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Classes of Nonseparable, Spatio-temporal Stationary

Noel CRESSIE, and Hsin-Cheng HUANG

Covariance Functions

Suppose that a random process Z(s;t), indexed in space and time, has a spatio-temporal stationary covariance C'(h;u), where
h € R? (d > 1) is a spatial lag and u € IR is a temporal lag. Separable spatio-temporal covariances have the property that
they can be written as a product of a purely spatial covariance and a purely temporal covariance. Their ease of definition is
counterbalanced by the rather limited class of random processes to which they correspond. In this article, we derive a new
approach that allows one to obtain many classes of nonseparable, spatio-temporal stationary covariance functions and we fit
several such to spatio-temporal data on wind speed over a region in the tropical western Pacific ocean.

1. INTRODUCTION

Let {Z(s;t): s € D C R% t € [0,00)} denote a spatio-
temporal random process that is observed at IV space-time
coordinates (s1;t1),...,(sn;fn). Optimal prediction (in
space and time) of the unobserved parts of the process,
based on the observations

Z = (Z(s13t1), ..., Z(sn;tw)),

is often the ultimate goal but, in order to achieve this goal,
a model is needed for how various parts of the process co-
vary in space and time.

For example, Z might be the wind speed measured every
6 hours at » monitoring sites distributed throughout a re-
gion of interest (Section 4). Thus, between November 1992
and February 1993, there are on the order of N = 480n
observations for the spatio-temporal process representing
wind speed. Although wind speed is potentially observ-
able at any space-time coordinate (sg;tg), where sy may
not be a monitoring site and ¢y may be a time in the mid-
dle of a 6-hour period, the uncertainty associated with the
unobserved parts of the process can be expressed proba-
bilistically by modeling the wind speed to be a random
process in space and time. Further, one might assume cer-
tain functional forms for the first and second moments
(mean, variance, and covariance) of the random process.

In all that is to follow, we assume that the spatio-
temporal process Z(-;-) satisfies the regularity condition,
var(Z(s;t)) < oo, for all s € D, ¢t > 0. Then we can define
the mean function as,

p(s;t) = E(Z(s;t))
and the covariance function as,

K(s,r;t,q) =

cov(Z(s;t), Z(r;q)); s,7 €D, t>0, ¢ >0.
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Furthermore, the optimal (minimum mean squared predic-
tion error) linear predictor (e.g., Toutenburg, 1982, p. 14)
of Z(sp;t0) is

Z* (s03t0) = p(so;to) + c(so; o) S H(Z — p), (1)

cov(Z); ¢(so;t0) = cov(Z(so;t0), Z), and
¢ = FE(Z); the minimum mean squared prediction error
(MSPE) is ¢(80;t0)' 27 e(s0; o).

In the rest of this article, we shall assume that the co-
variance function is in fact stationary in space and time,
namely

where ¥ =

K(s,rit,q) = C(s — it —q), (2)

for certain functions C'. This assumption is often made so
that the covariance function can be estimated from data.

Now, the function C' has to satisfy a positive-definiteness
condition in order to be a valid covariance function. That
is, for any (v1;¢1), ..., (*m; qm), any real a1, ..., an, and
any positive integer m, (' must satisfy

ZZaiajC(ri—rj;qi—qj)ZO. (3)

i=1 j=1

Then and only then is (1) a valid, statistically optimal,
spatio-temporal predictor of Z(sp;tg) with nonnegative
MSPE. We further assume that C' is continuous, although
this assumption will be relaxed in Section 5. For continu-
ous functions, positive-definiteness is equivalent to the pro-
cess having a spectral distribution function (e.g., Matern,
1960, p. 12).

To ensure positive-definiteness, one often specifies the
covariance function C' to belong to a parametric family
whose members are known to be positive-definite. That is,
one assumes

cov(Z(s;t), Z(s 4 h;t + u)) = C°(h; u|6), (4)
where (0 satisfies (3) for all # € © C IRP.

Our goal in this article is to introduce new paramet-
ric families C'V defined in (4) that will increase substan-
tially the choices a modeler has for valid (i.e., positive-
definite) spatio-temporal stationary covariances. One com-
monly used class (e.g., Rodriguez-Iturbe and Mejia, 1974)
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Figure 1. Contour plot of C(h;u) = exp{—||h|| — |u|}, versus [|A||
and |u|. The horizontal axis represents the modulus of the spatial lag
and the vertical axis represents the temporal lag.

consists of separable covariances,

CO(h; u|0) = C'(h|61)C?(ul62), (5)
where C' is a positive-definite function in R?, C? is
a positive-definite function in !, and 8 = (6,65).
Valid spatial covariance models and valid temporal co-
variance models are readily available (e.g., Matern, 1960;
Cressie, 1993, Sections 2.3 and 2.5) and hence they can
be combined in product form via (5) to give valid spatio-
temporal covariance models. A simple example of a sep-
arable model (5) is: C*(h) = exp(—061]|h||); ¢1 > 0, and
C?(u) = exp(—0z2]u|); 62 > 0, and hence

C°(hs ul6) = exp(—0u ||| — Oalul).

The contour plot of the spatio-temporal covariance func-
tion for #; = A, = 1 is given in Figure 1. Separable models
are often chosen for convenience rather than for their abil-
ity to fit the data well; at least they are guaranteed to
satisfy (3) and hence are valid.

However, the class (5) is severely limited, since it does
not model space-time interaction. Notice that, for any two
fixed spatial lags hq and ho,

CO(hy;u) o COhosu); w € IR.
Thus, for two spatial locations, the cross-covariance func-
tion between the time series at each location always has
the same shape, regardless of the relative displacement of
the locations. An analogous result holds for any pair of
time points and the cross-covariance function of the two
spatial processes.

Another type of separability involves adding spatial and
temporal covariances; that is, C%(h;ul8) = C1(h|6;) +
C?(u|@5). For this model, covariance matrices of certain
configurations of spatio-temporal data are singular (Myers
and Journel, 1990; Rouhani and Myers, 1990), which is
unsatisfactory when using (1) for optimal prediction.

Nonseparable stationary covariance functions that
model space-time interactions are in great demand. Us-
ing simple stochastic partial differential equations over
space and time, Jones and Zhang (1997) have developed a
four-parameter family of spectral densities that implicitly
yield such stationary covariance functions, although not in
closed form.

In this article, a new and simple methodology is
given for developing whole classes of nonseparable spatio-
temporal stationary covariance functions, in closed form.
In Section 2, we derive a theoretical result that shows
how positive-definiteness in Rt can be obtained from
positive-definiteness in JR?. This result is used in Section 3
to define various classes of valid spatio-temporal station-
ary covariance models, including the separable models as
a special case. Several are fitted to spatio-temporal data
on wind speed over a region in the tropical western Pa-
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cific ocean; see Section 4. Finally, a short discussion of our
approach is given in Section b.

2. THEORETICAL RESULTS ON
POSITIVE-DEFINITENESS

Consider the stationary spatio-temporal covariance func-
tion C' given by (2). Assume that C'is continuous and that
its spectral distribution function possesses a spectral den-
sity g(w; 7) > 0. That is, by Bochner’s Theorem (Bochner,

1955),
C(h;u) // Zhw"'“” (w; T)dwdr.

If, in addition, C(;-

) is integrable, then

g(w;T) = (271')_d_1//e_ihlw_i“TC(h;u)dhdu
= (27)_1/6_i“7h(w;u)du, (6)
where
hw;u) = (27)_d/6_ihlw0(h;u)dh

/ e g(w; T)dT.

The construction of (', or equivalently of g, in this article
proceeds by specifying appropriate models for h{w; u). We
assume that

h(wi ) = plw; w)k(w), ()
where the following two conditions are satisfied:

(C1) For each w € IR%, p(w;-) is a continuous autocorre-
lation function, [ p(w;u)du < oo, and k(w) > 0.
(C2) [k(w)dw < .
Then (6) becomes

g(w;T) = (27)_1k(w)/6_i“7p(w; w)du > 0,

y (C1). Furthermore,

// wi T)drde = [ k) < ox,

by (C2). Therefore, assuming h(wj;u) is given by (7) such
that conditions (C1) and (C2) are satisfied, we see that

C(hyu) = /eihlwp(w; u)k(w)dw (8)

is a wvalid (i.e., positive-definite) continuous spatio-
temporal stationary covariance function on R? x IR.

It is not hard to see that any continuous, integrable,
spatio-temporal stationary covariance function can be
written as in (7) with conditions (C1) and (C2) satisfied.
Simply define

and



Cressie and Huang: Classes of Nonseparable, Spatio-temporal Stationary Covariance Functions 3

in (7).

Also notice that the covariance functions defined by (8)
are generally not separable. However, the separable covari-
ances arise as a special case: If the autocorrelation function
p in (7) is purely a function of u, then (8) can be written
in separable form. To sum up, our goal in this article is to
find functions A(w;u) given by (7) that satisfy (C1) and
(C2), and for which the integral in (8) can be evaluated.
There are many new classes that can be defined in this
manner, as the next section illustrates.

3. CLASSES OF CONTINUOQUS SPATIO-TEMPORAL
STATIONARY COVARIANCE MODELS

In this section, we give some parametric families of contin-
uous spatio-temporal covariance functions C'(h; u). Based
on the results in Section 2, we have only to look for func-
tions p(w;u)k(w) that satisfy the two conditions (C1)
and (C2) and for which the integral in (8) can be eval-
uated. Then C'(h; ) defined by (8) is a continuous spatio-
temporal covariance function with corresponding spectral
density, g(w; 1) = (27) " Lk(w) [ e77 p(w; u)du.

To construct the families of nonseparable spatio-
temporal stationary covariances that follow, we used co-
variance functions and spectral density functions given in
Matern (1960, Chapter 2). Through these examples, it will
be seen generally how other closed-form Fourier transform
pairs could be used to do the same.

Example 1. Let

plw; u) = exp{—|lw||*u®/4}

and

k(w) = exp{—collwl|*/4};

It is clear that both conditions (C1) and (C2) are satisfied.
Therefore, from (8) and Matern (1960, p. 17),

C(h;u) ;exp - LS
’ (uz + co)d/Z u? 4+ co

is a continuous spatio-temporal covariance function in
R® x IR. So, a three-parameter spatio-temporal station-
ary covariance family can be given as,

co > 0.

2 201112
Op. gy o bR
7 (h; ul6) = (a2u? + 1)4/2 P {_a2u2 +1)’

where 8 = (a,b,0%), a > 0 is the scaling parameter
of time, b > 0 is the scaling parameter of space, and
0? = ¢%(0;0]8) > 0. Notice that, because of redundancy in
the parameters a, b, and ¢j, without loss of generality, we

have put ¢y = 1. The contour plot of the spatio-temporal

2
Figure 2. Contour plot of C'(h;u) = UPIT exp{—%}, ver-
sus ||h|| and |u|, where h = (h1,h2). The horizontal azis represents
the modulus of the spatial lag and the vertical axis represents the
temporal lag.

covariance function for a = » = ¢2 = 1 and d = 2 is shown
in Figure 2.
Example 2. Let

plw; u) = exp{—||wl|*|u|/4}
and
k(w) = exp{—collw||®/4};

It is clear that both conditions (C1) and (C2) are satisfied.
Therefore, from (8) and Matern (1960, p. 17),

co > 0.

C(h;u) x

| e { )
(Tl + ) P ul + g

is a continuous spatio-temporal covariance function in
R® x IR. So, a three-parameter spatio-temporal station-
ary covariance family can be given as,

o b*||A|?
(alul + 1772 eXp{‘a|u| + 1}’
where 8 = (a,b,0%), a > 0 is the scaling parameter of
time, b > 0 is the scaling parameter of space, and o2 =
C°(0;0]6) > 0. Again, without loss of generality, we have
put ¢o = 1.
Example 3. Let

C°(h;u|8) =

p(w; 1) = exp{—lwl|u)
and

k(w) = exp{—col||lw||}; ¢o > 0.

It is clear that both conditions (C1) and (C2) are satisfied.
Therefore, from (8) and Matern (1960, p. 18),

Hh”z —(d+1)/2
_|_
(u? + ¢o)? (u? + ¢g)?
is a continuous spatio-temporal covariance function in

R® x IR. So, a three-parameter spatio-temporal station-
ary covariance family can be given as,

C(h;u)

o?(a?u® + 1)
(@ + 17 1 R

C°(h;ul6) =

where 8 = (a,b,0%), a > 0 is the scaling parameter of
time, b > 0 is the scaling parameter of space, and o2 =
C°(0;0]6) > 0. Again, without loss of generality, we have
put ¢o = 1.

Example 4. Let

plw; u) = exp{—||w|||ul}
and

k(w) = exp{—col|w||}; co> 0.

It is clear that both conditions (C1) and (C2) are satisfied.
Therefore, from (8) and Matern (1960, p. 18),

1 Hh”z —(d+1)/2
14
(lul + co)? (lul + co0)?

C(h;u)



is a continuous spatio-temporal covariance function in
R® x IR. So, a three-parameter spatio-temporal station-
ary covariance family can be given as,

7*{alu] + 1)
el + 17 + P[P F

C°(h;u|8) =

where 8 = (a,b,0?)’, a > 0 is the scaling parameter of
time, b > 0 is the scaling parameter of space, and o2 =
C°(0;0]6) > 0. Again, without loss of generality, we have
put ¢o = 1.

Example 5. Let

d/2
i) = 0 [l el
’ (u? + ¢g)d/2 4(u? + ¢p) 4eq
and
2
k(w) = exp {—%} i co > 0.

Since for each w € R%, p(wj;u) is decreasing and convex for
u € (0, 00), it follows that condition (C1) is satisfied. Also,
condition (C2) is clearly satisfied. Therefore, from (8) and
Matern (1960, p. 17), the function, exp{—(u? + ¢o)||h||*},
is a valid spatio-temporal covariance function in R¢ x IR.
Because the product of two valid covariance functions is a
valid covariance function, we obtain

C(h;u)

exp{—(u2 + co)||h||2 — aouz}; ag >0, co>0.

So, a four-parameter spatio-temporal stationary covari-
ance family can be given as,

C°(h;u|0) = 0% exp{—a®u® — b?||h||* — cu?||h|)*},
where 8 = (a,b,¢,0?), a > 0 is the scaling parameter
of time, b > 0 is the scaling parameter of space, ¢ > 0,
and ¢? = C°(0;0/6) > 0. The contour plots of the spatio-
temporal covariance function fora = b =¢2 =1, d = 2,
and ¢ = 0,1,5,10 are shown in Figure 3. Notice that a
separable covariance function is obtained when ¢ = 0; see

Figure 3 (a).
Example 6. Let
[[wll?
+ 460
> 0.

d/2
et/ w|)”

““”):um+wwwzﬂp{‘ﬂwr+m>

wll?
k(w):exp{——|l4c|| }; o
0

Since for each w € IR?, p(w;u) is decreasing and convex
for u € (0,0), it follows that condition (C1) is satisfied.
Also, condition (C2) is clearly satisfied. Therefore, from

and

Figure 3. Contour plot of C(h;u) = exp { —u? - ||h||2 — cu2||h||2},
versus ||h|| aend |u|, where h = (h1,h2). (a) c = 0; (b) c = 1; (c)
c=5; (d) c =10. The horizontal azis represents the modulus of the
spatial lag and the vertical axis represents the temporal lag.
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(8) and Matern (1960, p. 17), the function, exp{—(|u| +
co)||R]|?}, is a valid spatio-temporal covariance function in
IR*x IR. Again, because the product of two valid covariance
functions is a valid covariance function, we obtain

C(h;u) x
exp{—(|u| + co)||R[]* — aolul}; a0 >0, co > 0.

So, a four-parameter spatio-temporal stationary covari-
ance family can be given as,

C%(h;ul6) = 0% exp{—alu| = V?||R||* — c|ul||h]]*},

where where 8 = (a,b,c,0%), a > 0 is the scaling pa-
rameter of time, b > 0 is the scaling parameter of space,
¢ >0, and 0 = (C%(0;0]0) > 0. Notice that a separable
covariance function is obtained when ¢ = 0.

Example 7. Let

plwsu) = {u*+ 1+ (0 +o)flw|?} =47
x{1+cllw| P} H% >0, v >0,

and

kw) = {1+ cllwl*}7 7Y% >0, v>0.

Since for each w € R%, p(wj;u) is decreasing and convex for
u € (0, 00), it follows that condition (C1) is satisfied. Also,
condition (C2) is clearly satisfied. Therefore, from (8), and
Matern (1960, p. 18) or, more explicitly, from Handcock
and Wallis (1994, p. 370),

1 U2+1 1/2 v
h
e ) M)
2 1\ 1/2
Oy o 4 (S )i i > o

u 4 ¢
1
if [l =0

(U2 + 1)V(u2 —|—C)d/2;

is a continuous spatio-temporal covariance function in
R? x IR, where K, is the modified Bessel function of the
second kind of order v (see, e.g., Abramowitz and Stegun,
1972, pp. 374ff.). So, a five-parameter spatio-temporal co-
variance family can be given as,

C°(h;u|8) =
a?(2¢4?) {é(azuz—l—l)l/?”hn}y
(a?u? + 1)"@22112 —11 c)lc;/;I‘(y) 2\a%u?+ ¢
< K, <b(%) ||h||> : if [|h]] > 0,
o20d/2
(a2u? + 1)” (a2u? + C)d/z;

where 8 = (a,b,¢,v,0?), a > 0 is the scaling parameter
of time, b > 0 is the scaling parameter of space, ¢ > 0,

if ||h|| = 0,

4
ex —
(2 + D)I2(u + 4) P{
, 1/2
(2211) ||h||}, versus ||h|| and |u|, where h = (h1, h2). The hor-
1zontal axis represents the modulus of the spatial lag and the vertical
azts represents the temporal lag.

Figure 4. Contour plot of C(h;u) =
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v > 0, and 02 = C°(0,0]6) > 0. Notice that a separable
covariance function is obtained when ¢ = 1.

In particular, for v = %, we obtain a four-parameter
spatio-temporal covariance family given as
CO(h;u|0) =

o2cdl2 aZu? 4+ 1\ 1/2
2,2 1/2( 42,2 a/2 ¢XP _b(zz ) Rl ¢,
(a2u? + 1)Y2(a2u? + c)4/ a?u+c

where 8 = (a,b,¢,0?). The contour plot of the spatio-
temporal covariance function for v = 1/2,a = b = ¢? = 1,
¢ =4, and d = 2 is shown in Figure 4.

4. APPLICATION TO WIND-SPEED DATA

In this section, we apply the new classes of spatio-temporal
stationary covariance functions to the problem of mapping
the east-west component of the wind speed over a region
in the tropical western Pacific ocean. The data used in
this article are collected on a regular grid of 17 x 17 sites
with grid spacing of about 210km. Observations were taken
every six hours from November 1992 through February
1993. That is, there are 289 spatial locations and 480 time
points.

We first do some exploratory data analysis. Figure 5
shows the wind-speed fields (in m/s) at each of the first
15 time points, as well as the wind-speed field averaged
over the 480 time points, where a positive value represents
an east wind and a negative value represents a west wind.
We can see strong spatio-temporal dependence from the
first 15 wind-speed fields. We can also see that the mean
wind-speed field is relatively flat. Figure 6 shows the time
series plots of wind speed (in m/s) for sites at locations
(5,5), (5,13), (13,5), (13,13), where we have used Carte-
sian coordinates based on the grid {1,...,17} x {1,...,17}.
A plot of the sample standard deviation versus the sam-
ple mean of wind speed (over time) obtained from each
of the 289 sites is shown in Figure 7. No specific pattern
(e.g., increasing pattern) is seen in this figure, indicating
homoskedasticity. Therefore, from Figure b, Figure 6, and
Figure 7, a spatio-temporal stationarity assumption of the
wind-speed field seems reasonable.

Let Z(s;;t) be the observed east-west component of the
wind speed (in m/s) for time ¢ at site i; ¢t = 1,...,480,
¢t = 1,...,289. The empirical spatio-temporal variogram
estimator is given by

29(h(l);w) =

1
N(h(l);u Z
IV ((D); v) (1,5, 14 EN (R (D))

(Z(si3t) — Z(s551")) 7,

{(i,j,t,t/) 18, — s; € Tol(h(l));
t—t|=u, i,j=1,..., 289},

Figure 5. Wind-speed fields (in m/s) for the first 15 time points
and the mean wind-speed field (over time) on 17 X 17 = 289 wind-
speed sites. Note that a positive value represents an east wind and a
negative value represents a west wind.

Tol(h(!)) is some specified “tolerance” region around h(/),
and |N(h(l);u)| is the number of distinct elements in
N(h(D;uw); 1 = 1,...,L, w = 0,1,...,U. The parame-
ter @ in a parametric spatio-temporal covariance function
C°(h;u|6) can then be estimated by fitting {29(h({);u)}

to the spatio-temporal variogram,

2v(h;ul8) = var(Z(s + hyt +u) — Z(s; u))
= C°%0;008) — C°(h;u|8); he R ueR.

We use the weighted-least-squares method (e.g., Cressie,
1993, p. 96-97) to estimate 8, by minimizing

wo) =3 IN(h(1); ) {% - 1} )

over all possible #. Zimmerman and Zimmerman (1991)
performed simulation experiments to compare (9) with
likelihood-based methods and found that weighted least
squares 1s sometimes the best fitting procedure and never
does badly.

The estimated variogram based on 27 spatial lags, up
to half the maximum possible distance, and 51 time
lags is shown in Figure 8. From Figure 8, we can see
a clear nonseparable feature for the spatio-temporal co-
variance, since the covariance (or variogram) for a larger
spatial lag is almost constant, while the covariance for
a smaller spatial lag is not. Recall that for a separable
spatio-temporal stationary covariance function, we have
C°hyju) oc CP(hoju); u € IR. Therefore, it is not appro-
priate to fit a separable spatio-temporal covariance func-
tion to the wind-speed data.

To select an appropriate spatio-temporal covariance
function among the seven classes of models, we first look at
the empirical spatial variogram for each time lag. We can
see that the empirical spatial variogram for smaller time
lags is clearly concave in ||h||, which is satisfied only by the
spatio-temporal variograms of Example 2, Example 4, and
Example 6. Therefore, we consider three spatio-temporal
variogram models based on these three examples with the
function 72I(h = 0,u = 0) added to each variogram to
account for the nugget effect (see Section 5). We also con-
sider the addition of a purely spatial variogram 2o ||h||%2,
which is needed to account for the empirical spatial vari-
ogram having almost the same shape for any larger time
lag. Then the three spatio-temporal semivariogram models
are given as follows:

Figure 6. Time series plots of wind speed (in m/s) for sites (5,5),
(5,13), (13,5), (13,13) located on the grid {1,...,17} x{1,...,17}.

Figure 7. Sample standard deviation versus sample mean of wind
speed (in m/s). Means and standard deviations are calculated over
time at each observation location.

Figure 8. Empirical spatio-temporal variogram evaluated at spatio-
temporal lags {h(1),...,R(27)} x {0,1,...,50}.



Model I. Based on Example 2, define the semivariogram
model,

1 (h;ul8) =
0; if u=||h]| =0,
1 b2||h||?
Y OO S
alu|+ 1 alul+1
+72 + aq||h||~2; otherwise.

Using the weighted-least-squares criterion (9) for esti-
mating 8 = (a,b,al,az,az,rz)/, we obtain a¢ = 0.399,
b=0.00235, a7 = 3.33x107%, a5 = 1.999, ¢ = 5.895, and
7% = 0.164. The weighted-least-squares value is W (8) =
2.01172 x 10°.

Model II1. Based on Example 4, define the semivariogram
model,

v2(h; ulf) =
0; ifu=1h|| =0,
5201 alul+1
(aful +1)2 + 02| af}2)*"”
+72 + aq||h||~2; otherwise.

Using the weighted-least-squares criterion (9) for esti-
mating 6 = (a,b,al,az,az,rz)/, we obtain ¢ = 0.1381,
b = 0.00249, a1 = 3.53 x 107%, ay = 1.999, 02 = 5.861,
and 72 = 0. The weighted-least-squares value is W (0) =
1.94985 x 10°.

Model III. Based on Example 6, define the semivariogram
model,

vs(h;ul8) =
0; if u = [|h|| = 0,
0?{1 — exp(—alu| — b*||h||* — c|ul[|R]|*)}
+72 + aq||h||*2; otherwise.

Using the weighted-least-squares criterion (9) for estimat-
ing 68 = (a,b,c,al,az,az,rz)/, we obtain ¢ = 0.186,
b = 0.00238, ¢ = 0, a; = 3.65 x 1075, ay = 1.999,
0? = 5.313, and 72 = 0.275. The weighted-least-squares
value is W (6) = 1.88228 x 10°.

Table 1 displays comparable parameter estimates for
the three models. The contour plots of the fitted spatio-
temporal variogram functions for Model I, Model II, and
Model III, with respect to the spatial lag ||k|| and the tem-
poral lag u, are shown in Figure 9 (a), (b), and (c), respec-
tively. Based on the smallest weighted-least-squares value
of W(0), Model III provides the closest fit. We conclude
that, for the wind-speed data, the nonseparable empirical
variogram is better fitted by a purely spatial variogram
plus a spatio-temporal variogram with spatio-temporal in-
teraction parameter ¢ = 0. The three-dimensional plot

Figure 9. Contour plot of the weighted-least-squares fitted spatio-
temporal variogram, versus ||h|| and |u|, where b = (h1,h2). (a)

Model I; (b) Model IT; (c) Model III.
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of the fitted spatio-temporal variogram function based on
Model III is displayed in Figure 10.

Table 1. Comparable parameter estimates for Model I, I, and III.

Model | Model Il Model I1f
o 3.33x 1076 3.53 x 106 3.65 x 10~6
o 1.999 1.999 1.999
o? 5.895 5.861 5.313
72 0.164 0 0.275
w(d) 2.01172 x 10° 1.94985 x 10° 1.88228 x 10°

5. DISCUSSION

All spatio-temporal stationary covariances constructed ac-
cording to the approach given in Section 2 are continuous.
A discontinuity at the origin (h = 0,u = 0) is allowed by
adding the function 72I(h = 0,u = 0), to C°(h;ul6) in
(4), which is sometimes called a nugget effect in the geo-
statistics literature (e.g., Cressie, 1993, p. 59). In terms of
the original process, this discontinuous component corre-
sponds to an additive white-noise process. Further, notice
that all the examples in Section 3 give stationary covari-
ance functions that depend on spatial lag h through its
modulus ||h||. This (spatial) isotropy can be relaxed by re-
placing ||h|| with ||AR||, for any nonsingular matrix A, in
which case the model is sometimes referred to as (spatial)
geometrically anisotropic (e.g., Cressie, 1993, p. 64).

It is obvious from Section 2 that, at any fixed temporal
lag u, it is not enough to fit a positive-definite function of
h and hope that the resulting fit, C*(h|6(u)), is positive-
definite in both h and u. In spite of the attractiveness of
such a fitting procedure, it does not generally lead to a
valid spatio-temporal covariance function. However, there
is a circumstance where it does. Suppose that we can write

the spectral density g'(w|6(u)) of C1(h|6(u)) as,

g (w]6(w)) = Ko (u); (10)

u € (—00,x0),

where K () is a valid positive covariance function in
IR! for each w € IRY. Now, if we can write K¢ (u) =
p(w; u)k(w), where p(w;-) is a positive correlation func-
tion and [ p(w;u)du < oo for each w € IR?, we see that
equation (10) is a special case of equation (7), where (C1)
is satisfied. Hence, if the integrability condition (C2) is
also satisfied, the integral on the right hand side of (8)
is C'(h|6(u)), which from Section 2 is a valid spatio-
temporal covariance function.

Finally, although our results have been presented in a
spatio-temporal context, they also allow construction of
valid covariance models in JR**! based on spatial covari-
ance models in IR? and IR'. For example, putting d = 2
and u = hg in (8) yields a valid stationary covariance

model, C'(hy, ha, h3), in R3.

Figure 10. Three-dimensional plot of the weighted-least-squares fit-
ted spatio-temporal variogram of Model III, versus ||h|| and |u|, where

b= (h1,h2).
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