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Bayesian Spatial Analysis

A n d r e w B . L a w s o n a n d S u d i p t o B a n e r j e e

17.1. INTRODUCTION

Spatially referenced data occur in diverse
scientific disciplines including geological and
environmental sciences (Webster and Oliver,
2001), ecological systems (Scheiner and
Gurevitch, 2001), disease mapping (Lawson,
2006) and in broader public health contexts
(Waller and Gotway, 2004). Very often, such
data will be referenced over a fixed set of
locations in a region of study. These locations
can be with regions or areas with well-defined
neighbors (such as pixels in a lattice, counties
in a map, etc.), whence they are called areally
referenced or lattice data. Alternatively, they
may be simply points with coordinates
(latitude–longitude, Easting–Northing etc.),
in which case they are called point refer-
enced or geostatistical. Statistical theory and
methods to model and analyze such data
depend upon these configurations and has
enjoyed significant developments over the
last decade; see, for example, the books

by Cressie (1993), Chilés and Delfiner
(1999), Móller and Waagpetersen (2004),
Schabenberger and Gotway (2004), and
Banerjee et al. (2004) for a variety of
methods and applications.

With recent advances in computational
methods (particularly in the area of Monte
Carlo algorithms), it is now commonplace
to be able to incorporate spatial correlation
as an important modeling ingredient. It is
now feasible to fit routinely linear models
with a variety of features within a modeling
hierarchy. With the implementation of fast
algorithms such as Markov Chain Monte
Carlo (MCMC), sophisticated models that
were previously inaccessible are now within
reach allowing us to move beyond the
simpler, and often inadequate, descriptive
measures for analyzing spatial structure.

Spatial analysis can be viewed in a number
of ways. For the statistician, there are two
basic approaches to statistical modeling and
inference: frequentist or likelihood based
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inference, and Bayesian inference. Here
we focus on the latter approach. Bayesian
inference and modeling can be seen as an
extension of likelihood methods, but it also
has a fundamentally different view of the
inferential process.

17.2. NOTATION

The following notation will be used through-
out this chapter. A random variate is denoted
yi, for an item in a vector. The vector of
these items is y. Often y will be related to
independent variables (such as in a linear
model). In that case the matrix of such
variables can be defined as X. A linear model
can be defined, for a single independent
variable x1 as:

yi = β0 + β1x1i + ei.

In general, the matrix formulation of the
model, where i = 1, . . . , n will be:

y = Xβ + e (17.1)

where y is an n × 1 vector of the dependent
variable, X is an n×p matrix of p independent
predictors (or covariates), β is a p × 1
parameter vector of the corresponding slopes
and e is an n × 1 vector of the errors. Often
we make distributional assumptions, such as
e ∼ N(0, �) These expressions imply that
the errors are normally distributed with a
zero-vector, 0, as the mean and a covariance
matrix �.

17.2.1. Point-referenced spatial
data notation

As we will be dealing with spatial data, we
will require some notation specific to such

settings. When the referencing is done using
coordinates (latitude–longitude, Easting–
Northing, etc.) over a domain D, we denote
it as s ∈ D; for instance in two-dimensional
domains we have s ≡ (sx, sy). The most
frequently encountered scenario observes
a spatial field measured at a finite set
of locations, say S = {s1, . . . , sn}.
We usually name this a random field,
which we denote as {w(s) : s ∈ D} or
simply as w(s) in short. A realization
of this random field will be a vector
w = (w(s1), . . . , w(sn)).

17.2.2. Health data notation

For health data discussed in this chapter we
will confine ourselves (mostly) to examining
count data arising within small arbitrary
administrative areas (such as census tracts,
zip codes, postcodes, counties). Define yi as
the count of disease within the ith small area.
Assume that i = 1, . . . , m. For this we need
to define a relative risk for the ith region: θi.
We usually want to make inferences about the
relative risk, in any study.

We also usually have available an expected
rate for the ith region: ei. Often the count
within the regions will have a Poisson
distribution, i.e., yi ∼ Pois(eiθi).

17.3. LIKELIHOOD AND BAYESIAN
MODELS

17.3.1. Likelihood

A random variable X is usually associ-
ated with a distribution which governs its
behavior. We denote this distribution as
f (x | θ ) where θ is a parameter. In general,
θ could be a vector of parameters and so
is denoted θ . In this case we have f (x | θ ).
When a random sample of values of X are
taken {xi, i = 1, . . . , n} then the likelihood is
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defined as the joint distribution of the sample
values:

f (x | θ ) =
n∏

i=1

f (xi | θ ). (17.2)

It is assumed that conditional on θ the
sample values are independent. If this were
not so, then we would require to take
the product of conditional distributions in
equation (17.2). When using the frequentist
inferential process it is important to base
decisions about parameters (estimation of
parameter values or confidence intervals) on
the likelihood function. Maximum likelihood
estimation seeks point estimates of the
parameters in θ by maximising f (x | θ ) or
log f (x | θ ). Testing and interval estimation
is often based on likelihood ratios derived
for different values of θ under different
hypotheses. Inference for quantities such as
confidence intervals is based on the concept
of repeated experimentation, in that probabil-
ity statements are derived based on properties
of repeated sequences of experiments.

17.4. BAYESIAN INFERENCE

Fundamental philosophical differences with
the frequentist approach are found when a
Bayesian perspective is assumed. First of
all, parameters within Bayesian models are
assumed to be random variables and hence
are governed by distributions themselves.
Hence, there is no longer a fixed (true) value
for a given parameter. Instead an expected
value or other functional of a distribution
can be defined. Because parameters have
distributions then the likelihood previously
defined must be extended to accommodate
these distributions.

By modeling both the observed data
and any unknown parameter or other

unobserved effects as random variables, the
hierarchical Bayesian approach to statistical
analysis provides a cohesive framework for
combining complex data models and external
knowledge or expert opinion (e.g., Berger,
1985; Carlin and Louis, 2000; Robert, 2001;
Gelman et al., 2004; Lee, 2005) In this
approach, in addition to specifying the distri-
butional model f (y | θ ) for the observed data
y = ( y1, . . . , yn) given a vector of unknown
parameters θ = (θ1, . . . , θk), we suppose
that θ is a random quantity sampled from a
prior distribution p(θ | l), where l is a vector
of hyperparameters. Inference concerning θ

is then based on its posterior distribution:

p(θ | y, l) = p(y, θ | l)

p(y | l)
= p(y, θ | l)∫

p(y, θ | l) dθ

= f (y | θ )p(θ | l)∫
f (y | θ )p(θ | l) dθ

. (17.3)

Notice the contribution of both the data
(in the form of the likelihood f (y | θ )) and
the external knowledge or opinion (in the
form of the prior p(θ | l)) to the posterior.
If l is known, this posterior distribution is
fully specified; if not, a second-stage prior
distribution (called a hyper-prior) may be
specified for it, leading to a fully Bayesian
analysis. Alternatively, we might simply
replace l by an estimate l̂ obtained as
the value which maximizes the marginal
distribution p(y | l) viewed as a function of l.
Inference proceeds based on the estimated
posterior distribution p(θ | y, l̂), obtained by
plugging l̂ into equation (17.3). This is called
an empirical Bayes analysis and is closer to
maximum likelihood estimation techniques.

The Bayesian decision-making paradigm
improves on the classical approaches to
statistical analysis in its more philosophically
sound foundation, its unified approach to
data analysis, and its ability to formally
incorporate prior opinion or external
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empirical evidence into the results via the
prior distribution. Statisticians, formerly
reluctant to adopt the Bayesian approach
due to general skepticism concerning
its philosophy and a lack of necessary
computational tools, are now turning to
it with increasing regularity as classical
methods emerge as both theoretically and
practically inadequate. Modeling the θis as
random (instead of fixed) effects allows us
to induce specific (e.g., spatial, temporal or
more general) correlation structures among
them, hence among the observed data yi as
well. Hierarchical Bayesian methods now
enjoy broad application in the analysis of
complex systems, where it is natural to pool
information across different sources e.g.,
Gelman et al. (2004).

Modern Bayesian methods seek complete
evaluation of the posterior distribution using
simulation methods that draw samples from
the posterior distribution. This sampling-
based paradigm enables exact inference
free of unverifiable asymptotic assumptions
on sample sizes and other regularity
conditions. A computational challenge in
applying Bayesian methods is that for many
complex systems, the simulations required
to do inference under equation (17.3)
generally involve distributions that are
intractable in closed form, and thus one
needs more sophisticated algorithms to
sample from the posterior. Forms for
the prior distributions (called conjugate
forms) may often be found which enable
at least partial analytic evaluation of these
distributions, but in the presence of nuisance
parameters (typically unknown variances),
some intractable distributions remain. Here
the emergence of inexpensive, high-speed
computing equipment and software comes
to the rescue, enabling the application of
recently developed MCMC integration
methods, such as the Metropolis–Hastings
algorithm (Hastings, 1970) and the Gibbs
sampler (Geman and Geman, 1984; Robert

and Casella, 2005). Univariate MCMC
algorithms are particularly attractive for
general purpose implementation, since all
that is required is the ability to sample
easily from each parameter’s complete con-
ditional distribution, namely p(θi | y, θj �=i),
i = 1, . . . , k. The recently developed
WinBUGS language (www.mrc-bsu.
cam.ac.uk/bugs/welcome.shtml)
and the R statistical platform (www.
r-project.org) with its Bayesian
packages are promising steps towards
a general purpose software package for
hierarchical modeling, though it may be
insufficiently general in some advanced
analysis settings, and in any case more work
is needed before it is suitable for routine use
by statistical support staff.

Statistical prediction in Bayesian settings
is particularly elegant and intuitive. Let
ypred denote the random variables (they
can be a collection) we seek to predict.
Then, we simply treat ypred as a random
variable whose prior, conditional upon the
parameters, is the data likelihood f (y | θ ).
Then, all predictions will be summarized in
the posterior predictive distribution:

p(ypred | y) =
∫

f (ypred | θ )p(θ | y) dθ .

Once the posterior samples are available
from p(θ | y), it is routine to draw samples
from p(ypred | y) using the principle of
composition: for each posterior draw of θ , we
draw ypred from f (ypred | θ ). Details of such
methods are particularly well explained in the
texts by Carlin and Louis (2000) and Gelman
et al. (2004).

17.4.1. Posterior sampling
methods

Practical Bayesian modeling relies upon
efficient computation of the posterior
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distribution of the parameters. As mentioned
above, the main computational challenge
lies in evaluating the integral in the
denominator of equation (17.3). This is
especially compounded when θ is multi-
dimensional. Hence, instead of designing
multi-dimensional integration routines,
even the best of which can easily prove
inadequate for several practical settings,
we focus upon sampling from the posterior
distribution, also known as simulating the
posterior distribution. Once a posterior
sample is obtained, all inference summaries
(e.g., point estimates and credible intervals)
are calculated using the sample. In principle,
this strategy works equally well for simpler
models where the posterior distribution
is a standard family as well as for very
complex hierarchical models where the
posterior distribution is highly complex.
Depending upon the complexity of the
posterior distribution, the sampling strategies
will vary: with a standard family we can
directly draw a random sample, while
with complex families more elaborate
MCMC algorithms (see below) may be
required.

Since the posterior distribution now
describes the behavior of the parameters
once the data are observed, we work with
this distribution for estimation and inference.
To obtain estimates of parameters this
distribution must be summarized.

A simple example of this type of model in
disease mapping is where the data likelihood
is Poisson and there is a common relative
risk parameter with a single gamma prior
distribution:

p(θ | y) ∝ L(y | θ )g(θ )

where g(θ ) is a gamma distribution with
parameters α, β, i.e., G(α, β), and L(y | θ ) =∏m

i=1 {(eiθ )yi exp(−eiθ )} bar a constant only

dependent on the data. A compact notation
for this model is:

yi | θ ∼ Pois(eiθ )

θ ∼ G(α, β).

Here, the posterior distribution is again a
Gamma and one can sample from it by
simply employing a Gamma random number
generator.

Another useful mechanism for posterior
simulations when the posterior distribution
is not a standard family arises from the
principle of composition. This essentially
observes that the joint posterior distribu-
tion of two arbitrary parameter vectors,
say θ1 and θ2 can be expressed as
P(θ1, θ2 | y) = P(θ1 | y)P(θ2 | θ1, y). To
obtain samples from the above joint posterior
distribution, we first sample θ

( j)
1 from the

marginal posterior distribution P(θ1 | y) and
then sample a θ

( j)
2 from the conditional

posterior distribution P(θ2 | θ ( j)
1 , y)). Repeat-

ing this for j = 1, . . . , M results in a joint
posterior sample (θ j

1, θ
( j)
2 )M

j=1 of size M. We

illustrate this principle below using the linear
regression model mentioned in equation
(17.1) from a Bayesian perspective. Several
other examples can be found in the texts
by Carlin and Louis (2000) and Gelman
et al. (2004).

Let us suppose that we have data yi

from n experimental units, which forms our
dependent variable. Suppose also that we
have observed p covariates, x1i, . . . , xpi, on
the ith individual. Using matrix notations,
we write:

y = Xβ + e; e ∼ N(0, σ 2I)

where y is an n × 1 vector of observations,
X is a n × p matrix of independent
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predictors with full column rank (we assume
independent columns – so that covariates are
not collinear), β is a p×1 vector of regression
coefficients, and e is the n × 1 vector of
uncorrelated normally distributed errors with
common variance σ 2.

To construct a Bayesian framework, we
will need to assign a prior distribution for
(β, σ 2) in the above model. For illustration,
consider the non-informative or reference
prior distribution for (β, σ 2):

P(β, σ 2) ∝ 1

σ 2
.

This is equivalent to a flat or Uniform prior
on (β, σ 2). In hierarchical language we write
the Bayesian linear regression model as:

y | β, σ 2 ∼ N(0, σ 2I)

β, σ 2 ∼ P(β, σ 2) ∝ 1

σ 2
.

Simple computations (see, e.g., Gelman
et al., 2004, Section 14.2) reveal that the
marginal distribution p(σ 2 | y) is a scaled
Inv-χ2(n − p, s2) distribution, which is the
same as the Inverse-Gamma distribution
IG((n − p)/2, (n − p)s2/2) where:

s2 = 1

n − p
(y − Xβ̂)T (y − Xβ̂)

with β̂ = (XT X)−1XT y being the usual
least-squares estimate (also the MLE). The
distribution P(β | σ 2, y) is N(β̂, σ 2(XT X)−1).
In fact, here the marginal posterior
distribution for P(β | y) can be derived in
closed form as a multivariate-t distribution
(see, e.g., Robert, 2001) but we outline the
sampling-based perspective.

Following the principle of composition
sampling, we draw, say for j = 1, . . . , M,
σ 2( j) ∼ IG(n − p/2, (n − p)s2) followed
by β( j) ∼ N(β̂, σ 2j(XT X)−1). This yields
our desired posterior sample (β( j), σ 2( j))
with j = 1, 2, . . . , M. Posterior confidence
intervals and all inference will again be
carried out using these samples.

17.5. HIERARCHICAL MODELS

The idea that the values of parameters could
arise from distributions is a fundamental
feature of Bayesian methodology and leads
naturally to the use of models where
parameters arise within hierarchies. In the
Poisson-gamma example there is a two level
hierarchy: θ has a G(α, β) distribution at the
first level of the hierarchy and α will have a
hyperprior distribution (hα) as will β(hβ ), at
the second level of the hierarchy. This can be
written as:

yi | θ ∼ Pois(eiθ )

θ | α, β ∼ G(α, β)

α | ν ∼ hα(ν)

β | ρ ∼ hβ (ρ).

Clearly it is important to terminate a
hierarchy at an appropriate place, otherwise
one could always assume an infinite hierar-
chy of parameters. Usually the cut-off point
is chosen to lie where further variation in
parameters will not affect the lowest level
model. At this point the parameters are
assumed to be fixed. For example, in the
gamma-Poisson model if you assume α and
β were fixed then the Gamma prior would
be fixed and the choice of α and β would be
uninformed. The data would not inform about
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the distribution at all. However, by allowing
a higher level of variation i.e., hyperpriors for
α, β, then we can fix the values of ν and ρ

without heavily influencing the lower level
variation. This allows the data to inform more
about the different parameters in the lower
levels of the hierarchy.

17.6. MARKOV CHAIN MONTE
CARLO METHODS

Markov chain Monte Carlo (MCMC) meth-
ods are a set of methods which use iterative
simulation of parameter values within a
Markov chain. The convergence of this chain
to a stationary distribution, which is assumed
to be the posterior distribution, must be
assessed.

Prior distributions for the p components
of θ are defined as gi(θi) for i = 1, . . . , p.
The posterior distribution of θ and y is
defined as:

P(θ | y) ∝ L(y | θ )
∏

i

gi(θi). (17.4)

The aim is to generate a sample from
the posterior distribution P(θ | y). Suppose
we can construct a Markov chain with
state space θc, where θ ∈ θc ⊂ �k . The
chain is constructed so that the equilibrium
distribution is P(θ | y), and the chain should
be easy to simulate from. If the chain is run
over a long period, then it should be possible
to reconstruct features of P(θ | y) from the
realized chain values. This forms the basis
of the MCMC method, and algorithms are
required for the construction of such chains.
A selection of recent literature on this area
is found in Ripley (1987), Besag and Green
(1993), Gelman et al. (2004), Gamerman
(2000) and Robert and Casella (2005).

The basic algorithms used for this
construction are:

1 the Metropolis and its extension, the Metropolis–
Hastings algorithm;

2 the Gibbs Sampler algorithm.

17.6.1. Metropolis and
Metropolis–Hastings
algorithms

In all MCMC algorithms, it is important to
be able to construct the correct transition
probabilities for a chain which has P(θ | y) as
its equilibrium distribution. A Markov chain
consisting of θ1, θ2, . . . , θ t with state space
� and equilibrium distribution P(θ | y) has
transitions defined as follows.

Define q(θ , θ ′) as a transition probability
function, such that, if θ t = θ , the vector θ t

drawn from q(θ , θ ′) is regarded as a proposed
possible value for θ t+1.

17.6.2. Metropolis and
Metropolis–Hastings
updates

In this case choose a symmetric pro-
posal q(θ , θ ′) and define the transition
probability as:

p(θ ,θ ′)=
⎧⎨⎩

α(θ ,θ ′)q(θ ,θ ′) if θ ′ �=θ

1−∑
θ ′′

q(θ ,θ ′′)α(θ ,θ ′′) if θ ′ =θ

where α(θ , θ ′) = min
{
1, P(θ ′ | y)/P(θ | y)

}
.

In this algorithm a proposal is generated
from q(θ , θ ′) and is accepted with probability
α(θ , θ ′). The acceptance probability is a
simple function of the ratio of posterior
distributions as a function of θ values.

The SAGE Handbook of Spatial Analysis, edited by A. Stewart Fotheringham, and Peter A. Rogerson, SAGE Publications, Limited, 2009.
         ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/unh/detail.action?docID=1024118.
Created from unh on 2024-03-20 19:58:36.

C
op

yr
ig

ht
 ©

 2
00

9.
 S

A
G

E
 P

ub
lic

at
io

ns
, L

im
ite

d.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



328 THE SAGE HANDBOOK OF SPATIAL ANALYSIS

The proposal function q(θ , θ ′) can be defined
to have a variety of forms but must be an
irreducible and aperiodic transition function.

Metropolis–Hastings (M–H) is an exten-
sion to the Metropolis algorithm where
the proposal function is not confined to
symmetry and:

α(θ , θ ′) = min

{
1,

P(θ ′ | y) q(θ ′, θ )

P(θ | y) q(θ , θ ′)

}
.

Some special cases of chains are found
when q(θ , θ ′) has special forms. For
example, if q(θ , θ ′) = q(θ ′, θ ) then the
original Metropolis method arises and
further, with q(θ , θ ′) = q(θ ′) (i.e., when no
dependence on the previous value is
assumed) then:

α(θ , θ ′) = min

{
1,

w(θ ′)
w(θ )

}

where w(θ ) = P(θ | y)/q(θ ) and w(.) are
importance weights. One simple example of
the method is q(θ ′) ∼ Uniform (θa, θb) and
gi(θi) ∼ Uniform (θ ia, θ ib) ∀i; this leads to
an acceptance criterion based on a likeli-
hood ratio. Hence the original Metropolis
algorithm with uniform proposals and prior
distributions leads to a stochastic exploration
of a likelihood surface. This, in effect, leads
to the use of prior distributions as proposals.
However, in general, when the gi(θi) are not
uniform this leads to inefficient sampling.
The definition of q(θ , θ ′) can be quite
general in this algorithm and, in addition, the
posterior distribution only appears within a
ratio as a function of θ and θ ′. Hence, the
distribution is only required to be known up
to proportionality.

17.6.3. Gibbs updates

The Gibbs Sampler has gained consider-
able popularity, particularly in applications
in medicine, where hierarchical Bayesian
models are commonly applied (see, e.g.,
Gilks et al. (1993)). This popularity is
mirrored in the availability of software that
allows its application in a variety of problems
(e.g., WinBUGS, MLWin, BACC). This
sampler is a special case of the Metropolis–
Hastings algorithm where the proposal is
generated from the conditional distribution
of θi given all other θs, and the resulting
proposal value is accepted with probability 1.

More formally, define:

q(θj, θ
′
j ) =

{
p(θ∗

j | θ t−1
−j ) if θ∗−j = θ t−1

−j

0 otherwise

where p(θ∗
j | θ t−1

−j ) is the conditional distribu-
tion of θj given all other θ values (θ−j) at time
t−1. Using this definition it is straightforward
to show that:

q(θ , θ ′)
q(θ ′, θ )

= P(θ ′ | y)

P(θ | y)

and hence α(θ , θ ′) = 1.

17.6.4. M–H versus Gibbs
algorithms

There are advantages and disadvantages
to M–H and Gibbs methods. The Gibbs
Sampler provides a single new value for
each θ at each iteration, but requires the
evaluation of a conditional distribution. On
the other hand the M–H step does not require
evaluation of a conditional distribution
but does not guarantee the acceptance of
a new value. In addition, block updates
of parameters are available in M–H, but
not usually in Gibbs steps (unless joint
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conditional distributions are available). If
conditional distributions are difficult to
obtain or computationally expensive, then
M–H can be used and is usually available.

In summary, the Gibbs Sampler may
provide faster convergence of the chain if the
computation of the conditional distributions
at each iteration are not time consuming.
The M–H step will usually be faster at each
iteration, but will not necessarily guarantee
exploration. In straightforward hierarchical
models where conditional distributions are
easily obtained and simulated from, then
the Gibbs Sampler is likely to be favored.
In more complex problems, such as many
arising in spatial statistics, resort may be
required to the M–H algorithm.

17.6.5. Special methods

Alternative methods exist for posterior sam-
pling when the basic Gibbs or M–H updates
are not feasible or appropriate. For example,
if the range of the parameters is restricted
then slice sampling can be used (Robert
and Casella, 2005, Ch. 7; Neal, 2003).
When exact conditional distributions are not
available but the posterior is log-concave
then adaptive rejection sampling algorithms
can be used. The most general of these algo-
rithms (ARS algorithm; Robert and Casella,
2005, pp. 57–59) has wide applicability for
continuous distributions, although they may
not be efficient for specific cases. Block
updating can also be used to effect in some
situations. When generalized linear model
components are included then block updating
of the covariate parameters can be effected
via multivariate updating.

17.6.6. Convergence

MCMC methods require the use of
diagnostics to assess whether the iterative

simulations have reached the equilibrium
distribution of the Markov chain. There are
a wide variety of methods now available
to assess convergence of chains within
MCMC. algorithms (ARS algorithm; Robert
and Casella, 2005, pp. 57–59) provide
recent reviews. The available methods are
largely based on checking the distributional
properties of samples from the chains.

17.7. MODEL GOF MEASURES

It is inevitable that our statistical analysis
will entail the fitting and comparison of a
variety of models. For this purpose, we will
need to attend to issues concerning model
adequacy and model comparison. To compare
between the different models and perhaps
help us choose those that provide better
fits, we will use the Deviance Information
Criteria (DIC) (Spiegelhalter et al., 2002) as
a measure of model choice. The DIC has nice
theoretical properties for a very wide class of
likelihoods since it provides an estimate of
goodness-of-fit and for model complexity and
is particularly convenient to compute from
posterior samples. This criterion is the sum of
the Bayesian deviance (a measure of model
fit) and the (effective) number of parameters
(a penalty for model complexity). It rewards
better fitting models through the first term
and penalizes more complex models through
the second term, with lower values indicating
favorable models for the data. The deviance,
up to an additive quantity not depending
upon the parameters θ , is simply minus twice
the log-likelihood, D(θ ) = −2 log f (y | θ ),
where f (y | θ ) is the first stage likelihood for
the respective model. The Bayesian deviance
is the posterior mean, D(θ ) = Eθ | y[D(θ )],
while the effective number of parameters is
given by pD = D(θ )−D(�θ ). The DIC is then
given by D(θ ) + pD and is easily computed
from the posterior samples.
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We also often use predictive fits to
assess model performance using the posterior
predictive distributions. We will employ the
posterior predictive loss approach (Gelfand
and Ghosh, 1998) to identify models pro-
viding the best fit. The actual computations
are very similar to the predictive paradigm
discussed towards the end of Section 17.2.
Here, for any given model, if θ is the
set of parameters, the posterior predictive
distribution of a replicated data set is
given by:

P(yrep | y) =
∫

P(yrep | θ ) P(θ | y) dθ

where P(yrep | θ ) has the same distribution
as the data likelihood. Replicated data
sets from the above distribution are
easily obtained by simulating a replicated
data set from the above distribution.
Preferred models will perform well
under a decision-theoretic balanced loss
function that penalizes both departure from
corresponding observed values (lack of
fit), as well as from what we expect the
replicates to be (variation in replicates).
Measures for these two criteria are
evaluated as G = (y − μrep)T (y − μrep) and
P = tr (Var (yrep) | y), where μrep = E[yrep | y]
is the posterior predictive mean for the
replicated data points, and P is the trace of
the posterior predictive dispersion matrix for
the replicated data; both of these are easily
computed from the samples drawn. Gelfand
and Ghosh (1998) suggest using the score
D = G + P as a model selection criterion,
with lower values of D indicating better
models.

Using these formal statistical methods, we
will be able to enhance the accuracy of
the outputs of computer models, compare
between them to validate an underlying
scientific hypothesis and provide predictions
of complex systems.

17.8. UNIVARIATE SPATIAL
PROCESS MODELS

17.8.1. Ingredients of a Gaussian
process

As briefly mentioned in the Introduction,
modeling of point-referenced spatial data
typically proceeds from a spatial random field
{w(s) : s ∈ D}, where D is typically an open
subset of �d where d is the dimension; in
most practical settings d = 2 or d = 3.
We say that a random field is a valid spatial
process if for an any finite collection of
sites S = {s1, . . . , sn} of arbitrary size, the
vector w = (w(s1), . . . , w(sn)) follows a
well-defined joint probability distribution.

For the practical spatial modeller, the most
common specification is a Gaussian Random
Field (GRF) or a Gaussian Process (GP),
which additionally specifies that w follows
a multivariate normal distribution.
To be more specific, we write
w(s) ∼ GP(μ(s), C(·)) which is a Gaussian
Process with a mean function μ(s), i.e.,
E[w(s)] = μ(s), and a covariance function
Cov(w(s), w(s′)) = C(s, s′). This specifies
the joint distribution for a collection of
sites s1, . . . , sn as w ∼ N(μ, �), where
μ = (μ(si))n

i=1 is the corresponding n × 1
mean vector and �w = [C(si, sj)] is the
n × n covariance matrix with (i, j)th element
given by C(si, sj).

Clearly the covariance function cannot
be just any function: it needs to ensure that
the resulting �w matrix is symmetric and
positive definite. Symmetry is guaranteed
as long as C(s, s′) is symmetric in its
arguments, while functions that ensure
the positive-definiteness are known as
positive definite functions. The important
characterization of such functions, at least
from a modeler’s perspective, says that a
real-valued function is a valid covariance
function if and only if it is the characteristic
function of a symmetric random variable
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(this is derived from a famous theorem due
to Bochner). Further technical details about
positive definite functions can be found in
Cressie (1993), Chilés and Delfiner (1999)
and Banerjee et al. (2004).

Since it is common for spatial data to
consist of single observations from a site,
we often need to assume stationary or
isotropic processes for ensuring estimable
models. Stationarity, in spatial modeling
contexts, refers to the setting when
C(s, s′) = C(s − s′); that is, the covariance
function depends upon the separation of
the sites. Isotropy goes further and specifies
C(s, s′) = C(‖s − s′‖), where ‖s − s′‖ is
the distance between the sites. Furthermore,
we will parametrize the covariance function
as C(s − s′) = σ 2ρ(s − s′), where ρ(s − s′)
is called a correlation function and σ 2 is
a spatial variance parameter. In particular,
we will use the the isotropic exponential
correlation function ρ(d, φ) = exp (−φd),
with d = ‖s − s′‖.

17.8.2. Bayesian spatial regression
and kriging

There is an expanding literature on modeling
point-referenced spatial data. The most com-
mon setting assumes a response or dependent
variable Y (s) observed at a generic location s,
referenced by a coordinate system (e.g.,
UTM or lat–long), along with a vector of
covariates x(s). One seeks to model the
dependent variable in a spatial regression
setting such as:

Y (s) = xT (s)β + w(s) + ε(s). (17.5)

The residual is partitioned into a spatial
process, w(s), capturing residual spatial
association, and an independent process,
ε(s), also known as the nugget effect,
modeling pure errors that are independently

and identically distributed as N(0, τ 2), where
τ 2 is a measurement error variance or micro-
scale variance. The key to incorporating
spatial association is by modeling w(s) as
a Gaussian Process with spatial variance
σ 2 and a valid correlation function ρ(·, ξ )
with ξ representing parameters that quantify
correlation decay and smoothness of the
resulting spatial surface.

When we have observations, y =
(Y (s1), . . . , Y (sn)), from n locations, we
treat the data as a partial realization of
a spatial process, modeled through w(s).
Hence, w(s) ∼ GP(0, σ 2ρ(·, φ)), is a
zero-centered Gaussian Process with
variance σ 2 and a valid correlation function
ρ(d, φ), which depends upon inter-site
distances (dij = ‖si − sj‖) and a parameter φ

quantifying correlation decay. Also, we
assume ε(s) are i.i.d. N(0, τ 2). Inferential
goals include estimation of regression
coefficients, spatial and nugget variances,
and the strength of spatial association thro-
ugh distances. Likelihood-based inference
proceeds from the distribution of the data,
y ∼ N(Xβ, �), with � = σ 2R(φ) + τ 2I ,
where X is the covariance matrix and R(φ)
is the correlation matrix with Rij = ρ(dij, φ).
See Cressie (1993) for details, including
maximum-likelihood and restricted maximum-
likelihood methods, and Banerjee et al.
(2004) for Bayesian estimation.

Statistical prediction (kriging) at a new
location s0 proceeds from the conditional
distribution of Y (s0) given the data y.
Collecting all the model parameters into
θ = (β, σ 2, τ 2, φ, ν), we note that

E[Y (s0) | y] = x(s0)T β + γ T �−1(y − Xβ)

(17.6)

Var [Y (s0) | y] = σ 2 + τ 2 − γ T �−1γ

(17.7)
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where γ = (σ 2ρ(φ; d01), . . . , σ 2ρ(φ; d0n))
and d0j = ‖s0 − sj‖. Classical prediction
computes the BLUP (Best Linear
Unbiased Predictor) by substituting
maximum-likelihood estimates for the
above parameters. A Bayesian solution
first computes a posterior distribution
P(θ | y), where θ = (β, σ 2, τ 2, ξ ) is the
collection of all model parameters and
then computes the posterior predictive
distribution P(Y (s0) | y) by marginalizing
over (averaging over) the posterior
distribution,

∫
P(Y (s0) | y, θ ) P(θ | y).

A Bayesian framework is convenient here,
driving inference assisted by proper and
moderately informative priors on the weakly
identified correlation function parameters.
For example, for the smoothness parameter
in the Matérn covariance, ν, we can follow
Stein (1999) in assuming that the data
cannot distinguish ν = 2 and ν > 2, which
suggests placing a Unif (0, 2) prior on ν.
Usually a MCMC algorithm is required to
obtain the joint posterior distribution of the
parameters, but again there are different
strategies to opt for. For example, we may
work with the marginalized likelihood as
above, y | θ ∼ N(Xβ, σ 2H(φ) + τ 2I), or we
may add a hierarchy with spatial random
effects, w = (w(s1), . . . , w(sn)):

y | θ , w ∼ N(Xβ + w, τ 2I)

w ∼ N(0, σ 2R(φ)).

In either framework, a Gibbs sampler may
be designed, with embedded Metropolis or
slice-sampling steps, to obtain the marginal
posterior distribution (see, e.g., Banerjee
et al., 2004). Much more complex hierarchi-
cal models have been discussed extensively
in the spatial literature but, irrespective of
their complexity, they mostly fit into the
template we outlined above.

When we want to capture spatial and
temporal associations, modeling is accom-
plished by envisioning a spatial process
evolving through time. The literature in
spatiotemporal models is quite rich (see, e.g.,
Cressie, 1993; Banerjee et al., 2004, and
the references therein). Essentially, modeling
proceeds from a spatiotemporal process
w(s, t) in the above context, where s denotes
the location, and t denotes time. Of course,
appropriate assumptions on the covariance
function associated with w(s, t) have to be
made. A popular covariance specification for
spatiotemporal models is separability, which
models spatiotemporal correlation functions
as a product of a purely spatial and a
purely temporal covariance function. These
and other more general specifications may be
found in Banerjee and Johnson (2006).

17.8.3. Illustration

Interest lies in predicting the relative den-
sity of eastern hemlock across the Bartlett
Experimental Forest. Basal area per hectare1

of all tree species was estimated at each of
438 forest inventory plots distributed across
the domain of interest. The response variable
is the fraction of estimated eastern hemlock
basal area per hectare. Covariates include
elevation and six spring and fall Tasseled Cap
spectral components that were derived from
Landsat satellite images (Kauth and Thomas,
1976).

A spatial regression model (as in
equation (17.5)) was fitted to the data.
We employed flat priors for the regression
estimates β and, based on estimates
from initial descriptive analyses including
variograms (see, e.g., Banerjee et al., 2004),
we used inverted-gamma IG(2, 0.01) for both
the spatial variance σ 2 and the measurement
error variance τ 2. The maximum distance
between inventory plots is 4834.81 meters,
so a uniform prior on φ was set so that the
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effective range was less than 3000 meters.
Using these priors an MCMC algorithm
was devised to obtain posterior samples.
Gibbs updates were used for the regression
parameters β while Metropolis updates were
employed for spatial variance components
(σ 2, τ 2) and the spatial range parameter φ.

The CODA package in R (www.r-
project.org) was used to diagnose
convergence by monitoring mixing, Gelman–
Rubin diagnostics, autocorrelations, and
cross-correlations. Analysis was based on
three chains of 11,000 samples each. The
first 1,000 samples were discarded from
each chain as a part of burn-in. Subsequent
parameter estimation and analysis used the
remaining 30,000 (10,000 × 3) samples.

Table 17.1 presents the 95% central
credible intervals for the parameter estimates
based upon the posterior samples. All six
covariates are significant and perhaps explain
some of the spatial variation in the data,
as is indicated by the spatial variance σ 2

being smaller than the measurement error
variance τ 2. The spatial range is calcu-
lated as the distance beyond which the
correlation function drops below 0.05; for

the exponential correlation function this
is approximately 3/φ. Finally Figure 17.1
displays an image plot of the estimated
response surface overlaid with contours
of the estimated spatial random effects
(the w(s)s). The random effects serve to offset
the spatially varying density of the response
surface.

17.9. BAYESIAN MODELS FOR
DISEASE MAPPING

In previous sections we have alluded to a
simple Poisson model for disease counts. In
fact, this is the basic model often assumed
for small area counts of disease (in tracts, zip
codes, counties, etc.). We consider two data
resolutions here. First we consider case event
data where, within a suitable study region
(W ), realization of cases arises. The locations
of cases are usually residential addresses.
These form a spatial point process. Often
data is not available at this level of spatial
resolution and aggregation to larger spatial
units occurs. Aggregated counts of disease
are often more readily available (e.g., from

Table 17.1 Parameter estimates for the model covariates
elevation and spring and fall Tasseled Cap spectral components.
Lower table provides parameter estimates for error terms σ2

and τ2, spatial range φ, and associated effective range

Parameter Estimate: 50% (2.5%, 97.5%)

Intercept −0.262 (−0.954, 0.387)
ELEV −0.002 (−0.002, −0.001)
SPR-TC1 0.007 (0.001, 0.013)
SPR-TC2 −0.007 (−0.011, −0.003)
SPR-TC3 0.011 (0.006, 0.015)
FALL-TC1 −0.007 (−0.011, −0.003)
FALL-TC2 0.008 (0.004, 0.011)
FALL-TC3 −0.004 (−0.008, −0.001)
σ 2 0.009 (0.005, 0.016)
τ 2 0.014 (0.012, 0.018)
φ 0.002546 (0.001325, 0.005099)
Effective range (meters) 1178.448 (588.301, 2264.629)
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Figure 17.1 Contour lines of estimated spatial random effects overlayed on an image plot
of estimated relative density of eastern hemlock. Note, the random effects serve to offset
the spatially varying density of eastern hemlock.

official government sources). Hence, the
second common data type is disease count
data within small areas. These small areas
are arbitrary with respect to the disease
process (such as census tracts, counties,
postcodes) and form a sub-division of the
study region. In what follows we will briefly
consider case event data, but will concentrate
discussion on the more commonly available
count data type.

17.9.1. Case event data

Assume we observe within a study region
(W ), a set of m cases, with residen-
tial addresses given as {si}, i = 1, . . . , m.
Figure 17.2 displays an example of such data:
larynx cancer incident case addresses for a
fixed time period (see Lawson, 2006, Ch 1
for discussion). Here the random variable is
the spatial location, and so we must employ
models that can describe the distribution

of locations. Often the natural likelihood
model for such data is a heterogeneous
Poisson Process (PP). In this model, the
distribution of the cases (points) is governed
by a first-order intensity function. This
function, l(s) say, describes the variation
across space of the intensity (density) of
cases. This function is the basis for modeling
the spatial distribution of cases. we denote
this model as:

s ∼ PP(l(s)).

The likelihood associated with this model is
given by:

L =
m∏

i=1

l(si) exp {−
∫
W

l(u) du}
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Figure 17.2 Larynx cancer incident case address locations in NW England (1974–1983).

where l(si) is the first-order intensity
evaluated at the sample locations {si}.
This likelihood involves an integral of l(u)
over the study region.

In disease mapping studies, usually
the variation in disease relates closely to
the underlying population that is at risk for
the disease in question. This is known as the
at risk background. Hence any definition of
the intensity of cases must make allowance
for this effect. Any areas where there are lots
of at risk people are more likely to yield cases
and so we must adjust for this effect. Often
the intensity is specified with a multiplicative
link between these components:

l(s) = l0(s)l1(s | θ ).

Here the at risk background is represented
by l0(s) while the modeled excess risk of
the disease is defined to be l1(s | θ ), where

θ is a vector of parameters. In modeling we
usually specify a parametric form for l1(s | θ )
and treat l0(s) as a nuisance effect that
must be included. Usually some external data
is used to estimate l0(s) nonparametrically
(leading to profile likelihood). This data
relates to the local population density.
Alternatively, if the spatial distribution of
a control disease is available (see Lawson
and Cressie (2000) for more details), then
the problem can be reformulated as a binary
logistic regression where l0(s) drops out of
the likelihood. Denote the control disease
locations as {sj}, j = m + 1, . . . , m + n, and
with N = n + m, a binary indicator function
can be defined:

yi =
{

1 if i ∈ 1, . . . , m
0 otherwise

∀i, i = 1, . . . , N
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and the resulting likelihood is just given by:

L(s | θ ) =
N∏

i=1

[l1(si)]yi

1 + l1(si)
.

By conditioning of the joint set of cases and
controls the population effect is removed and
does not require estimation.

17.9.2. Parametric forms

Often we can define a suitable model for
excess risk within l1(s). In the case where
we want to relate the excess risk to a known
location (e.g., a putative source of pollution)
then a distance-based definition might be
considered. For example:

l1(s) = ρ exp{F(s)α + γ ds} (17.8)

where ρ is an overall rate parameter, ds is a
distance measured from s to a fixed location
(source) and γ is a regression parameter, F(s)
is a design vector with columns representing
spatially-varying covariates, and α is a
parameter vector. The variables in F(s) could
be site-specific or could be measures on the
individual (age, gender, etc.). In addition this
definition could be extended to include other
effects. For example we could have:

l1(s) = ρ exp{F(s)α + ην(s) + γ ds}

(17.9)

where ν(s) is a spatial process, and η is a
parameter. This process can be regarded as
a random component and can include within
its specification spatial correlation between
sites. One common assumption concerning

ν(s) is that it is a random field defined to
be a spatial Gaussian process.

In the intensity (17.8), all the variables
can be estimated using maximum likelihood.
However when a Bayesian approach is
assumed then all parameters have prior
probability distributions and so we would
need to consider sampling the posterior
distribution given by:

P1(α, η, γ | s) ∝ L(s | α, η, γ ) · P0(α, η, γ )

where P0(α, η, γ ) is the joint prior distribu-
tion of the parameters. Assuming indepen-
dent prior distributions for each parameter
component, i.e., P0(α, η, γ ) = gα1 (α1) ·
gα2 (α2) · gα3 (α3) . . . gη(η) · gγ (γ ), this model
can be sampled via standard MCMC algo-
rithms. In intensity (17.9), the spatial com-
ponent ν(s) would have a spatially correlated
prior distribution and so a Bayesian approach
would be natural.

17.9.3. Count data

Often only count data is available within a
set of small areas. Denote yi as the count
of disease within the ith small area where
i = 1, . . ., p. As in the case of case event data
we need to allow for the at risk population
in our models. This can usually be easily
achieved for count data since expected rates
or counts can be obtained or calculated
for small areas. For example, age × sex
standardized rates for census tracts, postal
zones, or zip codes are often available from
government sources. Denote these rates as
ei, i = 1, . . ., p. Also, in our model we
want to model the relative risk of disease
via the parameter θi, i = 1, . . ., p. The
relative risk will be the focus of modeling
and it is usually assumed that the {ei}
are fixed.
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The simplest model for such data is a
Poisson log linear model where:

yi ∼ Poiss(eiθi).

In addtion the relative risk θi is usually
modeled with a log link for positivity.
A simple example could be:

log θi = α0,

a constant. This model represents constant
area-wide risk and often the null hypothesis
aasumed by many researchers is that α0 = 0,
so that θi = 1. This represents the situation
where the underlying rate or count gener-
ates the risk directly (i.e., yi ∼ Poiss(ei)).
This would be applicable if there were no
excess risk in the study area. Of course this
is seldom reality and it is the alternative
hypotheses where θi have some spatilal
structure that is of interest in modeling.

Some examples of models currently
adopted for different applications can be
instructive:

Putative health hazard assessment
Usually in these applications some measure
of the association between small area counts
and a fixed location or locations is to be
made. This association could be via distance
or directional measures. For example, define
the distance from the ith small area centroid
to the source as di and the angle as ψi. A log
linear model for risk related to a source might
be of the form:

log θi = α0 + α1di + α2 cos(ψi − μ0)

+ α3 sin(ψi − μ0) + �i.

Here, the directional component is summa-
rized by the cosine and sine terms in relation

to a mean angle parameter (μ0), while the
distance component is assumed to be log-
linearly related to risk. The final term �i is
meant to repesent unattributed extra variation
in risk. This could include random effect
terms, such as:

�i = ui + νi

where each term could represent different
aspects of the extra variation. For example,
ui is often defined to have a correlated
prior distribution (and is called correlated or
structured heterogeneity (CH)), whereas νi

is often assumed to represent uncorrelated
heterogeneity (UH). The prior distributions
assumed for these terms are commonly:

νi ∼ N(0, τν)

(ui | · · · ) ∝ 1√
β

exp

⎧⎨⎩−
∑
j∈∂i

wij(ui − uj)
2

⎫⎬⎭
where wij = 1/2β ∀i, j. The neighborhood
∂i is assumed to be the areas with common
boundary with the ith area. The second of
these prior distributions assumes dependence
between neighboring areas. This distribution
is termed a conditional autoregressive (CAR)
prior distribution. It is an example of a
Markov random field. Note that in this
definition the parameter β controls the
spatial smoothness (or correlation) of the
component.

The posterior distribution can be specified
as follows:

P(u, v, β, τν, α | y) ∝ L(y | θ )

× f1(u)f2(v)f3(α)f (β)f (τν)

where f1(u) is the CAR prior distribution,
f2(v) is a zero mean normal distribution,
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f3(α) is the joint prior distribution for
the regression parameters, f (β) and f (τν)
are prior distributions for the remaining
parameters. Note that β and τν are hyper-
parameters and they have prior distributions
as could any hyperparameters within the
other prior distributions (f1, f2, f3). The prior
distributions for regression parameters are
often assumed to be independent and each
parameter is often assumed to have a zero
mean normal prior distribution.

Disease map reconstruction
Often the main aim of modeling disease inci-
dence is simply to provide a good estimate
of disease risk. This can be specified as the
relative risk within each region (θi). Hence
the aim is to provide an accurate estimate of
the true underlying risk within the map. Much
recent work has been focussed on this area of
concern, and many models and approaches
have been developed (see, e.g., Banerjee
et al., 2004, section 5.4; Lawson, 2006,
Chapter 8.0, Lawson (2008)). Typically a log
linear model with random effects is defined:

log θi = α0 + �i where �i = ui + νi.

Here the ui, νi terms are CH and UH defined
as above. This is often called the convolution
model and was originally proposed by Besag
et al. (1991). This model has proved to
be very robust against mis-specification of
the risk, although it can also over-smooth
rates. Lawson et al. (2000), Best et al.
(2005) and Hossain and Lawson (2006) have
provided recent simulation-based evaluations
of a range of methods in this area.

Ecological analysis
This area of focus arises when the risk within
a small area is to be related to a covari-
ate or covariates usually measured at the

aggregate level. Often the main issue relates
to making individual level inference from
aggregate data. Aggregation or averaging
induces biases in estimation of parameters
for models (see, e.g., Wakefield, 2004). The
modifiable areal unit problem (MAUP) is an
example of an aggregation-related inference
problem. Another problem that can arise
is the misaligned data problem (MIDP).
This arises when the spatial resolution of
covariates is different from the outcome
variable. The classic example of this would
be modeling cancer outcomes at zip code
level and relating these to groundwater
uranium measured at point locations (wells).
A fuller discussion of these issues can be
found in Banerjee et al. (2004). In general the
type of model assumed is often of the form:

log θi = xT
i β + zT

i ξ

where xT
i is a row vector of fixed covariate

values for the ith small area and β is a
corresponding parameter vector, and zT

i is a
row vector of random effects and ξ a unit
vector.

Surveillance
With recent concerns over bioterrorism
(Fienberg and Shmueli, 2005; Sosin, 2003;
Lawson and Kleinman, 2005), the focus of
disease surveillance has become important.
Essentially this focus concerns the moni-
toring of disease incidence with a view to
detecting aberrations or unusual incidence
events. This often requires the monitoring of
large scale databases of health information.
In addition, the focus of the monitoring could
be a range of effects. There could be a need
to find clusters of disease on maps or change
points in time series or some mixture of these
effects in space–time. Detection of change
in multiple time and spatial series is the
focus. This is a challenging area that requires
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the use of fast computational algorithms
and novel spatial-sequential inference. In
essence, a range of models found in equa-
tions (17.1)–(17.3) above may need to be
examined simultaneously in this analysis.

17.9.4. Example

Here we examine briefly an example of
relative risk estimation. The example consists
of the South Carolina incidence of congenital
anomalies deaths by county for 1990. This
has also been examined in Chapter 6 of
Lawson et al. (2003). Figure 17.3 diplays the
standardised mortality ratio for this disease
for 1990. We are concerned to estimate the
true relative risk underlying these county
rates. To achieve this we propose a log linear
model for the risk in each area. Hence we
assume the likelihood:

yi ∼ Poiss(eiθi)

and then a log linear model of the form

log θi = α0 + �i where �i = ui + νi.

The two effects have the following prior
distributions:

ui ∼ CAR(uδi , τ/nδi )

where δi is the neighborhood of the ith area,
uδi is the mean of ui in the neighborhood,
and nδi is the number of neighbors, τ is the
variance, and

νi ∼ N(0, κ)

where κ is the variance. Now α0 is assumed
to have a uniform prior distribution on a
large range, while the τ and κ are variances
and their inverses (precisions: 1/τ, 1/κ)
have gamma prior distributions with fixed
parameters (shape: 0.5, scale: 0.0005). There
is some debate currently about how infor-
mative such hyperprior distributions are
(see, e.g., Gelman, 2005). In fact it is
always recommended that sensitivity to prior
assumptions be examined in any application.
The Bayes estimate of the relative risk is the
posterior expected value of relative risk for

SMR

less than 0.5000

0.5001–0.7800

0.7801–1.0900

1.0901–1.5100

1.5101 and over

Figure 17.3 Congenital anomalies deaths, standardized mortality ratio, South
Carolina, 1990.
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each region. This can be obtained from a
posterior sample by averaging the converged
sample output. The estimates of the relative
risk for the congential abnormalities data
are displayed in Figure 17.4. The posterior
probability of θi > 1 over the whole map is
shown in Figure 17.5 Note that this quantity
can be used to assess whether ther are any
areas of ‘significant’ risk elevation on the
map. For more details of this example see
Lawson et al. (2003: chapter 6).

17.10. SOFTWARE FOR BAYESIAN
MODELING

Posterior sampling is the commonest
approach to Bayesian inference. There is
now a range of software that can peform
this task. The best known of these is the
free software WinBUGS (downloadable
from www.mrc-bsu.cam.ac.uk/bugs/). This
package employs both Gibbs sampling and
Metropolis–Hastings updating methods for a

RR

less than 0.3720

0.3721–0.8230

0.8231–1.4410

1.4411–2.2180

2.2181 and over

Figure 17.4 Posterior expected relative risk estimates for the congenital abnormalities data
for South Carolina, 1990.

PP

less than 0.0820

0.0821–0.2050

0.2051–0.4170

0.4171–0.6710

0.6711 and over

Figure 17.5 Posterior probability of exceedance (Pr (θi > 1)) for the South Carolina
congenital abnormalities data.
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wide range of models. The package also has
a wide range of online runnable examples
and has a GIS tool called GeoBUGS that
allows mapping of small area data and
parameter estimates, as well as spatial
modeling of various kinds. Bayesian Kriging
and both CAR and multivariate CAR models
can be fitted using this package. Facilities
also exist within R (e.g. packages such
as bayesm, geoR, geoRglm, MCMCpack,
mCmC, spBayes etc.) and MATLAB
(spatial statistics toolbox) to perforn MCMC
computations for Bayesian spatial models.

ACKNOWLEDGMENTS

Portions of this research were based upon
data generated in long-term research studies
on the Bartlett Experimental Forest, Bartlett,
NH, funded by the U.S. Department of
Agriculture, Forest Service, Northeastern
Research Station. The authors would espe-
cially like to thank Marie-Louise Smith in the
USDA Forest Service Northeastern Research
Station for sharing a data set and Andrew
Finley in the Department of Forest Resources
at the University of Minnesota for help with
the statistical computations.

NOTE

1 Basal area is the cross-sectional area of a tree at
1.37 meters from the ground. Basal area per hectare
is the sum of all the basal area per tree in the hectare.
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