results show that the prediction is highly correlated
with the ground truth spatially.

We visually compare the results of Hetero-ConvLSTM with the
ground truth. Figure 8 shows the prediction result of a whole week
over one of the selected regions (Type-3). The circles highlight

regions where the patterns are correctly predicted. As can be ob-
served, our model is able to find the major hotspots of accidents.
The trends in the predictions match with those in the ground truth
data.

Finally, we identify from news report that on December 8, 2013,
a big snow storm attacked Iowa. More than 49 accidents were
reported in Cedar Rapids area, close to the southbound lane of
I-380 [1]. Figure 7 shows the predicted results vs. the ground truth
on this day. As can be observed, clusters of accidents including the
aforementioned one are correctly predicted.

7 SYSTEM DEPLOYMENT
Our framework presents a solution to predicting daily/weekly traffic
accident risk using big heterogeneous data. Our evaluation results
are carried out on an experimental prototype system. To fully deploy
a working system accessible to the public we need to address the
following challenges: 1

)
deploy our framework on a cloud-based

service/storage for real-time query. 2
)
update the offline model

periodically to keep the predictions accurate.
The feasible solution to first problem is to deploy our trained

model in a cloud service (e.g., AmazonAWS Lambda [2] orMicrosoft
Azure [4]). For daily prediction, our system will be scheduled to run
and fetch the weather, traffic volume, rainfall, and crash data of the
past day at midnight, transform them into feature maps and then
retrain the model in an online manner. The learned model parame-
ters are finally pushed and saved to the cloud service. For weekly
prediction, the only difference is to use simulated or forecast data
for time-variant features. Ideally, we will provide a web interface
for user to view the crash risk map in one or more days. In future,
we also consider the possibility of incorporating this framework
with current map service platform, such as Google Map [3].

8 CONCLUSION
This paper investigated the problem of traffic accident forecasting
using deep learning models on heterogeneous urban data. This
is an important problem to transportation and public safety. It is
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Figure 8: Qualitative results on traffic crash prediction on Type-3 region. Red circle shows selected areas for comparison.
Different color represents different level of traffic crash. Darker color means higher crash counts (best viewed in color).

also challenging due to the trade-off between sparsity and spa-
tial heterogeneity of data. In this paper we performed a detailed
study on the traffic accident prediction problem using the Convolu-
tional Long Short-Term Memory (ConvLSTM) neural network. A
number of urban and environmental features were extracted from
big datasets over the state of Iowa across 8 years. We proposed
a Hetero-ConvLSTM framework with spatial graph features and
spatial model ensemble to address the spatial heterogeneity chal-
lenge. Experiments on the 8-year data over the entire state of Iowa
showed that the proposed Hetero-ConvLSTM outperforms all the
baselines in prediction accuracy.

This work showed that deep learning techniques such as ConvL-
STM are promising solutions to traffic accident prediction if unique
data properties such as spatial heterogeneity are well handled.
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