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Classes of Nonseparable, Spatio-temporal StationaryCovariance FunctionsNoel CRESSIE, and Hsin-Cheng HUANGSuppose that a random process Z(s; t), indexed in space and time, has a spatio-temporal stationary covariance C(h;u), whereh 2 IRd (d � 1) is a spatial lag and u 2 IR is a temporal lag. Separable spatio-temporal covariances have the property thatthey can be written as a product of a purely spatial covariance and a purely temporal covariance. Their ease of de�nition iscounterbalanced by the rather limited class of random processes to which they correspond. In this article, we derive a newapproach that allows one to obtain many classes of nonseparable, spatio-temporal stationary covariance functions and we �tseveral such to spatio-temporal data on wind speed over a region in the tropical western Paci�c ocean.1. INTRODUCTIONLet fZ(s; t) : s 2 D � IRd; t 2 [0;1)g denote a spatio-temporal random process that is observed at N space-timecoordinates (s1; t1); : : : ; (sN ; tN ). Optimal prediction (inspace and time) of the unobserved parts of the process,based on the observationsZ � (Z(s1; t1); : : : ; Z(sN ; tN ))0;is often the ultimate goal but, in order to achieve this goal,a model is needed for how various parts of the process co-vary in space and time.For example,Z might be the wind speed measured every6 hours at n monitoring sites distributed throughout a re-gion of interest (Section 4). Thus, between November 1992and February 1993, there are on the order of N = 480nobservations for the spatio-temporal process representingwind speed. Although wind speed is potentially observ-able at any space-time coordinate (s0; t0), where s0 maynot be a monitoring site and t0 may be a time in the mid-dle of a 6-hour period, the uncertainty associated with theunobserved parts of the process can be expressed proba-bilistically by modeling the wind speed to be a randomprocess in space and time. Further, one might assume cer-tain functional forms for the �rst and second moments(mean, variance, and covariance) of the random process.In all that is to follow, we assume that the spatio-temporal process Z(� ; �) satis�es the regularity condition,var(Z(s; t)) <1, for all s 2 D, t � 0. Then we can de�nethe mean function as,�(s; t) � E(Z(s; t))and the covariance function as,K(s; r; t; q) �cov(Z(s; t); Z(r; q)); s; r 2 D; t > 0; q > 0:Noel Cressie is Professor of Statistics and Director, Program in Spa-tial Statistics and Environmental Sciences, Department of Statistics,The Ohio State University, Columbus, OH 43210-1247. Hsin-ChengHuang is Assistant Research Fellow, Institute of Statistical Science,Academia Sinica, Taipei 115, Taiwan. This researchwas supportedbythe O�ce of Naval Research under grant N00014-93-1-0001 and theU.S. Environmental Protection Agency under cooperative agreementCR 822919-01-0, with Iowa State University. The authors would liketo thank anonymous referees for comments that improved the pre-sentation, and Chris Wikle for his help in obtaining the wind-speeddata.

Furthermore, the optimal (minimummean squared predic-tion error) linear predictor (e.g., Toutenburg, 1982, p. 14)of Z(s0; t0) isZ�(s0; t0) = �(s0; t0) + c(s0; t0)0��1(Z � �); (1)where � � cov(Z); c(s0; t0) � cov(Z(s0; t0);Z), and� � E(Z); the minimum mean squared prediction error(MSPE) is c(s0; t0)0��1c(s0; t0).In the rest of this article, we shall assume that the co-variance function is in fact stationary in space and time,namely K(s; r; t; q) = C(s� r; t� q); (2)for certain functions C. This assumption is often made sothat the covariance function can be estimated from data.Now, the functionC has to satisfy a positive-de�nitenesscondition in order to be a valid covariance function. Thatis, for any (r1; q1); : : : ; (rm; qm), any real a1; : : : ; am, andany positive integer m, C must satisfymXi=1 mXj=1 aiajC(ri � rj; qi � qj) � 0: (3)Then and only then is (1) a valid, statistically optimal,spatio-temporal predictor of Z(s0; t0) with nonnegativeMSPE. We further assume that C is continuous, althoughthis assumption will be relaxed in Section 5. For continu-ous functions, positive-de�niteness is equivalent to the pro-cess having a spectral distribution function (e.g., Matern,1960, p. 12).To ensure positive-de�niteness, one often speci�es thecovariance function C to belong to a parametric familywhose members are known to be positive-de�nite. That is,one assumescov(Z(s; t); Z(s+ h; t+ u)) = C0(h;uj�); (4)where C0 satis�es (3) for all � 2 � � IRp.Our goal in this article is to introduce new paramet-ric families C0 de�ned in (4) that will increase substan-tially the choices a modeler has for valid (i.e., positive-de�nite) spatio-temporal stationary covariances. One com-monly used class (e.g., Rodriguez-Iturbe and Mejia, 1974)c
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2 Journal of the American Statistical Association,Figure 1. Contour plot of C(h;u) � expf�khk � jujg, versus khkand juj. The horizontal axis represents the modulus of the spatial lagand the vertical axis represents the temporal lag.consists of separable covariances,C0(h;uj�) = C1(hj�1)C2(uj�2); (5)where C1 is a positive-de�nite function in IRd, C2 isa positive-de�nite function in IR1, and �0 = (�01; �02).Valid spatial covariance models and valid temporal co-variance models are readily available (e.g., Matern, 1960;Cressie, 1993, Sections 2.3 and 2.5) and hence they canbe combined in product form via (5) to give valid spatio-temporal covariance models. A simple example of a sep-arable model (5) is: C1(h) = exp(��1khk); �1 > 0, andC2(u) = exp(��2juj); �2 > 0, and henceC0(h;uj�) = exp(��1khk � �2juj):The contour plot of the spatio-temporal covariance func-tion for �1 = �2 = 1 is given in Figure 1. Separable modelsare often chosen for convenience rather than for their abil-ity to �t the data well; at least they are guaranteed tosatisfy (3) and hence are valid.However, the class (5) is severely limited, since it doesnot model space-time interaction. Notice that, for any two�xed spatial lags h1 and h2,C0(h1;u) / C0(h2;u); u 2 IR:Thus, for two spatial locations, the cross-covariance func-tion between the time series at each location always hasthe same shape, regardless of the relative displacement ofthe locations. An analogous result holds for any pair oftime points and the cross-covariance function of the twospatial processes.Another type of separability involves adding spatial andtemporal covariances; that is, C0(h;uj�) = C1(hj�1) +C2(uj�2). For this model, covariance matrices of certaincon�gurations of spatio-temporal data are singular (Myersand Journel, 1990; Rouhani and Myers, 1990), which isunsatisfactory when using (1) for optimal prediction.Nonseparable stationary covariance functions thatmodel space-time interactions are in great demand. Us-ing simple stochastic partial di�erential equations overspace and time, Jones and Zhang (1997) have developed afour-parameter family of spectral densities that implicitlyyield such stationary covariance functions, although not inclosed form.In this article, a new and simple methodology isgiven for developing whole classes of nonseparable spatio-temporal stationary covariance functions, in closed form.In Section 2, we derive a theoretical result that showshow positive-de�niteness in IRd+1 can be obtained frompositive-de�niteness in IRd. This result is used in Section 3to de�ne various classes of valid spatio-temporal station-ary covariance models, including the separable models asa special case. Several are �tted to spatio-temporal dataon wind speed over a region in the tropical western Pa-

ci�c ocean; see Section 4. Finally, a short discussion of ourapproach is given in Section 5.2. THEORETICAL RESULTS ONPOSITIVE-DEFINITENESSConsider the stationary spatio-temporal covariance func-tion C given by (2). Assume that C is continuous and thatits spectral distribution function possesses a spectral den-sity g(!; � ) � 0. That is, by Bochner's Theorem (Bochner,1955), C(h;u) = Z Z eih0!+iu�g(!; � )d!d�:If, in addition, C(�; �) is integrable, theng(!; � ) = (2�)�d�1 Z Z e�ih0!�iu�C(h;u)dhdu= (2�)�1 Z e�iu�h(!;u)du; (6)where h(!;u) � (2�)�d Z e�ih0!C(h;u)dh= Z eiu�g(!; � )d�:The construction ofC, or equivalently of g, in this articleproceeds by specifying appropriate models for h(!;u). Weassume that h(!;u) = �(!;u)k(!); (7)where the following two conditions are satis�ed:(C1) For each ! 2 IRd, �(!; �) is a continuous autocorre-lation function, R �(!;u)du <1, and k(!) > 0.(C2) R k(!)d! <1.Then (6) becomesg(!; � ) � (2�)�1k(!) Z e�iu��(!;u)du > 0;by (C1). Furthermore,Z Z g(!; � )d�d! = Z k(!)d! <1;by (C2). Therefore, assuming h(!;u) is given by (7) suchthat conditions (C1) and (C2) are satis�ed, we see thatC(h;u) � Z eih0!�(!;u)k(!)d! (8)is a valid (i.e., positive-de�nite) continuous spatio-temporal stationary covariance function on IRd � IR.It is not hard to see that any continuous, integrable,spatio-temporal stationary covariance function can bewritten as in (7) with conditions (C1) and (C2) satis�ed.Simply de�ne �(!;u) � h(!;u)R g(!; � )d� ;and k(!) � Z g(!; � )d�



Cressie and Huang: Classes of Nonseparable, Spatio-temporal Stationary Covariance Functions 3in (7).Also notice that the covariance functions de�ned by (8)are generally not separable. However, the separable covari-ances arise as a special case: If the autocorrelation function� in (7) is purely a function of u, then (8) can be writtenin separable form. To sum up, our goal in this article is to�nd functions h(!;u) given by (7) that satisfy (C1) and(C2), and for which the integral in (8) can be evaluated.There are many new classes that can be de�ned in thismanner, as the next section illustrates.3. CLASSES OF CONTINUOUS SPATIO-TEMPORALSTATIONARY COVARIANCE MODELSIn this section, we give some parametric families of contin-uous spatio-temporal covariance functions C(h;u). Basedon the results in Section 2, we have only to look for func-tions �(!;u)k(!) that satisfy the two conditions (C1)and (C2) and for which the integral in (8) can be eval-uated. Then C(h;u) de�ned by (8) is a continuous spatio-temporal covariance function with corresponding spectraldensity, g(!; � ) = (2�)�1k(!) R e�iu��(!;u)du.To construct the families of nonseparable spatio-temporal stationary covariances that follow, we used co-variance functions and spectral density functions given inMatern (1960, Chapter 2). Through these examples, it willbe seen generally how other closed-form Fourier transformpairs could be used to do the same.Example 1. Let�(!;u) = expf�k!k2u2=4gand k(!) = expf�c0k!k2=4g; c0 > 0:It is clear that both conditions (C1) and (C2) are satis�ed.Therefore, from (8) and Matern (1960, p. 17),C(h;u) / 1(u2 + c0)d=2 exp�� khk2u2 + c0�is a continuous spatio-temporal covariance function inIRd � IR. So, a three-parameter spatio-temporal station-ary covariance family can be given as,C0(h;uj�) = �2(a2u2 + 1)d=2 exp�� b2khk2a2u2 + 1� ;where � = (a; b; �2)0, a � 0 is the scaling parameterof time, b � 0 is the scaling parameter of space, and�2 = c0(0; 0j�) > 0. Notice that, because of redundancy inthe parameters a; b, and c0, without loss of generality, wehave put c0 = 1. The contour plot of the spatio-temporalFigure 2. Contour plot of C(h;u) � 1u2 + 1 exp�� kh2ku2 + 1�, ver-sus khk and juj, where h = (h1; h2). The horizontal axis representsthe modulus of the spatial lag and the vertical axis represents thetemporal lag.

covariance function for a = b = �2 = 1 and d = 2 is shownin Figure 2.Example 2. Let�(!;u) = expf�k!k2juj=4gand k(!) = expf�c0k!k2=4g; c0 > 0:It is clear that both conditions (C1) and (C2) are satis�ed.Therefore, from (8) and Matern (1960, p. 17),C(h;u) / 1(juj+ c0)d=2 exp�� khk2juj+ c0�is a continuous spatio-temporal covariance function inIRd � IR. So, a three-parameter spatio-temporal station-ary covariance family can be given as,C0(h;uj�) = �2(ajuj+ 1)d=2 exp�� b2khk2ajuj+ 1� ;where � = (a; b; �2)0, a � 0 is the scaling parameter oftime, b � 0 is the scaling parameter of space, and �2 =C0(0; 0j�) > 0. Again, without loss of generality, we haveput c0 = 1.Example 3. Let�(!;u) = expf�k!ku2gand k(!) = expf�c0k!kg; c0 > 0:It is clear that both conditions (C1) and (C2) are satis�ed.Therefore, from (8) and Matern (1960, p. 18),C(h;u) / 1(u2 + c0)d �1 + khk2(u2 + c0)2��(d+1)=2is a continuous spatio-temporal covariance function inIRd � IR. So, a three-parameter spatio-temporal station-ary covariance family can be given as,C0(h;uj�) = �2(a2u2 + 1)f(a2u2 + 1)2 + b2khk2g(d+1)=2 ;where � = (a; b; �2)0, a � 0 is the scaling parameter oftime, b � 0 is the scaling parameter of space, and �2 =C0(0; 0j�) > 0. Again, without loss of generality, we haveput c0 = 1.Example 4. Let�(!;u) = expf�k!kjujgand k(!) = expf�c0k!kg; c0 > 0:It is clear that both conditions (C1) and (C2) are satis�ed.Therefore, from (8) and Matern (1960, p. 18),C(h;u) / 1(juj+ c0)d �1 + khk2(juj+ c0)2��(d+1)=2



4 Journal of the American Statistical Association,is a continuous spatio-temporal covariance function inIRd � IR. So, a three-parameter spatio-temporal station-ary covariance family can be given as,C0(h;uj�) = �2(ajuj+ 1)f(ajuj+ 1)2 + b2khk2g(d+1)=2 ;where � = (a; b; �2)0, a � 0 is the scaling parameter oftime, b � 0 is the scaling parameter of space, and �2 =C0(0; 0j�) > 0. Again, without loss of generality, we haveput c0 = 1.Example 5. Let�(!;u) = cd=20(u2 + c0)d=2 exp�� k!k24(u2 + c0) + k!k24c0 �and k(!) = exp��k!k24c0 � ; c0 > 0:Since for each ! 2 IRd, �(!;u) is decreasing and convex foru 2 (0;1), it follows that condition (C1) is satis�ed. Also,condition (C2) is clearly satis�ed. Therefore, from (8) andMatern (1960, p. 17), the function, expf�(u2 + c0)khk2g,is a valid spatio-temporal covariance function in IRd � IR.Because the product of two valid covariance functions is avalid covariance function, we obtainC(h;u) /expf�(u2 + c0)khk2 � a0u2g; a0 > 0; c0 > 0:So, a four-parameter spatio-temporal stationary covari-ance family can be given as,C0(h;uj�) = �2 expf�a2u2 � b2khk2 � cu2khk2g;where � = (a; b; c; �2)0, a � 0 is the scaling parameterof time, b � 0 is the scaling parameter of space, c � 0,and �2 = C0(0; 0j�) > 0. The contour plots of the spatio-temporal covariance function for a = b = �2 = 1, d = 2,and c = 0; 1; 5; 10 are shown in Figure 3. Notice that aseparable covariance function is obtained when c = 0; seeFigure 3 (a).Example 6. Let�(!;u) = cd=20(juj+ c0)d=2 exp�� k!k24(juj+ c0) + k!k24c0 �and k(!) = exp��k!k24c0 � ; c0 > 0:Since for each ! 2 IRd, �(!;u) is decreasing and convexfor u 2 (0;1), it follows that condition (C1) is satis�ed.Also, condition (C2) is clearly satis�ed. Therefore, fromFigure 3. Contour plot of C(h;u) � exp��u2�khk2� cu2khk2	,versus khk and juj, where h = (h1; h2). (a) c = 0; (b) c = 1; (c)c = 5; (d) c = 10. The horizontal axis represents the modulus of thespatial lag and the vertical axis represents the temporal lag.

(8) and Matern (1960, p. 17), the function, expf�(juj +c0)khk2g, is a valid spatio-temporal covariance function inIRd�IR. Again, because the product of two valid covariancefunctions is a valid covariance function, we obtainC(h;u) /expf�(juj+ c0)khk2 � a0jujg; a0 > 0; c0 > 0:So, a four-parameter spatio-temporal stationary covari-ance family can be given as,C0(h;uj�) = �2 expf�ajuj � b2khk2 � cjujkhk2g;where where � = (a; b; c; �2)0, a � 0 is the scaling pa-rameter of time, b � 0 is the scaling parameter of space,c � 0, and �2 = C0(0; 0j�) > 0. Notice that a separablecovariance function is obtained when c = 0.Example 7. Let�(!;u) = fu2 + 1 + (u2 + c)k!k2g���d=2�f1 + ck!k2g�+d=2; c > 0; � > 0;and k(!) = f1 + ck!k2g���d=2; c > 0; � > 0:Since for each ! 2 IRd, �(!;u) is decreasing and convex foru 2 (0;1), it follows that condition (C1) is satis�ed. Also,condition (C2) is clearly satis�ed. Therefore, from (8), andMatern (1960, p. 18) or, more explicitly, from Handcockand Wallis (1994, p. 370),C(h;u) / 8>>>>>><>>>>>>: 1(u2 + 1)�(u2 + c)d=2 ��u2 + 1u2 + c�1=2khk��� K���u2 + 1u2 + c�1=2khk�; if khk > 0;1(u2 + 1)�(u2 + c)d=2 ; if khk = 0is a continuous spatio-temporal covariance function inIRd � IR, where K� is the modi�ed Bessel function of thesecond kind of order � (see, e.g., Abramowitz and Stegun,1972, pp. 374�.). So, a �ve-parameter spatio-temporal co-variance family can be given as,C0(h;uj�) =8>>>>>><>>>>>>: �2(2cd=2)(a2u2 + 1)�(a2u2 + c)d=2�(�) � b2�a2u2 + 1a2u2 + c�1=2khk��� K� �b�a2u2 + 1a2u2 + c�1=2khk� ; if khk > 0;�2cd=2(a2u2 + 1)�(a2u2 + c)d=2 ; if khk = 0;where � = (a; b; c; �; �2)0, a � 0 is the scaling parameterof time, b � 0 is the scaling parameter of space, c > 0,Figure 4. Contour plot of C(h;u) � 4(u2 + 1)1=2(u2 + 4) expn ��u2+1u2+4�1=2 khko, versus khk and juj, where h = (h1; h2). The hor-izontal axis represents the modulus of the spatial lag and the verticalaxis represents the temporal lag.



Cressie and Huang: Classes of Nonseparable, Spatio-temporal Stationary Covariance Functions 5� > 0, and �2 = C0(0; 0j�) > 0. Notice that a separablecovariance function is obtained when c = 1.In particular, for � = 12 , we obtain a four-parameterspatio-temporal covariance family given asC0(h;uj�) =�2cd=2(a2u2 + 1)1=2(a2u2 + c)d=2 exp��b�a2u2 + 1a2u2 + c�1=2khk� ;where � = (a; b; c; �2)0. The contour plot of the spatio-temporal covariance function for � = 1=2, a = b = �2 = 1,c = 4, and d = 2 is shown in Figure 4.4. APPLICATION TO WIND-SPEED DATAIn this section, we apply the new classes of spatio-temporalstationary covariance functions to the problem of mappingthe east-west component of the wind speed over a regionin the tropical western Paci�c ocean. The data used inthis article are collected on a regular grid of 17 x 17 siteswith grid spacing of about 210km.Observations were takenevery six hours from November 1992 through February1993. That is, there are 289 spatial locations and 480 timepoints.We �rst do some exploratory data analysis. Figure 5shows the wind-speed �elds (in m/s) at each of the �rst15 time points, as well as the wind-speed �eld averagedover the 480 time points, where a positive value representsan east wind and a negative value represents a west wind.We can see strong spatio-temporal dependence from the�rst 15 wind-speed �elds. We can also see that the meanwind-speed �eld is relatively 
at. Figure 6 shows the timeseries plots of wind speed (in m/s) for sites at locations(5; 5), (5; 13), (13; 5), (13; 13), where we have used Carte-sian coordinates based on the grid f1; :::; 17g� f1; :::; 17g.A plot of the sample standard deviation versus the sam-ple mean of wind speed (over time) obtained from eachof the 289 sites is shown in Figure 7. No speci�c pattern(e.g., increasing pattern) is seen in this �gure, indicatinghomoskedasticity. Therefore, from Figure 5, Figure 6, andFigure 7, a spatio-temporal stationarity assumption of thewind-speed �eld seems reasonable.Let Z(si; t) be the observed east-west component of thewind speed (in m/s) for time t at site i; t = 1; : : : ; 480,i = 1; : : : ; 289. The empirical spatio-temporal variogramestimator is given by2
̂(h(l);u) �1jN (h(l);u)j X(i;j;t;t0)2N(h(l);u) �Z(si; t)� Z(sj; t0)�2;whereN (h(l);u) � �(i; j; t; t0) : si � sj 2 Tol(h(l));jt� t0j = u; i; j = 1; : : : ; 289	;Figure 5. Wind-speed �elds (in m/s) for the �rst 15 time pointsand the mean wind-speed �eld (over time) on 17 � 17 = 289 wind-speed sites. Note that a positive value represents an east wind and anegative value represents a west wind.

Tol(h(l)) is some speci�ed \tolerance" region around h(l),and jN (h(l);u)j is the number of distinct elements inN (h(l);u); l = 1; : : : ; L, u = 0; 1; : : : ; U . The parame-ter � in a parametric spatio-temporal covariance functionC0(h;uj�) can then be estimated by �tting f2
̂(h(l);u)gto the spatio-temporal variogram,2
(h;uj�) � var�Z(s + h; t+ u) � Z(s;u)�= C0(0; 0j�) �C0(h;uj�); h 2 IRd; u 2 IR:We use the weighted-least-squares method (e.g., Cressie,1993, p. 96-97) to estimate �, by minimizingW (�) � LXl=1 UXu=0 jN (h(l);u)j� 
̂(h(l);u)
(h(l);uj�) � 1�2 (9)over all possible �. Zimmerman and Zimmerman (1991)performed simulation experiments to compare (9) withlikelihood-based methods and found that weighted leastsquares is sometimes the best �tting procedure and neverdoes badly.The estimated variogram based on 27 spatial lags, upto half the maximum possible distance, and 51 timelags is shown in Figure 8. From Figure 8, we can seea clear nonseparable feature for the spatio-temporal co-variance, since the covariance (or variogram) for a largerspatial lag is almost constant, while the covariance fora smaller spatial lag is not. Recall that for a separablespatio-temporal stationary covariance function, we haveC0(h1;u) / C0(h2;u); u 2 IR. Therefore, it is not appro-priate to �t a separable spatio-temporal covariance func-tion to the wind-speed data.To select an appropriate spatio-temporal covariancefunction among the seven classes of models, we �rst look atthe empirical spatial variogram for each time lag. We cansee that the empirical spatial variogram for smaller timelags is clearly concave in khk, which is satis�ed only by thespatio-temporal variograms of Example 2, Example 4, andExample 6. Therefore, we consider three spatio-temporalvariogram models based on these three examples with thefunction �2I(h = 0; u = 0) added to each variogram toaccount for the nugget e�ect (see Section 5). We also con-sider the addition of a purely spatial variogram 2�1khk�2,which is needed to account for the empirical spatial vari-ogram having almost the same shape for any larger timelag. Then the three spatio-temporal semivariogrammodelsare given as follows:Figure 6. Time series plots of wind speed (in m/s) for sites (5;5),(5;13), (13;5), (13;13) located on the grid f1; : : : ; 17g� f1; : : : ; 17g.Figure 7. Sample standard deviation versus sample mean of windspeed (in m/s). Means and standard deviations are calculated overtime at each observation location.Figure 8. Empirical spatio-temporal variogram evaluated at spatio-temporal lags fh(1); : : : ; h(27)g� f0;1; : : : ; 50g.



6 Journal of the American Statistical Association,Model I. Based on Example 2, de�ne the semivariogrammodel,
1(h;uj�) �8>><>>: 0; if u = khk = 0;�2�1� 1ajuj+ 1 exp�� b2khk2ajuj+ 1��+�2 + �1khk�2 ; otherwise:Using the weighted-least-squares criterion (9) for esti-mating � � �a; b; �1; �2; �2; �2�0, we obtain a = 0:399,b = 0:00235,�1 = 3:33�10�6, �2 = 1:999, �2 = 5:895, and�2 = 0:164. The weighted-least-squares value is W (�) =2:01172� 106.Model II. Based on Example 4, de�ne the semivariogrammodel,
2(h;uj�) �8>>><>>>: 0; if u = khk = 0;�2(1� ajuj+ 1�(ajuj+ 1)2 + b2khk2�3=2)+�2 + �1khk�2 ; otherwise:Using the weighted-least-squares criterion (9) for esti-mating � � �a; b; �1; �2; �2; �2�0, we obtain a = 0:1381,b = 0:00249, �1 = 3:53� 10�6, �2 = 1:999, �2 = 5:861,and �2 = 0. The weighted-least-squares value is W (�) =1:94985� 106.Model III. Based on Example 6, de�ne the semivariogrammodel,
3(h;uj�) �8<: 0; if u = khk = 0;�2�1� exp(�ajuj � b2khk2 � cjujkhk2)	+�2 + �1khk�2 ; otherwise:Using the weighted-least-squares criterion (9) for estimat-ing � � �a; b; c; �1; �2; �2; �2�0, we obtain a = 0:186,b = 0:00238, c = 0, �1 = 3:65 � 10�6, �2 = 1:999,�2 = 5:313, and �2 = 0:275. The weighted-least-squaresvalue is W (�) = 1:88228� 106.Table 1 displays comparable parameter estimates forthe three models. The contour plots of the �tted spatio-temporal variogram functions for Model I, Model II, andModel III, with respect to the spatial lag khk and the tem-poral lag u, are shown in Figure 9 (a), (b), and (c), respec-tively. Based on the smallest weighted-least-squares valueof W (�), Model III provides the closest �t. We concludethat, for the wind-speed data, the nonseparable empiricalvariogram is better �tted by a purely spatial variogramplus a spatio-temporal variogram with spatio-temporal in-teraction parameter c = 0. The three-dimensional plotFigure 9. Contour plot of the weighted-least-squares �tted spatio-temporal variogram, versus khk and juj, where h = (h1; h2). (a)Model I; (b) Model II; (c) Model III.

of the �tted spatio-temporal variogram function based onModel III is displayed in Figure 10.Table 1. Comparable parameter estimates for Model I, II, and III.Model I Model II Model III�1 3:33� 10�6 3:53� 10�6 3:65� 10�6�2 1:999 1:999 1:999�2 5:895 5:861 5:313�2 0:164 0 0:275W (�) 2:01172� 106 1:94985� 106 1:88228� 1065. DISCUSSIONAll spatio-temporal stationary covariances constructed ac-cording to the approach given in Section 2 are continuous.A discontinuity at the origin (h = 0; u = 0) is allowed byadding the function �2I(h = 0; u = 0), to C0(h;uj�) in(4), which is sometimes called a nugget e�ect in the geo-statistics literature (e.g., Cressie, 1993, p. 59). In terms ofthe original process, this discontinuous component corre-sponds to an additive white-noise process. Further, noticethat all the examples in Section 3 give stationary covari-ance functions that depend on spatial lag h through itsmodulus khk. This (spatial) isotropy can be relaxed by re-placing khk with kAhk, for any nonsingular matrix A, inwhich case the model is sometimes referred to as (spatial)geometrically anisotropic (e.g., Cressie, 1993, p. 64).It is obvious from Section 2 that, at any �xed temporallag u, it is not enough to �t a positive-de�nite function ofh and hope that the resulting �t, C1(hj�(u)), is positive-de�nite in both h and u. In spite of the attractiveness ofsuch a �tting procedure, it does not generally lead to avalid spatio-temporal covariance function. However, thereis a circumstance where it does. Suppose that we can writethe spectral density g1(!j�(u)) of C1(hj�(u)) as,g1(!j�(u)) = K!(u); u 2 (�1;1); (10)where K!(�) is a valid positive covariance function inIR1 for each ! 2 IRd. Now, if we can write K!(u) =�(!;u)k(!), where �(!; �) is a positive correlation func-tion and R �(!;u)du < 1 for each ! 2 IRd, we see thatequation (10) is a special case of equation (7), where (C1)is satis�ed. Hence, if the integrability condition (C2) isalso satis�ed, the integral on the right hand side of (8)is C1(hj�(u)), which from Section 2 is a valid spatio-temporal covariance function.Finally, although our results have been presented in aspatio-temporal context, they also allow construction ofvalid covariance models in IRd+1 based on spatial covari-ance models in IRd and IR1. For example, putting d = 2and u = h3 in (8) yields a valid stationary covariancemodel, C(h1; h2; h3), in IR3.Figure 10. Three-dimensional plot of the weighted-least-squares �t-ted spatio-temporal variogram of Model III, versus khk and juj, whereh = (h1; h2).
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