
Clustering Spatial Data Using Random Walks

[Extended Abstract]
∗

David Harel
harel@wisdom.weizmann.ac.il

Yehuda Koren
yehuda@wisdom.weizmann.ac.il

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel

ABSTRACT
Discovering significant patterns that exist implicitly in huge
spatial databases is an important computational task. A
common approach to this problem is to use cluster analy-
sis. We propose a novel approach to clustering, based on
the deterministic analysis of random walks on a weighted
graph generated from the data. Our approach can decom-
pose the data into arbitrarily shaped clusters of different
sizes and densities, overcoming noise and outliers that may
blur the natural decomposition of the data. The method
requires only O(n log n) time, and one of its variants needs
only constant space.

1. INTRODUCTION
Spatial data are the data related to objects that occupy

space [7]. Advances in database technologies have resulted
in huge amounts of spatial data, and knowledge discovery
techniques become essential tools for successful analysis of
spatial data bases. This paper deals with clustering, which
is one of the central techniques in spatial data mining.

Clustering methods are used to discover natural groups
in data sets, and to identify abstract structures that might
reside there, without having any background knowledge of
the characteristics of the data. Prior literature on the clus-
tering problem is huge, see e.g., [5]. However, to a large
extent the problem remains elusive, and there is still a dire
need for a clustering method that is natural and robust, yet
very efficient in dealing with large data sets.

The characteristics of spatial data pose several difficulties
for clustering algorithms. Since we are seeking a natural
decomposition, the clusters may have arbitrary shapes and
non-uniform sizes. Moreover, different clusters may have
different densities. Another issue is the existence of noise,
which may interfere the clustering process and should be
identified. Regarding complexity, the huge sizes of spatial
databases imply the need for very efficient clustering algo-

∗For a full version of this paper see [4]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD ’2001 San Francisco, USA
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

rithms. Furthermore, it is impractical to assume that the
entire database can reside in the main memory all at once.

In this paper, we present a new approach to clustering
spatial data, based on deterministic exploration of random
walks on a weighted graph associated with the data. The
heart of the method is in what we shall be calling separating
operators, which are applied to the graph iteratively. Their
effect is to ‘sharpen’ the distinction between the weights of
inter-cluster edges (those that ought to separate clusters)
and intra-cluster edges (those that ought to remain inside a
single cluster), by decreasing the former and increasing the
latter. The operators can be used on their own or can be
embedded in a classical agglomerative clustering framework.

The resulting algorithms are simple, fast and general, and
seem to cope successfully with the unique difficulties com-
mon to spatial data. We exhibit encouraging results of ap-
plying these algorithms to several recently published data
sets.

2. BASIC NOTIONS
We will be using standard graph-theoretic notions. Specif-

ically, let G(V, E, w) be a weighted graph. The w is a weight-
ing function w : E −→ R, that measures the similarity be-
tween pairs of items (a higher value means more similar).
Let S ⊆ V . The set of nodes that are connected to some
node of S by a path with at most k edges is denoted by
V k(S). The degree of G, denoted by deg(G), is the max-
imal number of edges incident to some single node of G.
The subgraph of G induced by S is denoted by G(S). The
edge between i and j is denoted by 〈i, j〉. Sometimes, when
the context is clear, we will write simply 〈i, j〉 instead of
〈i, j〉 ∈ E.

A random walk is a natural stochastic process on graphs.
Given a graph and a start node, we select a neighbor of the
node at random, and ‘go there’, after which we continue the
random walk from the newly chosen node. The probability

of a transition from node i to node j, is pij = w(i,j)
di

where

di =
∑

〈i,k〉 w(i, k) is the weighted degree of node i.

Now, denote by P k
visit(i) ∈ R

n the vector whose j-th com-
ponent is the probability that a random walk originating at
i will visit node j in its k-th step.

The escape probability from a source node s to a target
node t, denoted by Pescape(s, t), is defined as the probabil-
ity that a random walk originating at s will reach t before
returning to s. This probability can be computed as follows.

For every i ∈ V , define a variable ρi satisfying:

ρs = 0, ρt = 1, and ρi =
∑

〈i,j〉
pij · ρj for i �= s, i �= t

The values of ρi are calculated by solving these equa-
tions, and then the desired escape probability is given by:
Pescape(s, t) =

∑
〈s,i〉 psi · ρi

3. MODELING THE DATA
Our method, as many other hierarchical clustering algo-

rithms, deals with a graph representation of the data. Sev-
eral sparse graph structures have been used for modeling
data points, see, e.g., [5]. We mention here two commonly
used ones: the Delaunay triangulation and the k-mutual
neighborhood graph.

The Delaunay triangulation (DT) of a point set is the dual
of the famous Voronoi diagram, which is a partition of the
space into cells, one for each data point, so that the cell
for data point a consists of that region of the space that is
closer to a than to any other data point. An edge in the DT
connects points a and b if and only if the Voronoi cells con-
taining a and b share a common boundary. Hence, edges of
the DT capture spatial proximity. Regarding computation
efficiency, many O(n log n) time and O(n) space algorithms
exist for computing the DT of a planar point set.

The k-mutual neighborhood graph contains all edges 〈a, b〉
for which a is one of the k nearest neighbors of b, and b is
one of the k nearest neighbors of a. In general, the k-nearest
neighbors of each point can be found in time O(n log n) and
O(n) space for any fixed arbitrary dimension [1]. When
working with spatial databases, the k-nearest neighbors can
be computed alternatively, using region queries and near-
est neighbor queries. These queries are implemented using
sophisticated spatial index structures, which consume on av-
erage O(log n) time. More importantly, they are very eco-
nomical with respect to memory [7]. Using this query-based
technique, the k-mutual neighborhood graph can be com-
puted in average time of O(n log n) and using a negligible
amount of memory. In many cases it may be best to use
the intersection of these two graphs, i.e., to include only
those edges that appear in both the DT and the k-mutual
neighborhood graph. Further details are given in [4].

Regarding edge weights, we adopt a commonly used ap-

proach: the weight of the edge 〈a, b〉 is exp(− d(a,b)2

ave2), where
d(a, b) is the Euclidean distance between a and b, and ave is
the average Euclidean distance between two adjacent points
in the graph.

4. CLUSTERING USING RANDOM WALKS

4.1 Separators and separating operators
Our approach to identifying natural clusters in a graph is

to find ways to compute an ‘intimacy relation’ between the
nodes incident to each of the graph’s edges. In other words,
we want to be able to decide for each edge if it should cross
the boundaries of two clusters, or, rather, if the relationship
between its two incident nodes is sufficiently intimate for
them to be contained in a common cluster.

Definition 4.1. Let the graph G(V, E) be clustered by
C = (C1, . . . , Ck). An edge 〈u, v〉 ∈ E is called a sepa-
rating edge for C, or a separator for short, if u ∈ Ci, v ∈
Cj for i �= j.

Any set of edges F ⊂ E gives rise to an induced cluster-
ing CF , obtained by simply taking the clusters to be the
connected components of the graph G(V, E − F). The set
F will then contain precisely the separating edges of CF .
Another way of putting this is that if we can indeed decide
which are the separators of a natural clustering of G, we are
done, since we will simply take the clustering to be CF for
the discovered set F of separators.

We have decided to concentrate on discovering a set of
separating edges, since the decision as to whether an edge
should be separating involves only relatively local considera-
tions. Globally speaking, there might not be much difference
between two neighboring nodes, and the reasons for placing
two neighbors in different clusters will most often be some
sharp local transition of some characteristic of the cluster,
which global considerations may decay, see e.g., Figure 1.

Figure 1: Two natural clusters. The only reason for
separating the black points from the white (hollow)
ones lies in local considerations. Most global ap-
proaches that seek for an intimate relation between
every two points in the cluster, such as k-means,
will probably fail here and might attach points from
the right hand side of the black cluster to the white
cluster.

The strategy we propose for identifying separators is to
use an iterative process of separation. Separation reweights
edges by local considerations in such a way that the weight
of an edge connecting ‘intimately related’ nodes is increased,
and for others it is decreased. This is a kind of sharpening
pass, in which the edges are reweighted to sharpen the dis-
tinction between (eventual) separating and non-separating
edges. When the separating operation is iterated several
times, a sort of ‘zero-one’ phenomenon emerges, whereby
the weight of an edge that should be a separator notably
diminishes.

We now offer two methods for performing the edge separa-
tion, both based on deterministic analysis of random walks.

NS: Separation by neighborhood similarity
A helpful property of the vector P k

visit(i) is that it provides
the level of nearness or intimacy between the node i and ev-
ery other node, based on the structure of the graph. Actu-
ally, P k

visit(i) generalizes the concept of weighted neighbor-
hoods, since P 1

visit(i) is exactly the weighted neighborhood
of i. Also P ∞

visit(i) does not depend on i and is equal to
the stationary distribution of the graph. Hence, the value of
P k

visit(i) is not very interesting for overly large values of k.

We will actually be using the term P≤k
visit(·), which is defined

to be
∑k

i=1 P i
visit(v).

Now, in order to estimate the closeness of two nodes v and
u, we fix some small k (e.g., k = 3) and compare P≤k

visit(v)

and P≤k
visit(u). The smaller the difference the greater the

intimacy between u and v. The reason we use P≤k
visit here

and not P k
visit is that for a bipartite subgraph the values

of P k
visit can be very different, since the two random walks

originating from u and v cannot visit the same node at the

same time. However, if we are willing to sum some steps of
the two walks, we may find that they visit roughly the same
nodes.

We now define the separating operator itself:

Definition 4.2. Let G(V, E, w) be a weighted graph and
k be some small constant. The separation of G by neigh-
borhood similarity, denoted by NS(G), is defined to be:

NS(G)
dfn
= Gs(V, E, ws),

where ∀〈v, u〉 ∈ E, ws(u, v) = simk(P≤k
visit(v), P≤k

visit(u))

Here, simk(�x, �y) is some similarity measure of the vectors
�x and �y, whose value increases as �x and �y become more
similar. A suitable choice is:

fk(�x, �y)
dfn
= exp(2k − ‖�x − �y‖L1) − 1

The norm L1 is defined in the standard way: For �a,�b ∈ R
n,

‖�a −�b‖L1 =
∑n

i=1 |ai − bi|
Another suitable choice is the cosine, or the correlation,

of �x and �y, defined as:

cos(�x, �y) =
(�x, �y)√

(�x, �x) · √(�y, �y)

where (·, ·) denotes the inner-product.
The key component in computing NS(G) is the calcula-

tion of P≤k
visit(v) and P≤k

visit(u). Since the graphs that we want

to cluster are of bounded degree, P≤k
visit(u) can be computed

in time and space O(deg(G)k), which is independent of the
size of G and can be treated as a constant. Hence, NS(G)
can be computed in space O(1) and time Θ(|E|), which in
this case is just Θ(n).

CE: Separation by circular escape
An alternative method for capturing the extent of intimacy
between nodes u and v, is by the probability that a random
walk that starts at v visits u exactly once before returning
to v for the first time. (This notion is symmetric, since the
event obtained by exchanging the roles of v and u has the
same probability.) If v and u are in different natural clusters,
the probability of such an event will be low, since a random
walk that visits v will likely return to v before reaching u
(and the same with u and v exchanged).

The probability of this event is given by:
Pescape(v, u) · Pescape(u, v)

Seeking efficient computation, and on the reasonable as-
sumption that data relevant to the intimacy of v and u lies
in a relatively small neighborhood around v and u, we can
constrain our attention to a limited neighborhood, by the
following:

Definition 4.3. Let G(V, E, w) be a graph, and let k be

some constant. Denote by P
(k)
escape(v, u) the probability

Pescape(v, u), but computed using random walks on the sub-
graph G(V k({v, u})) instead of on the original graph G. The
circular escape probability of v and u is defined to be:

CEk(v, u)
dfn
= P (k)

escape(v, u) · P (k)
escape(u, v).

We can now define separation by circular escape:

Definition 4.4. Let G(V, E, w) be a weighted graph, and
let k be some small constant. The separation of G by circular
escape, denoted by CE(G), is defined to be:

CE(G)
dfn
= Gs(V, E, ws)

where ∀〈v, u〉 ∈ E, ws(u, v) = CEk(v, u)

For graphs with bounded degree, the size of G(V k(v, u)) is
independent of the size of G, so that CEk(v, u) can be com-
puted essentially in constant time and space. Hence, as with
NS(G), the separating operator CE(G) can be computed in
time Θ(|E|) = Θ(n) and space O(1).

Our experiments show that in general the CE operator
yields better results than the NS operator. However, the
computation of the CE operator is clearly more complicated
in terms of numerical precision, as well as running time.

4.2 Clustering by separation
The idea of separating operators is to uncover and bring to

the surface a closeness between nodes that exists implicitly
in the structure of the graph. Separating operators increase
the weights of intra-cluster edges and decrease those of inter-
cluster ones. Iterating the separating operators sharpens the
distinction further. After a small number of iterations we
expect the difference between the weights of the two kinds
of edges to differ sufficiently to be readily apparent, be-
cause the weights of separators are expected to diminish
significantly. Moreover, Iterating the separating operators
causes information from distant parts of the graph to ‘flow
in’, reaching the areas where separating decisions are to be
made. A detailed demonstration of activating the separating
operators on two graphs is given in [4].

4.3 Clustering spatial points
We now illustrate the ability of our method to cluster

“correctly” 2D points, in a number of typical cases, some of
which have been shown to be problematic for agglomerative
methods [6]. (More extensive examples are given in Section
6.) We show only examples in 2D, although the method
works well in higher dimensions too, because two dimensions
are easier to visualize and evaluate.

We have used 10-mutual neighborhood graphs for model-
ing the points (intersection with the Delaunay triangulation
gives similar results). The results are achieved using 3 it-
erations of either CE or NS, with k = 3. For NS, we took
the function sim(·, ·) to be f(·, ·). In general, other choices
work equally well.

The partition of the edges into separators and non-sepa-
rators is based on a threshold value, such that all the edges
whose weight is below this value are declared as separators.
Without loss of generality, we may restrict ourselves to the
O(n) edge weights as candidates for being thresholds. The
actual threshold value (or several, if a hierarchy of decom-
positions is called for), is found by some statistical test, e.g.,
inspecting the edge-weight frequency histogram, where the
frequency of the separators’ weights is usually smaller, since
most of the edges are inside the clusters, and have higher
weights than those of the separators.

Figure 2 shows the clustering decomposition of three data
sets using our algorithm.

The data set DS1 shows the inherent capability of our
algorithms to cluster at different resolutions at once, i.e.,
to detect several groups with different intra-group densities.

This ability is beyond the capabilities of many clustering al-
gorithms that can show the denser clusters only after break-
ing up the sparser clusters. Data set DS2 demonstrates the
ability of our algorithm to separate the two left hand side
clusters, despite the fact that the distance between these
clusters is smaller than the distance between points inside
the right hand side cluster.

The data set DS3 exhibits the capability of our algorithm
to take into account the structural properties of the data
set, which is the only clue for separating these evenly spaced
points.

DS1

DS2

DS3

Figure 2: Clustering of several data sets. Different
clusters are indicated by different colors, and note
that each set results in three clusters.

When there is a hierarchy of suitable decompositions, our
method can reveal it by using a different threshold for each
level of the hierarchy. For example, consider the two data
sets in Figure 3. For each of these we have used two different
thresholds, to achieve two decompositions.

It is noteworthy that the general methodology of revealing
the graph structure by exploration of random walks is fun-
damental and robust enough to be applied to the clustering
of spatial data, even though our use of spatial properties of
the data is minimum.

One should observe that the memory requirements of our
clustering method are low, which is very important for huge
spatial data bases that cannot fit in main memory. The
only “global” operation in the process is that of computing
connected components after removing separators. Since this
operation does not require too many accesses to each single
node, it can be performed quite efficiently without copying
the entire data base into main memory.

5. INTEGRATION WITH AGGLOMERATI-
VE CLUSTERING

Agglomerative clustering is a well-known hierarchical clus-
tering method that starts from the trivial partition of n
points into n clusters of size 1 and continues by repeatedly
merging pairs of clusters. At each step the two clusters that
are most similar are merged, until the clustering is satisfac-
tory. Different similarity measures between clusters result
in different agglomerative algorithms.

The separation operators can be used as a preprocess-

T hreshold ∼ 0 0.01 � T hreshold � 27.17
(0.06 � T hreshold � 19.16)

T hreshold ∼ 0 8.97 � T hreshold � 9.52
(18.02 � T hreshold � 18.39)

Figure 3: Clustering at multiple resolutions using
different thresholds. When values of CE are differ-
ent from values of NS, the CE values are given in
parentheses. CE values are multiplied by 100.

ing stage before activating agglomerative clustering on the
graph. Such a preprocessing sharpens the edge weights,
adding structural knowledge to them, and greatly enhances
the agglomerative algorithms, as it can effectively prevent
bad local merging opposing the graph structure.

Implementation of the agglomerative algorithm can be
done using a dynamic graph structure. At each step we
take the edge of the highest weight, merge (“contract”) its
two endpoints, and update all the adjacent edges. When
contracting nodes u and v having a common neighbor t,
the way we determine the weight of the edge between t and
the contracted node uniquely distinguishes between differ-
ent variants of the agglomerative procedure. For example,
when using maximal similarity – “single link”, we take this
weight as max{w(v, t), w(u, t)}, while when using total sim-
ilarity we fix the weight as w(v, t) + w(u, t). For a bounded
degree graph, which is our case, each such step can be car-
ried out in time O(log n), using a binary heap.

It is interesting that the clustering method we have de-
scribed in the previous section is in fact completely equiv-
alent to a “single link” algorithm preceded by a separation
operation. Hence we can view the integration of the sepa-
ration operation with the agglomerative algorithm as a gen-
eralization of the method we have discussed in the previous
section, that enables us to use any variant of the agglomer-
ative algorithm.

We have found particularly effective the normalized to-
tal similarity variant, in which we measure the similarity
between two clusters as the total sum of the weights of
the original edges connecting these clusters. We would like
to eliminate the tendency of such a procedure to contract
pairs of nodes representing large clusters whose connectiv-
ity is high due to their sizes. Accordingly, we normalize the
weights by dividing them by some power of the sizes of the
relevant clusters. More precisely, we measure the similarity
of two clusters C1 and C2 by:

w(C1, C2)
d
√|C1| + d

√|C2|

where w(C1, C2) is the sum of original edge weights between
C1 and C2, and d is the dimension of the space in which the
points lie. We took d

√|C1| and d
√|C2| as an approxima-

tion of the size of the boundaries of the clusters C1 and C2,
respectively.

The overall time complexity of our algorithm is O(n log n),
which includes the time needed for constructing the graph
and the time needed for performing n contractions using a
binary heap. This equals the time complexity of the method
described in the previous section (because of the graph con-
struction stage). However, the space complexity is now
worse. We need Θ(n) memory for efficiently handling the
binary heap.

Selecting meaningful decompositions
An agglomerative clustering algorithm provides us with a
dendrogram, which is a pyramid of nested clustering de-
compositions. The question of which are the meaningful
decompositions inside the dendrogram, still remains.

Each level in the dendrogram is constructed from the level
below, by merging two clusters. We associate with each level
a grade that measures the importance of that level. Inspired
by the work of [3], a rather effective way of measuring the im-
portance of a level is by evaluating how sharp is the change
that this level introduces to the clustering decomposition.
Since changes that are involved with small clusters do not
have a large influence, we define the prominency rank of a
level in the dendrogram, in which the clusters Ci and Cj of
the level below were merged, as:

|Ci| · |Cj |
We demonstrate the effectiveness of this measure in the next
section.

6. EXAMPLES
In this section we show the results of running our algo-

rithm on several data sets from the literature. We modeled
these data sets using the intersection of the Delaunay trian-
gulation and the 15-mutual neighborhood graph. For all the
results we have used total similarity agglomerative cluster-
ing, preceded by 2 iterations of the NS separation operator
with k = 3 and similarity function defined as cos(·, ·). Us-
ing the CE operator, changing the value of k, or increasing
the number of iterations, do not have a significant effect on
the results. Using the method described in Section 4 may
change the results in few cases.

We implemented the algorithm in C++, running on a Pen-
tium III 800MHz processor. The code for constructing the
Delaunay triangulation is of Triangle, which is available from
URL: http://www.cs.cmu.edu/˜quake/triangle.html. The
reader is encouraged to see the full electronic version of this
paper [4], in order to view the figures of this section in larger
and clearer format, and in color.

Figure 4 shows the results of the algorithm on data sets
taken from [6]. These data sets contain clusters of different
shapes, sizes and densities and also random noise. A nice
property of our algorithm is that random noise gets to stay
inside small clusters. After clustering the data, the algo-
rithm treats all the relatively small clusters, whose sizes are
below half of the average cluster size, as noise, and simply
omits them, showing only the larger clusters.

Figure 5 shows the result of the algorithm applied to a
data set from [2]. We show two levels in the hierarchy, rep-

resenting two possible decompositions. We are particularly
happy with the algorithm’s ability to break the cross shaped
cluster into 4 highly connected clusters, as shown in Figure
5(c).

In Figure 6, which was produced by adding points to a
data set given in [2], we show the noteworthy capability of
the algorithm to identify clusters of different densities at
the same level of the hierarchy. Notice that the intra- dis-
tance between the points inside the right hand side cluster,
is larger than the inter-distance between several other clus-
ters.

Throughout all the examples given in this section we have
used the prominency rank introduced in Section 5 to reveal
the most meaningful levels in the dendrogram. Figure 7
demonstrates its capability with respect to the data set DS4
(shown in Figure 4). We have chosen the five levels with
the highest prominency ranks, and for each level we show
the level that precedes it. It can be seen that these five
levels are exactly the five places where the six large natural
clusters are merged. In this figure we have chosen not to hide
the noise, so the reader can see the results of the algorithm
before removing the noise.

Table 6 gives the actual running times of the algorithm
on the data sets given here. We should mention that our
code is not optimized, and the running time can certainly
be improved.

DS4: 8000 points

DS5: 8000 points

DS6: 10000 points

DS7: 8000 points

DS8: 8000 points

Figure 4: Data sets taken from [6] (see [4] for larger,
clearer color versions of this figure and of Figs. 5–7).

Data Set Size Graph construction Separation Agglomeration Overall Ratio Points
Sec

DS4 8000 0.4 0.88 0.19 1.47 5434
DS5 8000 0.41 0.83 0.19 1.43 5587
DS6 10000 0.5 1.12 0.26 1.88 5311
DS7 8000 0.4 0.89 0.2 1.49 5358
DS8 8000 0.39 0.93 0.2 1.52 5256
DS9 8000 0.33 0.66 0.21 1.2 6656
DS10 3374 0.14 0.26 0.07 0.47 7178

Table 1: Running time (in seconds; non-optimized) of the various components of the clustering algorithm

(a) DS9: 8000 points

(b) (c)

Figure 5: Two different clusterings of a data set
taken from [2]

DS10: 3374 points

Figure 6: A data set with clusters of different den-
sities

level 31 level 42 level 61

level 62 level 88

Figure 7: A hierarchy containing five decomposi-
tions of DS4 corresponding to the five levels with
the highest prominency rank. (Level index indicates
the number of clusters.)

7. CONCLUSION
We have introduced a novel algorithm for achieving a hier-

archical clustering of spatial data, using random-walk-based
separating operators. This approach seems to have several
advantages.

First, it is robust in the presence of noise and outliers,
and is flexible in handling data of different densities. It can
reveal clusters of any shape without a special tendency to-
wards spherically shaped clusters or ones of similar sizes. At
the same time, the decisions the algorithm makes are based
on the relevant structure of the associated graph, making it
essentially immune to outliers and noise.

The second advantage is the running time and space re-
quirements. The time complexity of our algorithm applied
to n data points is O(n log n), and its practical running time,
in general, is very fast. We have been able to cluster 10,000
points in less than two seconds. Regarding space complex-
ity, one of the variants of the algorithm can be applied with
a constant amount of space.

Since the algorithm does not rely on spatial knowledge, we
plan to try it on other types of data. We have already used
a variant of it for image segmentation with very encouraging
results, and will report on it separately.

8. REFERENCES
[1] M. T. Dickerson and D. Eppstein, “Algorithms for

proximity problems in higher dimensions”, Comp.
Geom. Theory and Applications, 5 (1996), 277–291.

[2] V. Estivill-Castro and I. Lee,“AUTOCLUST:
Automatic Clustering via Boundary Extraction for
Mining Massive Point- Data Sets”, 5th International
Conference on Geocomputation, GeoComputation
CD-ROM: GC049, ISBN 0-9533477-2-9.

[3] Y. Gdalyahu, D. Weinshall and M. Werman,
“Stochastic Image Segmentation by Typical Cuts”,
Proceedings IEEE Conference on Computer Vision and
Pattern Recognition, 1999, pp. 588–601.

[4] D. Harel and Y. Koren, “Clustering Spatial Data Using
Random Walks”, Technical Report MCS01-08, Dept. of
Computer Science and Applied Mathematics, The
Weizmann Institute of Science, 2001. Available at:
www.wisdom.weizmann.ac.il/reports.html

[5] A. K. Jain and R. C. Dubes, Algorithms for Clustering
Data, Prentice Hall, Englewood Cliffs, New Jersy, 1988.

[6] G. Karypis, E. Han, and V. Kumar, “CHAMELEON:
A Hierarchical Clustering Algorithm Using Dynamic
Modeling”, IEEE Computer, 32 (1999), 68–75.

[7] X. Xu , M. Ester, H.P. Kriegel and J. Sander,
“Clustering and Knowledge Discovery in Spatial
Databases”, Vistas in Astronomy, 41 (1997), 397–403.

